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Abstract: This study presents a production scheduling optimization method for a mining complex, which
provides a flexible long-term plan for future investments and operational decisions. This strategic planning
method uses an adapted two-stage SIP model which expands upon the two-stage framework by performing
multiple recourse stages that are solved iteratively, allowing parallel designs in a scenario-tree structure. In
this model, dynamic decisions are made sequentially over time, based on new information. A case study
with options to invest over trucks and a secondary crusher show an increased expected NPV compared to
the two-stage stochastic formulation.
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1 Introduction

Mining complexes represent a continuous flow of material with several stages: multiple mines, transportation

systems, processing streams, ports, etc., where the performance of each strongly depends on the other, and

each entails nonlinear relations towards material characteristics and project value. Because of this, stages

must be joined in a simultaneous optimization model that considers profits once the product is sold, and not

when the rock is extracted from the ground. Mine planning optimization models have tackled this problem

and focused on optimizing the whole mining complex jointly to obtain a plan that maximizes value given

the annual targets, blending requirements, operational constraints, and configuration of the system. This

joint optimization is referred to as “simultaneous optimization of mining complexes”. [1]–[3] State of the art

studies also consider stochasticity in variables such as geology or market. The latest research on stochastic

simultaneous optimization of mining complex (SSOMC) uses a set of scenarios to represent the uncertainty

and provide a unique life of mine extraction sequence and destination policy which perform best given the

uncertainty. Montiel et al. [4] considered geological uncertainty to optimize the production schedule of a

mining complex, where mining, blending, processing, and transportation decisions are defined in one model.

Kizilkale and Dimitrakopoulos [5] optimize mining rates under market uncertainty in a mining complex using

dynamic programming mechanism and show the advantages of simultaneous optimizations compared to the

traditional method. Another example is given in Zhang and Dimitrakopoulos [6], who account for market

uncertainty and develop a decomposition method to optimize both the mining schedule and the downstream

material flow plan. Other examples can be found [7]–[10].

The mentioned SSOMC methods use a geological risk discounting parameter [11] to defer risk onto later

periods where more information will be available. This risk discounting works by penalizing deviations from

production targets more heavily on the initial periods and reducing this penalty towards the end of the life

of the operation. This risk deferral mechanism is the starting point of the methodology proposed herein,

which takes this concept one step further by allowing the scenarios to deviate in later periods as much

as to define different designs. At the same time, it looks at controlling the number of branches, as, even

though full flexibility does allow considering the decisions that uncertainties can cause, this may result in

an exponentially increasing set of design solutions that make it hard for the operation to know exactly what

to do [12]. Thus, this study develops a dynamic model which is a compromise between risk management

and flexibility, providing an initially clear solution for the project to follow, but at the same time, allowing

the long-term design of change. This, by integrating dynamic decision-making into the optimization and

formulating it as a scenario tree, able to branch as more information is available.

Thus far, stochastic mine planning optimization has focused mainly on including the effects of geological

and/or market uncertainty into the formulation. New research has aimed at extending the approach to

consider geometallurgical aspects of the operation. [13] As stated by Dowd et al. [14], these uncertainties

and how to integrate them into the optimization process, as well as ways to include and maximize flexibility in

design, are some of the main challenges present in strategic mine planning nowadays. In this paper, geological

and geometallurgical uncertainty will define design flexibilities, where the goal is to transform the planning

of a mining complex into a dynamic mechanism that adapts to change. To do this, a set of equally probable

simulations is used to represent the spatial variability of the deposit [15].

When considering geological uncertainty, it can be agreed that no new information will be acquired over

the short-term scheduled deposit until after mining, and present decisions must be taken with the information

at hand. On the other hand, the long-term plans that define what to extract in over 2–5 years tend to produce

an illusion of certainty over the mine design that will surely change. Because of this information acquisition

and due to reporting requirements, the standard practice of mining operations is to re-optimize their life

of mine plan on an annual basis as a corrective measure. However, this is a passive mechanism which can

prove to be suboptimal and very expensive (relocation costs, lost contracts, etc.), [16] for example, if price

increases and infrastructure is placed in strategic spots where the pit could expand, it would require great

relocation costs to take advantage of the opportunity. [17] Increasing project flexibility through strategic

planning has proven to be very beneficial to the project’s performance and value, by planning and preparing

to react timely to change [18].
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The next section of this paper describes the proposed methodology, mathematical model and solving

procedure implemented. Application to a mining complex comprised of one copper-gold deposit and six

destinations (four processing streams, one stockpile, and one waste dump) which has been adapted for

confidentiality reasons and to aid in the discussion. Conclusions follow.

2 Dynamic stochastic optimization of the mining complex

As an initial step, this methodology will focus on capital investment (CAPEX) options (particularly the

purchase of an extra crusher); however, future work will focus on extending it to operational modes at both

mining and processing level. In the proposed method, the optimization will not get any more information

to decide on next year’s investments, so this period is optimized at its best with the representation of the

uncertainty given by the simulations. However, executing this initial year plan provides new information that

will be used for the re-optimization of further years, and decisions could change. The proposed method repeats

this information acquisition mechanism iteratively every year and allows scenarios to differ in investment

decisions if this adds value. Here, if a representative number of scenarios do, the optimization allows branching

the design into parallel plans, modeling the system’s design decisions as a tree, divided in annual stages (as

shown in Figure 1 and presented in next section).

The solving process can be divided into three steps, which are applied iteratively. Given that each

production period is represented by t, where t ε {1,. . . , T}, and T is the final production period, first, the

formulation is solved as an adapted two-stage SIP (as in [19]). In traditional two-stage optimization models,

the block extraction sequence corresponds to first stage variables (i.e. unique decisions over all scenarios), and

the processing stream decisions to second stage variables (i.e. scenario dependent decisions that help correct

decisions that were made under uncertainty). In the current model, extraction and investment decisions

will be first-stage decisions, but only for the current period (t) and, for the following periods (t+1 to T ), all

decision variables will be considered as “second-stage”, so the problem is solved individually for each scenario.

This initial step is represented in the leftmost section of Figure 1, where each square is an operational year of

the project, the continuous line represents a unique solution, and the dotted lines are independent solutions

for each scenario. It must be noted that these scenarios are all equi-probable representations of the deposit,

which respect the hard data but at the same time show the spatial variability of the orebody. If each scenario

was completely optimized separately, this would produce completely different schedules (none of which would

individually represent reality or the optimal design); rather, they must be accounted for together to manage

the risk related to the deposit’s geology. In this case, they are jointly accounted for during the first year,

but left free for following ones, not to provide an actual plan, but to provide a probabilistic guidance of

future investments.

Figure 1: Steps of the solving mechanism for the proposed dynamic model

Second, the later periods (t+1,. . . , T ) of each of the individual scenario-dependent solutions is analyzed

and compared in terms of the CAPEX investment decisions taken. If a “representative number of scenarios”

perform the same investment in a year (ex: set to 30% in the following case study), then the mine plan

branches on that year (with and without the investment). Finally, each branch is re-optimized as in step

one, fixing the initial investments per branch (as shown in step 3a of Figure 1), with extraction variables as

first stage decisions during the initial year, and the following periods as scenario dependent (as presented in

section 3b of Figure 1). Note that, if no representative amounts of scenarios decide to invest (or not invest),

then the first period is frozen and the second period is solved robustly (i.e. with first stage decisions for t+1,

and scenario dependent from t+2 to T ). This process is repeated until period T.
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Note that the mentioned “representative number of scenarios” is a user defined parameter (referred to

as representative ratio Rt in the following sections), which is used to filter and consider only options that

have the potential to add value and at the same time, a significant probability of being applied. This is

summarized in Equation 1, where the decision for branching the design is defined given a predefined Rt ratio,

and considering ωk,t,s, the binary decision variable of investment in option k, for scenario s ∈ S,{
branch solution, if

∑
s∈S ωk,t,s

|S| ∈ [Rt, 1−Rt]
unique solution, otherwise

(1)

Investment decisions are divided into branching and non-branching options (k* and k respectively). The

first corresponds to unique investment decisions that will have a big impact on the mining schedule (such

as a new plant), but it is not clear if the investment should be made. The second group has a relatively

reduced impact and/or are multiple small decisions which would make branching unpractical (such as truck

purchases). By doing this, it is possible to obtain a controlled design tree that shows the range of potential

evolving designs of the project.

2.1 Stochastic integer programming formulation

The proposed model uses the formulation developed in [19], where the optimization is shifted from a block-

value point of view to the value of the actual product sold. Here, the author aims at simultaneously optimizing

multi-mine production schedules, destination policies and processing streams under uncertainty, including

CAPEX options which allow the optimizer to adapt its capacity by acquiring new equipment; all this with

the objective of maximizing project value. The objective function (OF) of this model and some of the main

constraints are presented next, where S is the set of equally probable orebody models, T is the set of time

periods, H are hereditary attributes which are the variables that are tracked along the value chain (such as

grades, throughput, etc.). The complete model can be found in the referenced text.

max
1

|S|
∑
s∈S

∑
t∈T

∑
h∈H

ph,t · vh,t,s︸ ︷︷ ︸
Discounted revenues and costs

−
∑
t∈T

∑
k∈K

pk,t · ωk,t︸ ︷︷ ︸
Capital expenditure costs

− 1

|S|
∑
s∈S

∑
t∈T

∑
h∈H

c+h,t · d
+
h,t,s + c−h,t · d

−
h,t,s︸ ︷︷ ︸

Risk discounted penalties for deviations

(2)

vh,t,s − d+h,t,s ≤ Uh,t +

t∑
t′=t−λk+τk

κk,h · ωk,t′ h ∈ H, t ∈ T, s ∈ S (2.1)

vh,t,s + d−h,t,s ≥ Lh,t +

t∑
t′=t−λk+τk

κk,h · ωk,t′ h ∈ H, t ∈ T, s ∈ S (2.2)

The OF contains three parts,

i) Maximize revenue obtained from selling at a discounted price (or cost) of ph,t a quantity vh,t,s of the

hereditary attribute h in period t, scenario s.

ii) Discounts CAPEX costs, where pk,t represents the price (or cost) of the option, and ωk,t is the decision

variable that defines the number of CAPEX options k that are exercised on period t. This way, the

cost of flexibility obtained from new investments is directly accounted at the OF.

iii) Finally, the penalties for deviating from production target are minimized, where d
+/−
h,t,s represents the

deviations of attribute h, at time t, on scenario s, and c
+/−
h,t are the cost of deviation, which defers risk

to later periods by using geological risk discounting factors.

Here, CAPEX decisions are scenario independent. Constraints (2.1) and (2.2) define the bounds and

measure the deviation from production targets for each hereditary attribute in each orebody simulation at

time t, considering the minimum and maximum limits, as well as the per-unit capacity added (κk,h). λk is

to the lifespan of the capacity increment, and τk is the lead time to delivery of the investment considered.
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This model provides a unique solution that performs best under all scenarios. The proposed method aims

at using this formulation as a starting point, by initially transforming decision variable ωk,t into ωk,t,s. The

detailed procedure to obtain this compound solution is presented next.

The formulation aims at modeling the system’s design decisions as a tree, divided by period, group of

events, and events, as presented in Figure 2. The first define each stage of the tree, the second correspond

to groups of parallel designs with the same “ancestor”, and finally, each event corresponds to the design of

that branch in a period. Here, the design and extraction sequence is unique within a branch.

Figure 2: Tree structure used to define the branching mechanism of the proposed model

The mathematical formulation uses the same objective function presented in Equation 2, as well as the

constraints (Equations 2.1 and 2.2), with some adaptations, mainly, that after the first period, 1st stage

decisions also have a scenario component (as parallel designs can be created by branching). To present the

formulation, the definition of the sets, list of decision variables and dynamic constraints is presented.

Sets

K Set of flexibilities and system options, indexed by k, where K∗⊂K set of options that require branching
over the design, and Ko⊂K set that don’t require branching.

Ω Set of scenarios, indexed by s = 1, . . . , S, (i.e.
∫
∀s Ωs=Ω) where Ωtgl⊆Ω Set of scenarios in node t,g,l

(period t, group g, event l)
D Set of locations in the mining complex

Θ(j) Set of destinations which can receive material from location j∈D.
zc,j,t,s∈ {0, 1} Defines whether cluster c is sent to destination j∈Θ(c) in period t, scenario s
wk,t,s∈ {0, 1} Defines whether investment option k∗∈K∗ is executed in period t, scenario s

qtglk∗,t∈ {0, 1} Branch design over investment option k∗∈K∗ in node tgl, period t

Decision variables

xb,t,s∈ {0, 1} Defines whether a block b is extracted at period t, scenario s
yi,j,t,s∈ [0, 1] Defines proportion of material sent from i to j in period t, scenario s

zc,j,t,s∈ {0, 1} Defines if a cluster of blocks c is sent to destination j∈Θ(c) in period t, scenario s
wk,t,s∈ {0, 1} Defines whether investment option k∗∈K∗ is executed in period t, scenario s

qtglk∗,t∈ {0, 1} Defines whether to branch design over option k∗∈K∗ in node tgl, period t

Dynamic constraints always enforced except when branching q is “activated”.

Extraction decisions can be different between set of scenarios(
1−

∑
∀k∗∈K

qk∗,tgl

)(
xb,(t+1),s − xb,(t+1),s′

)
= 0 ∀s ∈ Ωtgl; ∀s′ ∈ Ωtgl′ ; Ωtgl,Ωtgl′ ⊂ Ω; Ωtgl

⋂
Ωtgl′ = ∅

Destination decisions can be different between set of scenarios(
1−

∑
∀k∗∈K

qk∗,tgl

)(
zc,j,(t+1),s − zc,j,(t+1),s′

)
= 0 ∀s ∈ Ωtgl; ∀s′ ∈ Ωtgl′ ; Ωtgl,Ωtgl′ ⊂ Ω; Ωtgl

⋂
Ωtgl′ = ∅

Investment decisions are the same if branching is not “activated”.(
1−

∑
∀k∗∈K

qk∗,tgl

)(
wk∗,(t+1),s − wk∗,(t+1),s′

)
= 0, ∀s ∈ Ωtgl; ∀s′ ∈ Ωtgl′ ; Ωtgl,Ωtgl′ ⊂ Ω; Ωtgl

⋂
Ωtgl′ = ∅

Modeling a real size mining complex with multiple mines and processing streams under geological uncertainty

entails more than a million binary variables, with over a million constraints. [9] If also investment decisions are
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considered (result in scenario dependent extraction variables), then the problem grows even further. Thus, it is

unfeasible to consider any exact solving methods, making it necessary to use an efficient heuristic mechanism.

An adaptive neighborhood search simulated annealing mechanism is used to develop a good solution in a

manageable amount of time. [20] Here, each decision variable defines a neighborhood, and the solution is

perturbed iteratively (ex: adding one or multiple trucks if the fleet purchase neighborhood is selected), where

the probability of selection of a perturbation is adapted depending on its historical performance in improving

the objective function’s value.

3 Case study: CU-AU mine

3.1 Mine complex configuration

The following case study corresponds to a Cu-Au mining complex with one mine, five processing destinations,

a stockpile, and a waste dump. Figure 3 presents a diagram of the mining complex, specifying the products

and material types allowed per destination. Each destination has variable recoveries, function of the feed

head grade. Table 1 shows the mining, processing, and economic parameters, normalized by the mining

cost “$x”, for confidentiality purposes. In this case, 10 orebody simulations with variable copper and gold

grade where used to generate a dynamic optimization of the mining complex. As an initial approach, 10

simulations seemed enough to show the method’s implementation and potential, however, further studies

should be made to ensure convergence.

Two options are considered (i) Invest on truck fleet (increasing extraction capacity), starting from an

initial base fleet. (ii) Invest on a 2ry crusher that increases the capacity at the Sulphide Mill (which treats

both Cu and Au). Further details of each CAPEX option are provided in Table 2.

Figure 3: Diagram of the different processing streams available and the material types accepted

Table 1: Mining and economical parameters of the copper/gold mine

Mining Complex Parameters Processing Cost Parameters Economic Parameters

Mining Cost $1.00 * x Sulfide Mill $11.3 * x Copper Price $2.9/lb
Initial Mining Cap. 6 Mt Sulfide Heap Leach $2.98 * x Gold Price $1450/oz
Initial Processing Cap. 2 Mt Sulfide Dump Leach $1.87 * x Discount rate 10%
Mining width 100m Transition Heap Leach $2.15 * x

Oxide Heap Leach $2.06 * x
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Table 2: Information and purchase parameters of each investment option

Truck (non-branching option) 2ry Crusher (branching option)

Undiscounted cost ($US) 4,000,000 26,000,000
Life of equipment (years) 6 25
Periodicity of decision (years) 2 years once per LOM
Lead time (years) 1 year 2 years
Maximum purchase 8 units 1 unit
Initial Capacity available 15 Mt, 1st period (5 trucks)

6 Mt, 2nd-6th period (2 trucks)
2,500,000 tons

Tonnage constraint increment / unit 230 tons 300,000 tons

3.2 Results

3.2.1 Base case

This corresponds to the standard stochastic optimization of the mining complex [20], where a set of scenarios

is used to define a unique solution. Both truck and 2ry crusher purchase options are included in the model

but as 1st stage decisions. The solution provides the period each block is extracted, where it is sent, how

many trucks are purchased per year (thus the annual production capacity), and if a crusher is purchased,

respecting the parameters of Table 2. Figure 4 shows, on the left, the number of trucks purchased per year

and the cumulative amount available (left axis), and the total extraction capacity available (full line), as well

as the actual amount of material extracted per year (dotted line). In this case, the optimizer decided the 2ry

crusher was not profitable. The right side of Figure 4 presents the cumulative discounted cash flow (CDCF)

per scenario, ranging from M$700 to M$800 (P50 of MUS$756). This base case will be used to compare the

new method proposed.

Figure 4: (left) Truck purchase (left axis) and total mining capacity (right axis). (right) CDCF per simulation

Figure 5: Truck purchase plan and mining capacity for option without (top-left) and without (bottom-left) 2ry crusher; and
corresponding mill feed per period for each scenario (top and bottom right)
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3.2.2 Proposed dynamic case

Step 1 – 1st stage optimization First, the model is optimized keeping the first period as 1st stage decisions,

with an equal solution over all scenarios, and relaxing these decisions for the following years, leaving the

solution scenario dependent. Second, the branching investment decisions of each scenario are compared and,

if a representative number of scenarios (Rt = 30% in this case) decide differently over an investment on a set of

years, then these scenarios are grouped and the design is branched. For the initial periods (where investment

decisions are equal over all scenarios), the solution is re-optimized setting extraction and investment decisions

as scenario independent, to obtain a unique design. In this case, 40% of the scenarios chose to invest in a

2ry crusher by period 4. As this 40% is above the defined Rt= 30%, the project branches and the three first

periods are re-optimized. Results show an investment of 2 trucks in year 1 and 2 in year 3. These investments

are frozen and the final periods are re-optimized for each design branch.

Step 2 – Branching over the design Once the initial stage of the optimization is done, the design options

considering and not considering the 2ry crusher investment are explored. To do this, first the blocks that

were already scheduled in stage 1 are removed from the orebody model, and the model is re-solved within

the remaining blocks. Also, as there was a truck purchase in the last period of stage 1 (period 3), truck

purchases are not allowed for the first period of the second stage (period 4).

1. Branch 1 - No investment in 2ry crusher: In this case, the 2ry crusher option is removed from the SIP

model, and the problem is re-optimized over periods 4 to 8. Results are shown in the top section of

Figure 5, where the truck purchase plan is presented on the left side, with one truck in period 5 and

two in period 7, and the mill feed is shown on the right side, presenting a stable feed of around 2Mt,

with slight deviations during the last periods.

2. Branch 2 - Invest in 2ry crusher: In this case, the cost of the purchase is included in period 4, but the

extra capacity is only available at period 6, (2-year lead time in Table 2). This can be seen on the

dotted line at the bottom right side of Figure 5, which shows the mill feed target. The bottom-left side

presents the truck’s purchase plan, with 5 trucks bought in period 5, available just in time for when

the extra mill capacity is obtained.

The joint cumulative NPV ranges between MUS$700 and MUS$900 (MUS$100 over the initial case), as

presented in Figure 6, with a P50 of MUS$793, showing an increase in project value of almost MUS$40 over

the initial base case and entails a tailored design that allows maximizing the project’s potential.

Figure 6: Cumulative discounted cash flow for each simulation considering the option of investing in a 2ry crusher (dotted blue
line) or not investing (continuous red line)

4 Conclusions and future work

A dynamic SIP model was developed to include flexibility into the mine planning optimization problem. This

was done by a tree structure solving mechanism which allows developing different solution designs. A case

study over a copper-gold open pit mine with six possible destinations was presented, including two flexibility

CAPEX investment options, (i) truck fleet to manage production capacity, and (ii) a 2ry crusher to increase
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the mill’s processing capacity. Results showed that 40% of the scenarios decided to invest in the crusher by

year 4, representing an overall increase in NPV of M$40 compared to the initial two-stage SIP solution.

In conclusion, by applying this flexible formulation, it is possible to identify and actively include interesting

options that might not be profitable now, but could be valuable in the future, easing the transition to change

and allowing the project to be better prepared for it. This, to have the flexibility to alter the mine plan

as more information is obtained, allowing the operation to be better prepared for uncertainty, and take full

advantage of opportunities while hedging risk. Future applications will focus initially in performing a more

in-depth study over the number of scenarios required to ensure convergence of the solution. Also, coming

work will concentrate on including more complex variables affecting the system, such as hardness (i.e. SPI,

BWi), recovery and throughput.
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