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Québec – Nature et technologies.
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Abstract: Distance measures play an important role in data analysis, mainly for clustering purpose, but
also for data representation (for instance using multidimensional scaling) or for prediction (e.g., k-nearest
neighbors). If the concept is also well defined in networks, it turns out that the distance measures are either
difficult to compute or are not precise enough for most analysis purpose. Furthermore, the concept of distance
and its measure should be adapted depending on the application area since it does not have the same meaning
in a social network, a telecommunication network or a molecule. In this paper, we propose a new distance
measure that is based upon the well known Jaccard distance, but does not have the limitation that all pairs
of nodes at geodesic distance strictly greater than 2 automatically have 1 as the Jaccard distance. The new
distance measure is defined and analyzed according to its possible applications and in terms of computational
complexity.
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1 Introduction

We work on complex network, a mathematical object comprising a set of nodes together with a set of arcs

(links between nodes). Let n denote the number of nodes in the network and m its number of arcs.

The most used distance measure in networks is certainly the geodesic distance dij [3] which counts the

minimum number of arcs in a path joining the two considered nodes i and j. If this distance could be very

efficiently computed using Dijkstra’s algorithm, it only uses few of the information available. Indeed, as soon

as the shortest path’s length is not altered, the remaining of the network does not matter. This distance

is also degenerated in the sense that lots of pairs of nodes have the same geodesic distance. For instance,

adjacent nodes are always at distance 1.

To use some more precise information, one could use the resistance distance [9], or the random walk

distance [1] which is based upon the very same process [11, 13]. Unfortunately, if the latter distances are

more accurate as they do not involve only the length of the shortest path, but also the number of alternative

paths of various length, they are difficult to compute. Namely, the Laplacian (of Kirchhoff) pseudo inverse

must be computed [6], which is time and memory consuming [12].

A fast alternative to the resistance distance that is commonly used in the case of sparse data, and

specifically in text mining, is the Jaccard distance [7, 8]. Initially built for bipartite graphs, the Jaccard

distance is based upon the proportion of neighbors of each node that are common to both of them. This

definition provides a more precise measure of the Jaccard distance between nodes and gives a value between 0

and 1. Unfortunately, as soon as two nodes do not share any neighbor, the Jaccard distance is always 1,

which results in a lack of information.

In this paper, we propose a new distance measure that is based upon the geodesic and the Jaccard dis-

tances. Its computation complexity is similar to that of the geodesic distance while it yields the discriminating

capability of the Jaccard distance. As such, it seems a good alternative to both the Jaccard and the geodesic

distances in the context of complex network analysis.

2 The Jaccard index and the Jaccard distance

The Jaccard distance is directly derived from the Jaccard index which is a measure that aims at quantifying

the similarity of objects described by their binary attributes. Let us consider two objects i and j respectively

described by the sets of attributes ai and aj . The Jaccard index is defined as :

Jij =
|ai ∩ aj |
|ai ∪ aj |

.

The value of the Jaccard index is always between 0 and 1, and a larger value implies a larger similarity. A

distance measure may therefore be defined as

DJij = 1− Jij .

Since the description of objects by their binary attributes may also be modeled as a bipartite graph where

nodes may represent either an object or an attribute and arcs represent the belonging relation, it is possible

to translate the definition of the Jaccard index as follows :

Jij =
|N(i) ∩N(j)|
|N(i) ∪N(j)|

, (1)

where N(i) denotes the set of nodes adjacent to i, the neighbors of i, and i itself. As previously, the Jaccard

distance for bipartite graphs is expressed as :

JDij = 1− Jij

and is always a value between 0 and 1.
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3 The Extended Jaccard distance

The definition from Equation (1) may be applied in the case of non necessarily bipartite graphs. We notice

that JDij = 1 for all i and j such that dij > 2, which indicates an absence of information for pairs of nodes

that are not close to each other. To better measure the distance between pairs of nodes that are at a larger

geodesic distance, the definition of the neighborhood N(i) could be modified by introducing a parameter k

as follows :

Nk(i) = {j | dij 6 k},
i.e. Nk(i) is the set of nodes at geodesic distance at most k from the node i. By varying the parameter k, a

set of Jaccard indices may be computed as:

Jk
ij =

|Nk(i) ∩Nk(j)|
|Nk(i) ∪Nk(j)|

,

and the corresponding Jaccard distances are:

JDk
ij = 1− Jk

ij .

Depending on the value k, the sensitivity of the measures will depend on the geodesic distance between

the considered nodes. Indeed, if k is large enough, the index Jk
ij = 1 and the corresponding Jaccard distance

is 0. On the other hand, if k is too small, Jk
ij = 0 for pairs of nodes at a large geodesic distance from each

other. Since it is not convenient to adjust the parameter k to each pair of nodes, and since a distance measure

should be meaningful and comparable in all cases, we propose to combine those measures into a single one

by summation. We thus define the Extended Jaccard Distance as follows :

EJDij =

n∑
k=0

JDk
ij .

The summation starts with k = 0 to ensure that distinct nodes will have a non-zero distance, actually at

least 1. Also, if two nodes are close enough, after some value k, the contribution of 1− Jk
ij will be 0. On the

other hand, if two nodes are far enough, the value 1−Jk
ij will be 1 for small values of k, which will contribute

to increase this new distance.

4 Correctness of the Extended Jaccard distance

Theorem 1 If N is the set of nodes in the network, then the function

EJD.. : N ×N → R+ : (i, j) 7→ EJDij

defined by

EJDij =

n∑
k=0

JDk
ij

is a distance.

Proof. This proof is divided into the four following lemmas.

Lemma 1 (Positivity)

EJDij > 0 ∀i, j.

Proof. Since EJDij is the sum of the terms JDk
ij for k = 0 . . . n, and

0 6 Jk
ij =

|Nk(i) ∩Nk(j)|
|Nk(i) ∪Nk(j)|

6 1,

we have 0 6 JDk
ij = 1− Jk

ij 6 1. The result follows.
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Lemma 2 (Separability)

EJDij = 0⇔ i = j.

Proof. First, note that JDkii = 0 for all k, therefore EJDii = 0. Second, since N0(i) = {i}, it follows that

JD0
ij = 1 for all distinct i and j. As EJDij is a sum of non negative terms, it follows that as soon as one of

those terms is greater than 0, the summation will also be, which is the case when i 6= j.

Lemma 3 (Symmetricity)

EJDij = EJDji ∀i, j.

Proof. This is due to the symmetry of the operators of union and intersection between sets of nodes, used

in the definition of EJDij .

Lemma 4 (Triangle inequality)

EJDij + EJDjl > EJDil ∀i, j, l.

Proof. To prove the triangle inequality, it is sufficient to prove that for all i, j, l, and for all k,

JDk
ij + JDk

jl > JDk
il.

Moreover, the last inequality is a particular case from the proof of the triangle inequality for the Jaccard

distance [10].

5 Algorithmic issues

There are various ways to compute the Extended Jaccard distance and depending on the implementation,

the computational complexity may vary as well as the memory requirement.

The easiest way to proceed consists in building the geodesic distance matrix first, and compute the

Extended Jaccard distance by scanning the rows corresponding to the nodes i and j. The computational

complexity is then O(n3). Unfortunately, this implementation requires to store an n× n matrix. In the case

of complex networks, computing and storing a whole distance matrix is no more possible.

It is also feasible to compute the Extended Jaccard distance between two given nodes by applying a

variant of the Dijkstra’s algorithm. The computational complexity of this distance for a pair of nodes is

then O(m), the overall computational complexity for all pairs would then be O(n2 × m). In the case of

complex networks, if the number of arcs is linear in the number of nodes, i.e. if the network is sparse, the

second implementation is better than the first one because it does not require an n× n matrix to be stored.

Otherwise the computational complexity of the second one becomes O(n4), which is worse than the first one.

6 Illustration through a clustering example

Since it is recursively based upon the set of neighbors and the similarity between neighbors of given nodes, the

Extended Jaccard distance is well suited for instance for social networks, networks involving relations between

concepts or any data mining application that relies on sparse matrices (represented as bipartite graphs).

The Extended Jaccard distance matrix provides an efficient tool for communities detections based upon

a hierarchical clustering algorithm [4], such as the single linkage [5] or the complete linkage [2]. If the single

linkage algorithm is used, the partitions obtained will be very similar to those obtained using the standard
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Jaccard distance since two nodes with a small Jaccard distance are within the same value incremented

by slightly more than 1 as the Extended Jaccard distance. However, the situation is different when the

complete linkage is used. As soon as two nodes are at geodesic distance at least 2, the Jaccard distance is

systematically 1 and a part of the clustering involves ties that are randomly broken, which is not the case

using the Extended Jaccard distance.

In order to show the difference between various distances, the complete linkage was applied to the geodesic

distance, the resistance distance, the random walk distance, the Jaccard distance and the Extended Jaccard

distance computed on the well-known Zachary dataset [14], i.e. on Zachary’s Karate network with 34 nodes

and 78 arcs. The obtained partitions on 6 clusters are shown in Figure 1, Figure 2, Figure 3, Figure 4
and Figure 5.
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Figure 1: Karate partition on 6 clusters using the geodesic distance.
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Figure 2: Karate partition on 6 clusters using the resistance distance.

We notice that the path-based distances, i.e. the geodesic, the resistance and the random walk dis-

tances, provide comparable results, except maybe the resistance distance for which one large cluster and 4

singletons are found.

On the other hand, the Jaccard-based distances produce another type of result for which a cluster is

mainly made of nodes that are not adjacent to any other from that cluster, i.e. the green cluster with

number 3 in Figure 4 and Figure 5. This is because these nodes share the same neighbors, and it shows the

strong capability of the Jaccard-based distances to predict missing links.
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Figure 3: Karate partition on 6 clusters using the random walk distance.
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Figure 4: Karate partition on 6 clusters using the Jaccard distance.
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Figure 5: Karate partition on 6 clusters using the Extended Jaccard distance.

Note further that, due to the degeneracy of the standard Jaccard distance, different runs may lead to

different partitions. Besides, we can observe that the red cluster with number 2 in Figure 4 is divided with the

Extended Jaccard distance in Figure 5. More generally, with the standard Jaccard distance, some clusters are

defined arbitrarily whereas the accuracy of the Extended Jaccard distance breaks this arbitrary phenomenon

by using the structure of the network.
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7 Conclusion and future work

In this paper, we propose an extension of the Jaccard distance to be used in complex networks : the Extended

Jaccard distance. This new distance is not restricted to pairs of nodes that have common neighbors, which

makes it more convenient as any other distance measures.

The algorithmic complexity for computing the new distance between all pairs of nodes is similar to that

of the geodesic, the resistance and the random walk distances, i.e. in O(n3), when storing an n×n matrix is

possible. If storing such a matrix is not possible, the computation of the Extended Jaccard distance between

two given nodes could be achieved in O(m), which is also the case for the geodesic distance, whereas for the

resistance and the random walk distances, computing the distance between two given nodes needs to inverse

an n× n matrix, which costs O(n3).

Beyond these algorithmic issues, the main contribution of this paper is to propose a distance measure

for complex networks that is based upon a different paradigm. Unlike the geodesic, resistance or random

walk distances, which are defined by the means of paths, the Jaccard and the Extended Jaccard distances

are based upon the topological similarities between nodes, which implies that the presence of an arc between

two nodes has less impact on their distances than it would have for other distances.

Moreover, the Extended Jaccard distance refines the standard Jaccard distance. Firstly, two distinct

nodes have the Extended Jaccard distance at least 1, whereas two nodes sharing same neighbors have 0 as

the standard Jaccard distance. Secondly, if the geodesic distance between two given nodes is at least 3 then

the standard Jaccard distance is always 1 while the Extended Jaccard distance is more subtle, i.e. a value

greater than 2 depending on common nodes which are at geodesic distance at least 3 from the two given nodes.

The first application of the Extended Jaccard distance is thus the detection of spurious arcs or missing

ones. Indeed, an arc linking two nodes with a large Extended Jaccard distance indicates a relation between

two dissimilar ones, i.e. this arc is potentially spurious. On the reverse, two non-adjacent nodes with a small

Extended Jaccard distance should probably be connected. Other applications of the new distance measure

are still to be explored.
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