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Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.
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Abstract: Partially observed major minor LQG mean field game theory is applied to an optimal execution
problem in finance; following standard financial models, controlled linear system dynamics are postulated
where an institutional investor (interpreted as a major agent) in the market aims to liquidate a specific
amount of shares and has partial observations of its own state (which includes its inventory). Furthermore,
the market is assumed to have two populations of high frequency traders (interpreted as minor agents)
who wish to liquidate or acquire a certain number of shares within a specific time, and each one of them
has partial observations of its own state and the major agent’s state (which include the corresponding
inventories). The objective for each agent is to maximize its own wealth and to avoid the occurrence of
large execution prices, large rates of trading and large trading accelerations which are appropriately weighted
in the agent’s performance function. The existence of ε-Nash equilibria together with the individual agents’
trading strategies yielding the equilibria, were established. A simulation example is provided.
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1 Introduction

Partially observed Mean Field Game (PO MFG) theory was introduced and developed in Caines and Kizilkale

(2013, 2014, 2016); Şen and Caines (2014, 2015) where it is assumed the major agent’s state is partially

observed by each minor agent, and the major agent completely observes its own state. Accordingly, each

minor agent can recursively estimate the major agent’s state, compute the system’s mean field and thence

generate the feedback control which yields the ε-Nash property. This PO MFG theory was further extended

in the work of Firoozi and Caines (2015) to major-minor LQG systems in which both the major agent and the

minor agents partially observe the major agent’s state. The existence of ε-Nash equilibria, together with the

individual agents’ control laws yielding the equilibria, were established wherein each minor agent recursively

generates (i) an estimate of the major agent’s state, and (ii) an estimate of the major agent’s estimate of

its own state (in order to estimate the major agent’s control feedback), and hence generates a version of the

system’s mean field. It is to be noted that the case where each agent has only partial observations on its

own state was addressed in the LQG case in Huang et al. (2006) and in the nonlinear case in Şen and Caines

(2016a,b).

Optimal execution problems have been addressed in the literature (see e.g. Cartea et al. (2015); Jaimungal

and Kinzebulatov (2014); Almgren and Chriss (2001); Alfonsi et al. (2010)) where an agent must liquidate

or acquire a certain amount of shares over a pre-specified time horizon at a trading speed to balance the

price impact (from trading quickly) and the price uncertainty (from trading slowly), while it maximizes its

final wealth. Further, in Bayraktar and Ludkovski (2011) the partially observed setting where the market

liquidity variable is not observed was studied. This problem with the linear models in Cartea et al. (2015)

was formulated as for the nonlinear major minor (MM) MFG model in Jaimungal and Nourian (2015). The

PO MM LQG MFG theory was first applied to an optimal execution problem with linear models of Cartea

et al. (2015) in Firoozi and Caines (2016) where an institutional investor, interpreted as a major agent, aims

to liquidate a specific amount of shares and it has only partial observations of its own state (which includes

its inventory). Furthermore, there is a large population of high frequency traders (HFTs), interpreted as

minor agents, who wish to liquidate their shares, and each of them has partial observations of its own state

and the major agent’s state (which include the corresponding inventories). This work is improved in the

formulation of market dynamics in the MFG framework, and also is extended to consider two populations

of HFTs with liquidation or acquisition objectives who wish to, respectively, liquidate or acquire a certain

number of shares within a specific duration of time in the current paper. The theory is then utilized to

establish the existence of ε-Nash equilibria together with the best response trading strategies such that each

agent attempts to maximize its own wealth and avoid the occurrence of large execution prices, and large

trading accelerations which are appropriately weighted in the agent’s performance function. A simulation

example is provided at the end.

We note that the terms major trader (respectively, minor trader), and institutional trader (respectively,

HFT) are used interchangeably in this paper.

The paper is organized as follows. Section 2 is devoted to the description of trading dynamics in the

market and the execution problem. In Section 3 the optimal execution problem is formulated in the mean

field game framework. Full observation and partial observation optimal execution problems are addressed in

Sections 4 and 5, respectively. Section 6 presents the simulation results.

2 Trading dynamics of market agents

As stated in the Introduction, the institutional investor is considered as a major agent in the mean field

model of the market which liquidates its shares and the HFTs are considered as minor agents, where two

types of them are considered: liquidators and acquirers. Employing the trading model in Cartea et al. (2015),

the trading dynamics of the major agent and any generic minor agent in the market are described by the

linear time evolution of the inventories, trading rates and prices while the bilinear cash process appears in

the quadratic performance function for each agent.
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2.1 Inventory dynamics

It is assumed that the institutional investor liquidates its inventory of shares, Q0(t), by trading at a rate

ν0(t) during the trading period [0, T ]. Hence the major agent’s inventory dynamics is given by

dQ0(t) = ν0(t)dt+ σQ0 dw
Q
0 (t), 0 ≤ t ≤ T,

where wQ0 (t) is a Wiener process modeling the noise in the inventory information that the institutional trader

collects from its branches in different locations; σQ0 is a positive scalar and we assume that Q0(0)� 1. The

same dynamical model is adopted for the trading dynamics of a generic HFT

dQi(t) = νi(t)dt+ σQi dw
Q
i (t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T

where Na and Nl are respectively liquidator and acquirer populations of N minor traders, i.e. N = Na +Nl,

wQi is a Wiener process that models the HFT’s information noise, σQi is a positive scalar, νi(t) is the agent’s

rate of trading which can be positive or negative depending on whether the agent is acquirer or liquidator,

respectively; Qi(t) is the minor liquidator agent’s remaining shares at time t, or the shares the minor acquirer

agent has bought until time t. However, the initial shares of the HFTs, {Qi(0), 1 ≤ i ≤ Na + Nl}, are

not considered to be large, furthermore they are not motivated to retain shares and are assumed to trade

them quickly.

We assume that the trading rate of the major agent is controlled via u0(t) as

dν0(t) = u0(t)dt, 0 ≤ t ≤ T,

where the trading strategy u0(t) can be seen to be the trading acceleration of the major trader. Correspond-

ingly, ui(t) controls the trading rate of minor agent, Ai, by

dνi(t) = ui(t)dt, 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T .

2.2 Price dynamics

The trading rate of the major agent and the average trading rates of the minor agents give rise to the

fundamental asset price which models the permanent effect of agents’ trading rates on the market price.

Further, each agent has a temporary effect on the asset price which only persists during the action of the

trade and which determines the execution price, that is to say the price at which each agent can trade.

2.2.1 Fundamental asset price:

We model the dynamics of the fundamental asset price, as seen from the major agent’s viewpoint, by

dF0(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwF0 (t), 0 ≤ t ≤ T,

where the Wiener process wF0 (t) models the aggregate effect of all traders in the market which - unlike the

major and minor agents A0, Ai, - have no partial observations on any of the state variables appearing in

the dynamical market model (these are termed uninformed traders). Further, σ denotes the intensity of the

market volatility and λ0, λ ≥ 0 denote the strengths of the linear permanent impact of the major and minor

agents’ tradings on the fundamental asset price, respectively. Similarly, we model the fundamental asset price

dynamics, as seen by a minor agent Ai, by

dFi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwFi (t), 0 ≤ t ≤ T,

where 1 ≤ i ≤ Na +Nl, and the Wiener process, wFi (t), represents the mass effect of all uninformed traders

in the market. The time differences between agents in getting data from fast changing limit order book make

the Wiener processes, wFi , 0 ≤ i ≤ Na +Nl independent.



Les Cahiers du GERAD G–2017–76 3

2.2.2 Execution price:

The major agent’s execution price S0(t) evolution is assumed to be given by

dS0(t) = dF0(t) + a0dν0(t), 0 ≤ t ≤ T, (1)

where a0 ≥ 0 is the temporary impact strength of the major agent on fundamental asset price. Likewise, a

minor agent’s execution price, Si(t), is assumed to evolve by

dSi(t) = dFi(t) + adνi(t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T , (2)

where a models the temporary impact of a minor agent’s trading on its execution price.

2.3 Cash process

The cash process for the major agent and a generic minor agent, Z0(t), Zi(t), are given by

dZ0(t) = −S0(t)dQ0(t), 0 ≤ t ≤ T, (3)

dZi(t) = −Si(t)dQi(t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T , (4)

where Z0(t), Zi(t), 1 ≤ i ≤ Nl are the cash obtained through liquidation of shares, and Zi(t), 0 ≤ i ≤ Na
is the cash paid for acquisition of shares up to time t. We note that the value of dQ0(t) in a stock sale is

negative and hence for positive S0(t), Z0(t) increases.

2.4 Cost function

2.4.1 Major liquidator trader:

The objective for the major trader is to liquidate N0 shares and maximize the cash it holds at the end of

the trading horizon, i.e. maximize Z0(T ), and if the remaining inventory at the final time T is Q0(T ), it can

liquidate it at lower price than the market asset price reflected at cost function by Q0(T )(F0(T )− αQ0(T )).

Further, the major trader’s utility in minimizing the inventory over the period [0, T ] is modeled by including

the penalty φ
∫ T
0
Q2

0(s)ds in its objective function, and the utility of avoiding very high execution prices,

large trading intensities and large trading accelerations by including the terms εS2
0(T ),

∫ T
0
δS2

0(s)ds, βν20(T ),∫ T
0
θν20(s)ds and

∫ T
0
R0u

2
0(s)ds in the objective function. Therefore, its cost function to be minimized is

given by

J0(u0, u−0) = E
[
− rZ0(T )− pQ0(T )

(
F0(T )− αQ0(T )

)
+ εS2

0(T ) + βν20(T )

+

∫ T

0

(
φQ2

0(s) + δS2
0(s) + θν20(s) +R0u

2
0(s)

)
ds
]
, (5)

where r, p, α, ε, β, φ, δ, θ, and R0 are positive scalars, and u−0 := (u1, ..., uNa+Nl
) are trading strategies of

the minor traders. Note that for larger values of φ the trader attempts to liquidate its inventory more quickly.

2.4.2 Minor liquidator trader:

In a similar way, the objective function to be minimized for a liquidator HFT who wants to liquidate Nl
shares during interval [0, T ] is given by

Ji(ui, u−i) = E
[
− rlZi(T )− plQi(T )

(
Fi(T )− ψlQi(T )

)
+ ξlS

2
i (T ) + µlν

2
i (T ) +

∫ T

0

(
κlQ

2
i (s) + γlS

2
i (s)

+ %lν
2
i (s) +Rlu

2
i (s)

)
ds
]
, 1 ≤ i ≤ Nl, (6)

where rl, pl, ψl, ξl, µl, κl, γl, %l and Rl are positive scalars, and u−i := (u0, u1, ..., ui−1, ui+1, ..., uNa+Nl
).

Note that Nl � N0.
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2.4.3 Minor acquirer trader:

The objective for a minor acquirer trader is to buy N shares during trading horizon [0, T ], while it minimizes

the execution cost including the cash Zi(T ) paid up to time T , and the cash must be paid at time T to

buy the remaining shares at once at a higher price than the market’s asset price, i.e. (N −Qi(T ))
(
Fi(T ) +

ψa(N − Qi(T ))
)
. It is also intended to avoid high execution prices, large trading intensities and large

trading accelerations modeled by including ξaS
2
i (T ) + µaν

2
i (T ) +

∫ T
0

(
γaS

2
i (s) + %aν

2
i (s) +Rau

2
i (s)

)
ds in its

objective function

Ji(ui, u−i) = E
[
pa(N −Qi(T ))

(
Fi(T ) + ψa(N −Qi(T ))

)
+ raZi(T ) + ξaS

2
i (T ) + µaν

2
i (T ) +

∫ T

0

(
κa(N −Qi(s))2

+ γaS
2
i (s) + %aν

2
i (s) +Rau

2
i (s)

)
ds
]
, 1 ≤ i ≤ Na, (7)

where
∫ T
0
κa(N − Qi(s))2ds is to penalize the agent for the remaining shares to be bought up to T and to

expedite the acquisition. The parameters pa, ψa, ra, ξa, µa, κa, γa, %a and Ra are positive scalars, and

u−i := (u0, u1, ..., ui−1, ui+1, ..., uNa+Nl
).

3 MFG formulation of the optimal execution problem

In this section we formulate the optimal execution problem in the MM LQG MFG framework.

3.1 Finite populations

3.1.1 Major agent:

The stochastic optimal control problem for major trader is modeled

dν0 = u0dt, (8)

dQ0 = ν0dt+ σQ0 dw
Q
0 , (9)

dS0 =
(
λ0ν0 +

λ

N

N∑
i=1

νi
)
dt+ a0u0dt+σdwF0 , (10)

with the cost function

J0(u0, u−0) = E
[
−Q0(T )

(
S0(T )− a0ν0(T )− αQ0(T )

)
+ εS0(T )2 + βν20(T ) +

∫ T

0

(
φQ2

0(s) + S0(s)ν0(s)

+ δS2
0(s) + θν20(s) +R0u

2
0(s)

)
ds
]
, (11)

wherein the final cash process in (5) was replaced by E[Z0(T )] = −E[
∫ T
0
S0(s)ν0(s)ds], and the fundamental

asset price F0(T ) was replaced using (1).

As can be seen, the major agent is coupled with the minor agents by the average term λ
N

∑N
i=1 νi in the

execution price dynamics (10).

Now let the major agent’s state be denoted by x0 = [ν0, Q0, S0]T . Subsequently, the major agent’s cost

function will be written in the standard quadratic form

J0(u0, u−0)=E
[
‖x0(T )‖2M0

+

∫ T

0

(
‖x0(s)‖2P0

+‖u0(s)‖2R0

)
ds
]
, (12)
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with

M0 =

 β 1
2pa0 0

1
2pa0 pα − 1

2p
0 − 1

2p ε

 , P0 =

 θ 0 1
2r

0 φ 0
1
2r 0 δ

 , R0 > 0.

The Equations (8)–(10) together with the cost function (12) form the standard stochastic LQG problem for

the major agent. It should be remarked that for M0, P0 to be positive semi-definite matrices, the conditions

βα ≥ 1
4a

2
0p, β(αε− 1

4p) ≥
1
4a

2
0pε and θδ ≥ 1

4r
2 must hold, respectively, and this will be assumed throughout

this paper.

3.1.2 Minor liquidator agent:

Similarly, the stochastic optimal control problem for a minor trader Ai, 1 ≤ i ≤ Nl, is given by the set of

dynamical equations

dνi = uidt, (13)

dQi = νidt+ σQi dw
Q
i , (14)

dSi =
(
λ0ν0 +

λ

N

N∑
i=1

νi
)
dt+ auidt+ σdwFi , (15)

The equations above show that a minor agent is coupled with the major agent and other minor agents through

the fundamental asset price dynamics (19).

Similar to the major trader, we define a generic minor trader’s state vector as xi = [νi, Qi, Si]
T , and

its quadratic cost function where the final cash process in (6) has been replaced using (4) by E[Zi(T )] =

−E[
∫ T
0
Si(s)νi(s)ds], and the fundamental asset price Fi(T ) were replaced using (2) is given by

Ji(ui,u−i)=E
[
‖xi(T )‖2Ml

+

∫ T

0

(
‖xi(s)‖2Pl

+ ‖ui(s)‖2Rl

)
ds
]
, (16)

where

Ml =

 µl
1
2pla 0

1
2pla plψl − 1

2pl
0 − 1

2pl ξl

 , Pl =

 %l 0 1
2rl

0 κl 0
1
2rl 0 γl

 , Rl > 0.

The set of Equations (13)–(15) and the cost function (16) constitute the standard stochastic LQG problem

for a minor liquidator trader. Again, for the matrices Ml, Pl to be positive semi definite, µlψl >
1
4a

2pl,

µl(ψlξl− 1
4pl) ≥

1
4ξlpla

2 and γl%l >
1
4r

2
l must be, respectively, satisfied and this is adopted as an assumption.

3.1.3 Minor acquirer agent:

The stochastic optimal control problem for a minor acquirer trader Ai, 1 ≤ i ≤ Na, is given by the set of

dynamical equations

dνi = uidt, (17)

dYi = −νidt+ σQi dw
Q
i , (18)

dSi =
(
λ0ν0 +

λ

N

N∑
i=1

νi
)
dt+ auidt+ σdwFi , (19)

where Yi(t) = Na − Qi(t) is the remaining shares at t to be acquired until the end of trading horizon.

Accordingly, the cost function for acquisition is given by

Ji(ui, u−i) = E
[
Zi(T ) + Yi(T )

(
Fi(T ) + ψaYi(T )

)
+ ξaS

2
i (T ) + µaν

2
i (T ) +

∫ T

0

(
κaYi(s)

2 + γaS
2
i (s) + %aν

2
i (s) +Rau

2
i (s)

)
ds
]
, 1 ≤ i ≤ Na. (20)
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We define a generic minor acquirer trader’s state vector as xi = [νi, Yi, Si]
T and its quadratic cost function

is given by

Ji(ui, u−i)=E
[
‖xi(T )‖2Ma

+

∫ T

0

(
‖xi(s)‖2Pa

+ ‖ui(s)‖2Ra

)
ds
]
, (21)

where

Ma=

 µa − 1
2paa 0

− 1
2paa paψa

1
2pa

0 1
2pa ξa

, Pa=

 %a 0 − 1
2ra

0 κa 0
− 1

2ra 0 γa

, Ra > 0.

The set of Equations (17)–(19) and the cost function (21) constitute the standard stochastic LQG problem for

a minor liquidator trader. Again, for the matricesMl, Pl to be positive semi definite, µaψa >
1
4a

2pa, µa(ψaξa−
1
4pa) ≥ 1

4ξapaa
2 and γa%a >

1
4r

2
a must be, respectively, satisfied and this is adopted as an assumption.

3.2 Mean field evolution

Following the LQG MFG methodology (Huang, 2010), the mean field, x̄, is defined as the L2 limit, when it

exists, of the average of minor agents’ states when the population size goes to infinity

x̄(t) = lim
N→∞

xN (t) = lim
N→∞

1

N

N∑
i=1

xi(t), a.s.

Now, if the control strategy for each minor agent is considered to have the general feedback form

ui = L1xi + L2x0 +

N∑
j 6=i,j=1

L4xj + L3, 1 ≤ i ≤ N, (22)

then mean field dynamics can be obtained by substituting (22) in the minor agents’ dynamics (17)–(19) and

taking the average and then its L2 limit as N →∞.

The dynamics of the mean field, x̄ = [ν̄, Q̄, F̄ ]T , for the optimal execution problem can be written as

dx̄ = Āx̄dt+ Ḡx0dt+ m̄dt, (23)

with the matrices in the above equation defined as

Ā =

 L̄1,1 L̄1,2 L̄1,3

1 0 0
(λ+ aL̄1,1) aL̄1,2 aL̄1,3

 , m̄ =

 L̄3

0
aL̄3

 , Ḡ =

 L̄2,1 L̄2,2 L̄2,3

0 0 0
(λ0 + aL̄2,1) aL̄2,2 aL̄2,3

 ,
where {L̄i,j , i = 1, 2, j = 1, 2, 3} are scalars that can be determined from consistency equations.

3.3 Infinite populations

The stochastic optimal control problem for each agent in the infinite population case where the finite popu-

lation average term is replaced with its infinite L2 limit, i.e. the mean field, is given below.

3.3.1 Major liquidator agent:

Major trader’s stochastic optimal control problem in the infinite population case is given by

dx0 = A0x0dt+B0u0dt+ E0x̄dt+D0dw0, (24)

where

A0 =

 0 0 0
1 0 0
λ0 0 0

 , B0 =

 1
0
a0

 , w0 =

[
wQ0
wF0

]

E0 =

 0 0 0
0 0 0
λ 0 0

 , D0 =

 0 0

σQ0 0
0 σ

 ,
together with the cost function (12).
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3.3.2 Minor liquidator agent:

The stochastic optimal control problem for a minor liquidator agent in the infinite population case is given by

dxi = Alxidt+ Elx̄dt+Bluidt+Glx0dt+Dldwi, (25)

1 ≤ i ≤ Nl, with the matrices

Al =

 0 0 0
1 0 0
0 0 0

 , E =

 0 0 0
0 0 0
λ 0 0

 , Bl =

 1
0
a


Gl =

 0 0 0
0 0 0
λ0 0 0

 , Dl =

 0 0

σQi 0
0 σ

 , wi =

[
wQi
wFi

]
,

together with the cost function (16).

3.3.3 Minor acquirer agent:

The stochastic optimal control problem for an acquirer agent in the infinite population case is given by

dxi = Aaxidt+ Eax̄dt+Bauidt+Gax0dt+Dadwi, (26)

1 ≤ i ≤ Na, where

Aa =

 0 0 0
−1 0 0
0 0 0

 , Ea =

 0 0 0
0 0 0
λ 0 0

 , Ba =

 1
0
a


Ga =

 0 0 0
0 0 0
λ0 0 0

 , Da =

 0 0

σQi 0
0 σ

 , wi =

[
wQi
wFi

]
,

together with the cost function (21).

4 Completely observed optimal execution problem

Following the mean field game methodology with a major agent (Nourian and Caines, 2013), the optimal

execution problem is first solved in the infinite population case where the average term in the finite population

dynamics and cost function of each agent is replaced with its infinite population limit, i.e. the mean field.

Then specializing to MFG linear systems (Huang, 2010), the major agent’s state is extended with the mean

field, while the minor agent’s state is extended with the mean field and the major agent’s state; this yields

LQG problems for each trader linked only through the mean field and the major agent’s state. Finally the

infinite population best response strategies are applied to the finite population system which yields an ε-Nash

equilibria (see Theorem 5.1).

4.1 Major liquidator agent

The dynamics for the major trader’s extended state xex0 = [xT0 , x̄
T ]T in the infinite population case is given by

dxex0 = A0x
ex
0 dt+ M0dt+ B0u0dt+ D0dW0, (27)

with the matrices in above equation defined as

A0 =

[
A0 E0

Ḡ Ā

]
, M0 =

[
03×1
m̄

]
, B0 =

[
B0

03×1

]
, D0 =

[
D0 0
0 0

]
, W0 =

[
w0

0

]
.
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Following Huang (2010); Nguyen and Huang (2012), the infinite population best response control is given by

u◦0(t) = −R−10 BT0 Π0

(
xT0 , x̄

T
)T
. (28)

Let us define N̄0 = [I3×3, 03×3]TN0[I3×3, 03×3] and M̄0 = [I3×3, 03×3]TM0[I3×3, 03×3], then Π0 is calculated

by the following Riccati equation as

−Π̇0 = Π0A0 + AT0 Π0 −Π0B0R
−1
0 BT0 Π0 + N̄0,

with Π0(T ) = M̄0.

4.2 Minor acquirer/liquidator agent

For brevity, the notation (.)a/l is used in the rest of this paper to denote the matrices and parameters

correspoding to a generic acquirer or a liquidator agent, respectively. Accordingly, a generic minor (ac-

quirer/liquidator) agent’s extended dynamics is dxi
dx0
dx̄

 =

[
Aa/l

[
Ga/l Ea/l

]
06×3 A0

] xi
x0
x̄

 dt+

[
03×1
M0

]
dt

+

[
03×1
B0

]
u0dt+

[
Ba/l
06×1

]
uidt+

[
Da/l 03×6
06×3 D0

] dwi
dw0

0

 .
Substituting the major agent’s control action (28) into (29) yields

dxexi = Aa/lxexi dt+ Ma/ldt+ Ba/ldt+ Da/ldWi (29)

where

Aa/l =

[
Aa/l

[
Ga/l Ea/l

]
06×3 A0 − B0R

−1
0 BT0 Π0

]
, Ma/l =

[
03×1,
M0

]
,

Ba/l =

[
Ba/l
06×1

]
, Da/l =

[
Da/l 03×6
06×3 D0

]
, Wi =

 wi
w0

0

 .
Then the best response control for a generic minor agent is

u◦i (t) = −R−1a/lB
T
a/lΠa/l

(
xTi , x

T
0 , x̄

T
)T
, (30)

where Πa/l is calculated from

−Π̇a/l = ΠlAa/l + ATa/lΠa/l −Πa/lBa/lR−1a/lB
T
a/lΠa/l + P̄a/l, (31)

with Πa/l(T ) = M̄a/l, and the matrices in (31) are

P̄a/l = [I3×3, 03×6]TPa/l[I3×3, 03×6]

M̄a/l = [I3×3, 03×6]TMa/l[I3×3, 03×6].

4.3 Consistency condition

The closed loop trading dynamics of a generic minor agent Ai, 1 ≤ i ≤ N = Na + Nl, applying (30) is

consequently

dνi = −R−1a/lB
T
a/lΠa/l

(
xTi , x

T
0 , x̄

T
)T
dt,
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and so we obtain the mean field ν̄ process as follows.

N∑
i=1

dνi = −
Na∑
i=1

R−1a BTaΠa

(
xTi , x

T
0 , x̄

T
)T
dt−

Nl∑
i=1

R−1l BTl Πl

(
xTi , x

T
0 , x̄

T
)T
dt

which yields

lim
N→∞

dνN = −R−1a BTaΠa lim
Na→∞

(
(xN )T , xT0 , x̄

T
)T
dt−R−1l BTl Πl lim

Nl→∞

(
(xN )T , xT0 , x̄

T
)T
dt,

and hence the consistency equations become

L̄1,1 = −R−1a (Πa1,1 + Πa1,7)− aR−1a (Πa3,1 + Πa3,7)−R−1l (Πl1,1 + Πl1,7)− aR−1l (Πl3,1 + Πl3,7),

L̄1,2 = −R−1a (Πa1,2 + Πa1,8)− aR−1a (Πa3,2 + Πa3,8)−R−1l (Πl1,2 + Πl1,8)− aR−1l (Πl3,2 + Πl3,8)

L̄1,3 = −R−1a (Πa1,3 + Πa1,9)− aR−1a (Πa3,3 + Πa3,9)−R−1l (Πl1,3 + Πl1,9)− aR−1l (Πl3,3 + Πl3,9),

L̄2,1 = −R−1a (Πa1,4 + aΠa3,4)−R−1l (Πl1,4 + aΠl3,4), (32)

L̄2,2 = −R−1a (Πa1,5 + aΠa3,5)−R−1l (Πl1,5 + aΠl3,5),

L̄2,3 = −R−1a (Πa1,6 + aΠa3,6)−R−1l (Πl1,6 + aΠl3,6),

L̄3 = 0

where the Πa/li,j
= Πa/l(i, j) and the scalars L̄(.) were defined in (23).

5 Partially observed optimal execution problem

We now follow the general development in Firoozi and Caines (2015) for PO MM LQG MFG systems where

a generic minor agent has partial observations of it’s own states as well as the major agent’s states, and the

major agent has only partial observations on its own states.

5.1 Major liquidator agent

Let the major agent’s observation process be

dy0 = H0[xT0 , x̄
T ]T dt+ σv0dv0 (33)

where H0 is a constant matrix with appropriate dimensions. Then the Kalman filter equation generating the

estimates of the major agent’s states is given by

dx̂ex0|Fy
0

= A0x̂
ex
0|Fy

0
dt+M0dt+ B0û0|Fy

0
dt+K0(t)[dy0 −H0x̂

ex
0|Fy

0
dt], (34)

where the filter gain is

K0(t) = V0(t)HT0 R−1v0 , (35)

with Rv0 = σv0σ
T
v0 . The associated Riccati equation is

V̇0(t) = A0V0(t) + V0(t)AT0 −K0(t)Rv0K0(t)T +Qw0
. (36)

Following the procedure in Firoozi and Caines (2015) the cost function (12) can be decomposed into

J0 = E
[
‖x̂0|Fy

0
(T )‖2M0

+

∫ T

0

(
‖x̂0|Fy

0
(s)‖2P0

+ ‖u0(s)‖2R0

)
ds

+ ‖x0(T )− x̂0|Fy
i
(T )‖2M0

+

∫ T

0

(
‖x0(s)− x̂0|Fy

0
(s)‖2P0

)
ds
]
,

and hence by the Separation Principle the corresponding infinite population best response control action is

given by

û◦0 = −R−10 BT0 Π0

(
x̂T0|Fy

0
, ˆ̄xT|Fy

0

)T
. (37)
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5.2 Minor (acquirer/liquidator) agent

Following Firoozi and Caines (2015) the extended state for a generic minor (acquirer/liquidator) agent shall be

Xi = [xTi , x
T
0 , x̄

T , x̂T0|Fy
0
, ˆ̄xT|Fy

0
]T . (38)

Correspondingly, the extended dynamics of a minor agent is given by
dxi
dx0
dx̄

dx̂0|Fy
0

dˆ̄x|Fy
0

=
 Aa/l [Ga/l, Ea/l] 03×6

06×3 A0 −B0R
−1
0 BT0 Π0

06×3 K0H0 A0 − B0R
−1
0 BT0 Π0 −K0H0




xi
x0
x̄

x̂0|Fy
0

ˆ̄x|Fy
0

 dt

+

 03×1
M0

M0

 dt+

[
Ba/l
06×1

]
ui(t)dt+

[
Da/l 0

0 K0

] [
dWi

dv0

]
, (39)

or equivalently

dXi = Aa/lXidt+Ma/ldt+ Ba/luidt+ Σa/l[dW
T
i , dv0]T (40)

Let the minor agent’s observation process be given by

dyi(t) = Ha/l[xTi , xT0 , x̄T , x̂T0|Fy
0
, ˆ̄xT0|Fy

0
]T dt+ σvidvi (41)

with the constant matrix Ha/l. The Kalman filter which generates the estimates of the minor (liquida-

tor/acquirer) agent’s states is

dX̂i|Fy
i

= Aa/lX̂i|Fy
i
dt+Ma/ldt+ Ba/lûi|Fy

i
dt+Ka/l(t)

[
dyi −Ha/lX̂i|Fy

i
dt
]
, (42)

where the filter gain is given as

Ka/l(t) = Va/l(t)HTa/lR
−1
vi , (43)

with Rvi = σviσ
T
vi .

The corresponding Riccati equation is

V̇a/l(t)=Aa/lVa/l(t) + Va/l(t)ATa/l −Ka/l(t)RvKa/l(t)
T +Qw. (44)

Again employing the methodology in Firoozi and Caines (2015), the cost function (21) is decomposed to

Ji=E
[
‖x̂i|Fy

i
(T )‖2Ma/l

+

∫ T

0

(
‖x̂i|Fy

i
(s)‖2Pa/l

+ ‖ui(s)‖2Ra/l

)
ds

+ ‖xi(T )− x̂i|Fy
i
(T )‖2Ma/l

+

∫ T

0

‖xi(s)− x̂i|Fy
i
(s)‖2Pa/l

ds
]
,

hence by the Separation Principle the corresponding infinite population best response control is given by

û◦i (t) = −R−1a/lB
T
a/lΠa/l

(
x̂Ti|Fy

i
, x̂T0|Fy

i
, ˆ̄xT|Fy

i

)T
. (45)

The infinite population best response control laws applied to a finite population system yields an ε-Nash

equilibrium.

Theorem 1 ε-Nash Equilibria for PO MM LQG MFG Systems: Subject to reasonable technical assumptions

(see Firoozi and Caines (2015) ), the KF-MF state estimation scheme (34)–(36) and (42)–(44) together with

the MM-MFG equation scheme (32) generate the set of control laws ÛNMF , {û◦i ; 0 ≤ i ≤ N}, 1 ≤ N < ∞,
given by

û◦0 = −R−10 BT0 Π0(x̂T0|Fy
0
, ˆ̄xT|Fy

0
)T ,

û◦i = −R−1BTΠ(x̂Ti|Fy
i
, x̂T0|Fy

i
, ˆ̄xT|Fy

i
)T , 1 ≤ i ≤ N
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such that

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) {ÛNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists N(ε) such that

for all N ≥ N(ε);

Js,Ni (û◦i , û
◦
−i)− ε ≤ inf

ui∈UN
i,y

Js,Ni (ui, û
◦
−i) ≤ J

s,N
i (û◦i , û

◦
−i).

6 Simulations

In numerical experiments, it is assumed that the trading action takes place within T = 1000 seconds. The

strength of the temporary market impact of the major agent’s trading and of a generic minor agent’s trading

are both given by a0 = a = 5.43 × 10−6, while their permanent impact strengths are both taken to be

λ0 = λ = 2 × 10−8. The diffusion coefficients in the trading dynamics are selected to be σQ0 = 0.05,

and σQi = 0.02, respectively. The weights in the cost function for the major trader are α = 5a0 × 105,

φ = 10−6a0, δ = 1/(2a0), ε = 1/(2α), θ = 1/(2δ), β = 10, p = 100, and r = 1; and those of a generic minor

(liquidator/acquirer) trader are ψl = ψa = 5a × 105, κl = κa = 10−1a, ξl = ξa = 1/(2ψ), γl = γa = 1/(2a),

%l = %a = 1/(2γ), µl = µa = 10, pl = pa = 1000, and rl = ra = 1. Furthermore, the market volatility is

assumed to be σ = 0.6565, the initial asset price is taken to be F0(0) = Fi(0) = $35, and the initial inventory

stock of the major trader to be liquidated is set to Q0(0) = 5 × 106, while the minor liquidator HFT aims

to sell Qi(0) = 5000 shares and the acquirer HFT wants to buy Qi(0) = 5000 shares. In the estimation part

the measurement noise standard deviation for the major trader is σν0 = 0.05, and for the HFT is σνi = 0.5.

The resulting ε-Nash equilibrium trajectories of the major agent and the generic acquirer and liquidator

HFTs in the complete observation case are displayed in Figures 1–3, and those in the partial observation case

are depicted in Figures 4–6.

Figure 1: Major liquidator’s state trajectories with complete ob-
servations.

Figure 2: A minor liquidator’s state trajectories with complete
observations.
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Figure 3: A minor acquirer’s state trajectories with complete
observations.

Figure 4: Major agent’s state trajectories and major agent’s es-
timates of its own states in the partial observation case.

Figure 5: A generic minor liquidator agent’s state trajectories and
minor agent’s estimates of its own states in the partial observation
case.

Figure 6: A generic minor acquirer agent’s state trajectories and
minor agent’s estimates of its own states in the partial observation
case.
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