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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
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Abstract: Given an integer solution, the integral simplex using decomposition (ISUD) seeks a descent
direction that leads to an improved adjacent integer solution. It uses a horizontal decomposition (of a
linear transformation of the constraint matrix). We propose an integral simplex using double decomposition
(ISU2D). It uses an innovative disjoint vertical decomposition to find in parallel orthogonal descent directions
leading to an integer solution with a larger improvement. Each descent direction identifies a set of variables
that will leave the current solution and a set of entering variables with better costs. To find these directions,
we develop a dynamic decomposition approach that splits the original problem into subproblems that are
then solved in parallel by ISUD. Our main innovation is the use of the current solution as a foundation for
the construction of the set of subproblems; the set changes during the optimization process as the current
solution changes. In addition, we use bounding and pricing strategies and implement parallel processing
techniques. We show that ISU2D is faster than ISUD: 3 to 4 times faster on large instances.

Keywords: Set partitioning problems, integral simplex using decomposition, decomposition, parallel com-
puting
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1 Introduction

The set partitioning problem (SPP) is often used to model real-world combinatorial optimization problems

including vehicle and crew scheduling problems. We use scheduling terminology to present the problem. A

set partitioning constraint ensures that a task (for example, a flight leg or bus trip) is performed exactly once

by a crew member (a pilot or bus driver). Let T = {1, 2, ...,m} be the set of tasks and J = {1, 2, ..., n} the

set of feasible schedules. Here feasible means that the schedules satisfy all the safety and collective agreement

rules limiting, for example, the maximum flying time during a working day and the maximum time away

from the base. With each schedule j, we associate a variable xj , a cost cj , and a column Aj = (atj)t∈T where

atj is 1 if Aj covers task t and 0 otherwise. The matrix A = [A1, A2, ..., An] is a binary matrix. The SPP

formulation is:

Minimize
∑
j∈J

cjxj (1)

(SPP ) subject to ∑
j∈J

atjxj = 1,∀t ∈ T (2)

xj ∈ {0, 1},∀j ∈ J (3)

The objective function (1) minimizes the total cost. The set partitioning constraints (2) ensure that

each task is covered exactly once. Constraints set (3) imposes integrality on the xj variables. The linear

relaxation LP is obtained by replacing (3) by xj ≥ 0,∀j ∈ J . The reduced cost of variable xj , with respect

to a dual vector dictated by the context, is denoted c̄j .

1.1 Literature review

The SPP is NP-hard (Garey and Johnson 1979). A partial list of its applications includes truck deliveries

(Balinski and Quandt 1964), vehicle scheduling (Ribeiro and Soumis 1991), aircrew and bus driver scheduling

(Desaulniers et al. 1994, Chu et al. 1997, Hoffman and Padberg 1993), and clustering and classification (Rao

1971). Many SPP algorithms have been developed. They can be classified into two main families. Dual

methods (called dual-fractional in Letchford and Lodi (2002)) include the famous branch and cut method

(see, e.g., Hoffman and Padberg 1993, Desaulniers et al. 1997). These methods are efficient for small and

medium problems but less efficient for large SPPs. They may take days to find good solutions for some aircrew

scheduling problems. They do not take advantage of available primal information, as we will explain later.

Primal methods move from an integer solution to a better one. Many primal methods are based on the

famous result (Balas and Padberg 1975) that demonstrated the existence of a sequence of integer solutions

with decreasing costs leading to an optimal integer solution; see Haus et al. (2001), Thompson (2002), Saxena

(2003), and Rönnberg and Larsson (2009). Unfortunately, these algorithms suffer from degeneracy and are not

efficient for large SPPs. Zaghrouti et al. (2014) developed the integral simplex using decomposition (ISUD),

which is based on the improved primal simplex (IPS) decomposition introduced by El Hallaoui et al. (2010) to

handle degeneracy. ISUD decomposes a linear transformation of the constraint matrix horizontally. The first

group of constraints is handled in a reduced problem and the second group in the so-called complementary

problem. ISUD handles degeneracy efficiently and is able to solve problems with up to 570000 columns and

1600 constraints.

Many authors have developed parallel algorithms based on the dual-fractional paradigm to take advantage

of the availability of inexpensive parallel machines. Some of these explore the branching tree in parallel. For

instance, Eso (1999) proposed a parallel branch-and-cut solver; Klabjan et al. (2001) and Alefragis et al.

(1999) presented parallel algorithms for crew scheduling problems; and Linderoth et al. (2001) developed a

parallel heuristic. Other parallel algorithms use domain decomposition techniques to split the original problem

into subproblems. The subproblems are solved in parallel, and the solutions are merged to form a solution

to the original problem. Topaloglu and Powell (2005) proposed a parallel heuristic with both time and space

decomposition for a resource allocation problem. Abbink et al. (2007) studied various decompositions, such
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as geographical, weekday, and line-based decompositions, for a Netherlands railway crew scheduling problem.

They implemented a multi-stage method where at each stage they use a different decomposition. Jütte and

Thonemann (2012) proposed a penalized-geographical decomposition for a railway crew scheduling problem.

They decomposed the problem into overlapping regions that are optimized in parallel. The objective function

penalized misclassified railway stations to adjust the region boundaries during the optimization process.

All these methods are heuristic and based on prior knowledge of the problem. They handle very large

SPPs but do not guarantee optimality. Moreover, they are generally static with no way to adjust the de-

composition during the solution process. The exception is the penalized-geographical decomposition method

(Jütte and Thonemann 2012), where the modeler must identify the region boundaries at the beginning of

the optimization process.

1.2 Contributions and organization

To the best of our knowledge, there are currently no parallel primal algorithms. We present a parallel

primal algorithm called the integral simplex using double decomposition (ISU2D), based on ISUD, that can

solve large SPPs more efficiently. Given an integer solution, ISUD seeks a descent direction that leads to

an improved adjacent integer solution. It uses a horizontal decomposition of a linear transformation of

the constraint matrix. In addition to this horizontal decomposition, ISU2D uses disjoint and incremental

vertical decompositions.

ISU2D uses an innovative disjoint vertical decomposition to find in parallel orthogonal descent directions

leading to an integer solution with a larger improvement. Each descent direction identifies a set of variables

that will leave the current solution and a set of entering variables with better costs. To find these directions,

we develop a dynamic decomposition approach that splits the original problem into subproblems that are

then solved in parallel by ISUD. Our main innovation is the use of the current solution as a foundation for

the construction of the set of subproblems; the set changes during the optimization process as the current

solution changes. We construct a weighted graph where the nodes represent variables at the value 1 in the

current solution, and the edge weights are computed as a function of the reduced costs and other relevant

information on the variables at the value 0. We divide the resulting graph into subgraphs where each subgraph

is used to define a subproblem. This approach minimizes the role of the modeler and can be applied to a

wide range of SPPs. Furthermore, we compute in parallel a lower bound to assess the solution quality during

the optimization process. Using this lower bound and the dual information, ISU2D performs an incremental

vertical decomposition to improve the integer solution obtained by the disjoint vertical decomposition. In

the incremental decomposition, we identify a subset of variables that potentially improve the solution, and

we add to this subset while the solution quality is unsatisfactory. In summary, we develop an enhanced

algorithm that reduces the computational time of ISUD by a factor of three on average.

The remainder of this paper is organized as follows. Section 2 presents the theoretical and computational

aspects of ISUD. Section 3 discusses ISU2D, and Section 4 presents the computational results demonstrating

the effectiveness of ISU2D. Section 5 provides concluding remarks and suggestions for future research.

2 Preliminaries

In this section, we describe the ISUD algorithm and explain its main components. We discuss its limitations

and propose the enhancements that lead to ISU2D.

2.1 ISUD overview

Given an integer solution x̄ to the SPP, let P be the index set of its positive components, i.e., P = supp(x̄) =

{j ∈ J : x̄j = 1}, and p = card(P ). ISUD is a two-stage sequential algorithm that is specialized for the SPP.

It is based on the concept of compatibility (El Hallaoui et al. 2010):
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Definition 1 A subset S of J is said to be compatible with an integer solution x̄, or simply compatible, if there

exist two vectors v ∈ R|S|+ and λ ∈ Rp such that
∑

j∈S vjAj =
∑

l∈P λlAl. The columns/variables indexed by

S and the combination
∑

j∈S vjAj are also said to be compatible. S is said to be minimal if any strict subset

of it is incompatible.

At the first stage, ISUD seeks compatible columns to improve x̄. This is done by solving a reduced problem

(RP ), as explained in Section 2.2.1. The second stage looks for a compatible combination of (incompatible)

columns that improves the x̄ obtained at the first stage. It solves a complementary problem (CP ) to find a

descent direction dcp leading to an improved integer solution. See Section 2.2 for the details of the decom-

position. ISUD iterates between the two stages until it reaches an optimal solution. Algorithm 1 (Zaghrouti

et al. 2014) outlines the procedure.

Algorithm 1 ISUD algorithm

Start with an initial integer solution x0 and set x̄ = x0

Stage RP : Improve the current solution x̄ by solving RP .

Stage CP : Solve CP to get a descent direction dcp.

IF dcp 6= 0, i.e., CP improves the RP solution, THEN set x̄ = x̄+ dcp and go to Stage RP .

ELSE the integer solution x̄ is optimal.

ENDIF

2.2 ISUD decomposition

We use the notation of Zaghrouti et al. (2014). Let K ⊂ J and L ⊂ T . Let vK (vL) be the subvector of a

vector v with components indexed in K (L). Similarly, AL
K = (alk)l∈L,k∈K is the |L| × |K| submatrix of A

with rows and columns indexed by L and K respectively. If L = T or K = J , the superscripts (subscripts)

are omitted (AT
J = A for instance). Finally, e is a vector of ones with dimension dictated by the context,

and IKK is the identity matrix of dimension |K| × |K|.

We can permute without loss of generality the columns of A in such a way that its first p columns are

those indexed in P . Zaghrouti et al. (2014) associate with x̄ a basis B where the first p columns are those

indexed in P and the remaining m− p columns are artificial with a large cost. Let N = T \ P . We have

B =

[
IPP 0
AN

P INN

]
and B−1 =

[
IPP 0
−AN

P INN

]

because [
IPP 0
−AN

P INN

] [
IPP 0
AN

P INN

]
=

[
IPP 0
0 INN

]
.

When we multiply by B−1, the constraint Ax = e becomes

B−1Ax = B−1e ⇔ Āx = ē ⇔
[
ĀP

ĀN

] [
x
]

=

[
ēP

ēN

]
,

where the jth column Āj is[
ĀP

j

ĀN
j

]
=

[
AP

j

−AN
PA

P
j +AN

j

]
, and

[
ēP

ēN

]
=

[
IPP 0
−AN

P INN

] [
eP

eN

]
=

[
eP

0

]
.

El Hallaoui et al. (2010) show that a column Aj is compatible iff ĀN
j = 0. Let C and I be the index sets of

the compatible and incompatible columns. Thus, the set of columns J is partitioned into C and I, and the

set of constraints T is partitioned into P and N . Hence, we write x = [xC , xI ], A = [AC , AI ], and c = [cC , cI ].

Using this partition, Zaghrouti et al. (2014) decompose the problem as explained below.
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2.2.1 Reduced problem

The reduced problem RP is defined by imposing xI = 0, i.e., including compatible columns only:

Minimize cC · xC (4)

(RP ) subject to ĀP
CxC = eP (5)

xC ∈ {0, 1}|C| (6)

By definition, RP depends on x̄. Zaghrouti et al. (2014) show that a pivot on any compatible column with

a negative reduced cost leads to an improved integer solution. Let x∗C be an optimal solution to RP . Note

that x̄ = (x∗C , 0) is a solution to the SPP.

2.2.2 Complementary problem

Let x̄ be the integer solution to the RP . ISUD solves a complementary problem CP to find a set of

incompatible columns that improve x̄. If we pivot on the columns in this set in any order we will obtain an

improved integer solution. More precisely, we look for a set such that a (convex) combination of its columns is

compatible and has a negative reduced cost. In other words, CP searches for a descent direction dcp leading

to an improved integer solution. Zaghrouti et al. (2014) formulate CP as follows:

Minimize c̄I · xI (7)

(CP ) subject to ĀN
I xI = 0 (8)

e · xI = 1 (9)

xI ≥ 0 (10)

where ĀN
I = −AN

P A
P
I + AN

I , and c̄I = cI − AP
I cP . Zaghrouti et al. (2014) show that if CP is infeasible or

zCP ≥ 0, i.e., the objective value of CP is nonnegative, then x̄ is an optimal solution to the SPP. Otherwise,

if the columns Aj , j ∈ S such that S = {j ∈ I : xj > 0} are pairwise row-disjoint, i.e., they do not cover the

same constraints, we obtain a descent (improving) direction. S is the support of a solution to CP . S is shown

to be minimal by El Hallaoui et al. (2010). S is in some sense nondecomposable using the terminology of

Balas and Padberg (1975). Thus, Zaghrouti et al. (2014) show that S gives a descent direction dcp = x∗ − x̄
where the lower-cost integer solution x∗ is

x∗j =

{
1, j ∈ S ∪ (P \ S+) where S+ = {k ∈ P :

∑
j∈S ākj = 1}

0, otherwise

S+ is simply the index set of the leaving variables that will be replaced by variables in S. Based on this,

Zaghrouti et al. (2014) propose a branching technique to eliminate the non-disjoint solutions when solving CP .

They use a deep search strategy to get a descent direction.

2.3 ISUD limitations

ISUD has four main limitations:

• The computational time increases quickly with problem size: when the number of constraints increases

by a factor of 2, the solution time of ISUD (mono-thread, i.e., sequential) increases by a factor of 250

or more (see Table 8).

• Since we move from an integer solution to an adjacent one at each iteration, ISUD finds one descent

direction at a time. It must solve many complementary problems to reach the final solution.

• CP often produces small sets of disjoint columns, i.e., |S| is small.

• ISUD uses a branching heuristic and so cannot guarantee optimality. It also lacks a measure of solution

quality because it does not calculate a lower bound on the optimal solution.
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Our goal is to work with small subsets of columns and to target columns with the potential to improve the

objective value. We therefore solve in parallel subproblems that are likely to provide orthogonal descent

directions. Moreover, parallel computing allows us to measure the solution quality without penalizing the

processing time. We calculate a lower bound to measure this, and we terminate the algorithm when a specified

quality is reached. These ideas are the foundation of ISU2D.

3 ISU2D approach

We now explain in more detail how our double decomposition enables us to solve the SPP more efficiently. In

addition to the horizontal decomposition of ISUD, we decompose the problem vertically to find orthogonal

descent directions. We use both a disjoint vertical decomposition (DVD; see Section 3.2) and an incremental

vertical decomposition (IVD; see Section 3.3). In Section 3.1 we introduce ISU2D and discuss its convergence.

3.1 General structure of ISU2D

Algorithm 2 presents ISU2D; the IN-PARALLEL and END-PARALLEL terms are used to delimit multiple

statements that are executed in parallel, zlb and zub are the lower and upper bounds on the optimal (integer)

value of SPP, and ε is a prespecified threshold. A brief description of ISU2D is given below; the details are

in the following subsections.

Algorithm 2 ISU2D algorithm

Start with an initial integer solution x̄ = x0, zlb = −∞, zub = z0 = c · x0.

IN-PARALLEL

Improve x̄ using DVD and update zub.

Improve zlb. If no improvement, go to Etq2.

If zub − zlb ≤ ε, return x∗ = x̄ .

END-PARALLEL

Etq2: Improve x̄ using IVD. Return x∗ = x̄ if zub − zlb ≤ ε.

ISU2D has two main phases. In the DVD phase, it improves the current solution x̄ using DVD. Given

parameter q, DVD builds q subproblems SPk for k ∈ {1 . . . q} by partitioning P and thus T into q clusters;

it solves them in parallel. We calculate a lower bound (zlb) simultaneously. To get a good bound, we could

solve the linear relaxation of SPP to get an LP bound and improve it by adding odd cycle cuts, clique cuts,

or other facets. This capability is available in commercial solvers such as CPLEX and GUROBI. Other

methods, such as Lagrangean relaxation, could be useful, particularly for large instances. Such methods give

good results for a reasonable computational cost.

In the IVD phase, ISU2D sequentially solves a set of q′ suproblems SPk to optimality or near-optimality.

These subproblems are based on the dual information obtained from the computation of the lower bound. In

both phases we use ISUD to solve the subproblems, which are significantly smaller than the original problem.

ISU2D terminates when the solution quality is satisfactory. ISU2D converges mainly because Algorithms 3

and 4 below converge. We state this more formally in the proposition below.

Proposition 1 ISU2D is a monotonic exact algorithm that converges in a finite time.

The proof is simple. The time of the DVD phase is at most equal to the time of computing the lower

bound. We improve this bound in a finite time by solving the LP (in polynomial time if an interior point

method is used) and adding a finite number of facets. The IVD phase is an improvement on ISUD, which

converges in a finite time (Zaghrouti et al. 2014).
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3.2 DVD phase

3.2.1 Theoretical motivation

From any integer solution to the SPP, we need at most m orthogonal descent directions (see Proposition 2),

which we can obtain in parallel, to reach an optimal solution. This result motivated us to decompose the

problem further to improve the performance of ISUD.

Proposition 2 From any integer solution x̄ to the SPP, we can reach an optimal solution x∗ via at most m

minimal orthogonal descent directions.

Proof. Let x̄ be the current solution and x∗ an optimal solution. Let D∗ = {j ∈ J : x∗j − x̄j 6= 0},
D∗1 = {j ∈ J : x∗j = 1 and x̄j = 0}, i.e., the index set of variables that enter the basis (optimal solution),

and D∗0 = {j ∈ J : x∗j = 0 and x̄j = 1} be the index set of the variables that will leave the basis (current

solution). We have D∗ = D∗1 ∪ D∗0 . Obviously, the tasks covered by the entering columns are the same as

those covered by the leaving columns. Therefore,∑
j∈D∗1

Aj =
∑
l∈D∗0

Al

Let us now define the set sequences Dk
0 , Dk

1 , Hk
0 , and Hk

1 as follows:

D0
1 = D∗1 , D

0
0 = D∗0 , H

0
1 = ∅, H0

0 = ∅

Dk
1 = Dk−1

1 \Hk
1 , D

k
0 = Dk−1

0 \Hk
0 , k ≥ 1

where Hk
1 ⊂ Dk−1

1 is the smallest nonempty index subset of columns that could form a minimal compatible

combination, and Hk
0 ⊂ Dk−1

0 is the index subset of columns covering the same tasks as those of Hk
1 . Thus,

we have ∑
j∈Hk

1

Aj =
∑
l∈Hk

0

Al

We define kopt = |{k : Hk
1 6= ∅}|, i.e., the number of compatible combinations formed from columns indexed

by D∗1 . Clearly, kopt ≤ |D∗1 |. We have |D∗1 | ≤ |{j = [1..n]/x∗j = 1}| ≤ m (number of tasks), so kopt ≤ m.

We define the sequence of descent directions dk ∈ Rn as dkj = 1 if j ∈ Hk
1 , dkj = −1 if j ∈ Hk

0 , and dkj = 0

otherwise. By construction, the dk are orthogonal (dl · dh = 0 for every h 6= l) and x∗ = x̄+
∑kopt

k=1 d
k.

Finally, it is easy to see that the sequence xk defined by x0 = x̄, xk = xk−1+dk for k ≥ 1 is nonincreasing.

Suppose there exists k1 such that c · xk1+1 > c · xk1 . Then

c · xk1+1 − c · xk1 = c · dk1 > 0

c · (x̄+

kopt∑
k=1

dk) > c · (x̄+

k1−1∑
k=1

dk +

kopt∑
k=k1+1

dk)

c · x∗ > c · (x̄+

k1−1∑
k=1

dk +

kopt∑
k1+1

dk),

which contradicts the fact that x∗ is optimal because x̄ +
∑k1−1

k=1 dk +
∑kopt

k1+1 d
k is a feasible solution. This

completes the proof.

We note that the sequence xk is (strictly) decreasing because c · dk < 0 when Hk
1 is obtained by solving

the CP. Although x∗ is not known at the beginning of the optimization process, we develop a method to build

good approximations of the subproblems to get the sequence sets Hk
1 and then dk in parallel; see Figure 1.
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Reduced Problem (RP )

Update the solution: s = s+
∑q

k=1 d
k

direction d1

Find a descent

SP1

s1 d1

direction d2

Find a descent

SP2

s2 d2

. . . . . . . . . . . .

direction dq

Find a descent

SPq

sq dq

Figure 1: Decomposition and parallel descent directions

We need to minimize the impact of the overhead introduced by the parallelization. The main sources of

overhead are the blocking operations and the time the processes spend communicating with each other. We

must find a trade-off between computation and communication. To ensure that the benefit of parallelization

outweighs the overhead, we must choose how many processes to run in parallel. We reduce the overhead

by seeking descent directions (see Corollary 1) that are combinations of minimal descent directions; each

subproblem finds at most one. To find these directions, ISU2D decomposes the original problem into sub-

problems using the splitting technique discussed in Section 3.2.2. The proof of the corollary below is omitted

because it is straightforward: the result follows from orthogonality.

Corollary 1 Any combination of minimal orthogonal descent directions is a descent direction.

3.2.2 Splitting technique

The most novel feature of ISU2D is the use of the current solution to construct the subproblems (SPk)1≤k≤q.

We partition P into q clusters where the columns indexed by cluster k cover a set of tasks Tk, i.e., T =

∪1≤k≤qTk. Let Jk ⊂ J be the subset of columns that cover only tasks in Tk. We formulate subprob-

lem (SPk) as follows:

min
∑
j∈Jk

cjxj

(SPk)
∑
j∈Jk

atjxj = 1 ∀t ∈ Tk

xj ∈ {0, 1} ∀j ∈ Jk

Hence, building the subproblems reduces to defining the sets Tk, 1 ≤ k ≤ q. We define a weighted

graphG(V,E) where each positive-valued variable in the current solution is represented by a vertex v of V . For

simplicity, V is the index set of these variables. Let (v, v′) ∈ V 2, Jvv′ = {l ∈ J : Av ·Al 6= 0 and Av′ ·Al 6= 0}.
We define E as the set {(v, v′) : Jvv′ 6= ∅}. Let Hk

0 and Hk
1 be defined as above for k ∈ 1..kopt. Note

that Hk
0 ⊆ V .

Proposition 3 The subgraph induced by Hk
0 , denoted G(Hk

0 ), is a connected component of G.

Proof. Suppose that G(Hk
0 ) is not a connected component of G. Note that Hk

1 is minimal by construction.

Let H ′0 ( Hk
0 be such that G(H ′0) is the smallest connected component of G(Hk

0 ). Then there exists

H ′1 ⊂ Hk
1 such that ∑

j∈H′1

Aj =
∑
l∈H′0

Al

Therefore, H ′1 is a compatible combination by Definition 1. This contradicts the fact that Hk
1 is minimal

since H ′1 is a strict subset of Hk
1 .
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We partition G into q equally sized subgraphs Gk = (Ek, Vk), 1 ≤ k ≤ q in a such a way that the connected

components characterized by Proposition 3 are likely to be (fully) in these subgraphs. We assign a weight

wvv′ to every edge (v, v′) ∈ E (see Section 3.2.3) and partition the graph so that the total weight of the cut

(i.e., the edges having their ends in different subgraphs) is minimized. The variables indexed by Vk cover a

set of tasks Tk. Thus, we obtain the decomposition τ = {Tk, 1 ≤ k ≤ q}, and the subproblems (SPk)1≤k≤q
are built accordingly. Conflicting variables, i.e., those covering tasks in two different task clusters, are set to

0. The set of conflicting variables changes from iteration to iteration.

Proposition 4 If x̄ is not optimal, at least one conflicting variable will be positive in any improving solution.

Proof. Let x̄k be an optimal solution to SPk. Then (x̄J1
, ..., x̄Jq

) is an optimal solution to the SPP restricted

to the variables indexed by ∪k∈1..qJk, because the matrix of this restricted problem called SPPR is block-

angular. Suppose there exists an improving solution x̄′ where all the conflicting variables are 0. Then

(x̄′J1
, ..., x̄′Jq

) is an improving solution to SPPR, which contradicts the fact that (x̄J1
, ..., x̄Jq

) is an optimal

solution to SPPR.

The splitting is done in such a way that some potential conflicting variables become nonconflicting in

the next iteration. Figure 2 illustrates the splitting technique on an example with 8 tasks and 10 columns.

Figure 2(a) shows the graph G(V,E). The cut shown as a dashed line on Figure 2(b) gives two subproblems:

(SP1) with T1 = {1, 2, 3, 4, 5} and (SP2) with T2 = {6, 7, 8}. The index set of conflicting variables is {5}.

Table 1: Example with 8 tasks and 10 columns

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

cj 3 2 2 1 2 1 1 2 1 1

Ti/xj 1 1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1 0
2 1 0 0 0 0 0 0 0 1 0
3 0 1 0 0 1 0 0 0 1 0
4 0 1 0 0 0 1 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0
6 0 0 0 1 0 0 1 0 0 0
7 0 0 1 0 1 0 1 0 0 0
8 0 0 1 0 0 0 0 1 0 1

4

1

4

1

3

2

(a)

1

2

0

4
1

2

0

1

3

2

(b)

Figure 2: Example of ISU2D splitting

The weight of the edge (v, v′) ∈ E measures the likelihood that the variables indexed by Jvv′ will improve the

objective value. When the edge (v, v′) is not cut (e.g., edge (1, 2) in Figure 2), Av and Av′ are grouped into

a cluster and will be considered in the same subproblem. Thus, the variables indexed by v and v′ could be

part of a descent direction (as leaving variables). When the edge (v, v′) is cut (e.g., edge (2,3) in Figure 2),

it is not possible in the current iteration to improve the objective value with the variables indexed by Jvv′ .

Thus, a good splitting technique should avoid cutting edges (v, v′) where at least one variable indexed in

Jvv′ is a part of an optimal solution. Splitting depends heavily on the edge weights and consequently on the

formulas used to calculate them, which we call weighting methods.
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3.2.3 Weighting methods

Good weighting methods use the problem structure to decide which columns to group and which to separate.

For this proof of concept, we tested some generic weighting methods and retained two promising ones:

w1 : (v, v′) 7→ wvv′ = |{j ∈ Jvv′ : c̄j ≤ 0}|

w2 : (v, v′) 7→ wvv′ = −min(0,min{c̄j : j ∈ Jvv′}).
We use reduced costs with respect to a dual vector α derived from the current solution x̄ such that

c̄j = cj − α · Aj = 0,∀j ∈ supp(x̄), i.e., the reduced costs of these basic variables are null. An infinite

number of vectors α satisfy this equation. A simple one is

αt =
∑
j∈J

x̄j ∗ cj ∗ atj
nj

, t ∈ T (11)

where nj is the number of tasks covered by Aj , j ∈ P = supp(x̄). Equation 11 means that we associate with

a task t a dual value that is the average cost per task. In the example above, αt = 1, ∀t ∈ {1 . . . 8} and the

reduced costs are given in Table 2. A more sophisticated option is α = (αT1 , αT2 , . . . , αTq ) where αk is the

solution of the dual of the CP (7)–(10) when solving SPk by ISUD.

Table 2: Example with 8 tasks and 10 columns: reduced costs

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

c̄j 0 0 0 0 0 -1 -1 1 -2 0

The first weighting method w1 stipulates that a descent direction is more likely to exist in regions where

there are more variables with negative reduced costs. We therefore cut the edges with the smallest number

of negative reduced costs. Based on this, w1 associates with each edge (v, v′) the number of negative reduced

cost columns that Jvv′ contains. The second weighting method increases the chances of getting a large step

(improvement in the objective value) provided that a descent direction exists. We assume that one of the

entering variables has the smallest negative reduced cost and hope to realize a large improvement in the

objective value. Consequently, w2 associates with the edge (v, v′) the absolute value of the smallest negative

reduced cost column indexed by Jvv′ . The weights computed with this second method are illustrated in

Figure 2. We hence obtain two variants of ISU2D depending on the weighting method that we use. The

decomposition is adjusted dynamically.

3.2.4 DVD algorithm

Algorithm 3 outlines the DVD procedure.

Algorithm 3 DVD pseudocode

r = 1.

Etq1: Build τr and consequently SPk, k ∈ {1 . . . q} by splitting as in Section 3.2.2.

Solve in parallel the subproblems SPk, k ∈ {1 . . . q} using ISUD.

x̄ = x̄+
∑q

k=1 d
k.

r = r + 1.

If c · (
∑q

k=1 d
k) < 0, go to Etq1.

Else if q > 2, decrease q and go to Etq1.

End if.

Algorithm 3 is monotonic because c · (
∑q

k=1 d
k) ≤ 0. Actually, dk is itself the sum of the descent direc-

tions (dcp) obtained in the ISUD iterations and consequently c · dk ≤ 0, ∀k ∈ {1 . . . q}. At each iteration,
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Algorithm 3 explores (see Proposition 5) a different neighborhood around the current solution x̄ by using the

relative dual information. Let τ r and τ r
′

be two decompositions obtained at iterations r and r′ respectively.

Proposition 5 We have τ r 6= τ r+1.

Proof. If r′ = r + 1, there are two cases: i) The solution is not improved: in this case, we decrease q.

Consequently, τ r 6= τ r
′

because |τ r| 6= |τ r′ |. ii) The solution is improved: q remains the same but in

the splitting at least one variable xj0 previously conflicting with τ r becomes nonconflicting with τ r
′
. Let

τ r = {Tk, 1 ≤ k ≤ q} and τ r
′

= {T ′k, 1 ≤ k ≤ q}, and let T0 be the set of tasks that are covered by xj0 . Then

there exists k 6= k′ such that T0 ∩ Tk 6= ∅ and T0 ∩ Tk′ 6= ∅. At the same time, there exists k′′ such that

T0 ⊂ T ′k′′ . Consequently, T ′k′′ intersects both Tk and Tk′ but is different from them. Clearly, τ r 6= τ r
′
.

Corollary 2 We have τ r 6= τ r
′
, ∀r 6= r′.

Proof. Suppose without loss of generality that r ≤ r′. We consider the case r′ − r ≥ 2; the other case is

discussed in Proposition 5. Suppose that τ r = τ r
′
. Then the solution did not change between iterations r

and r′ because the decomposition is the same and we assume that the subproblems are solved to optimality

(in parallel). Thus, the solution is not improved between r and r + 1. We have a contradiction because in

this case τ r 6= τ r
′
, as shown by Proposition 5.

3.3 IVD phase

IVD is an improvement strategy that explores near-optimal (LP) neighborhoods. The idea is to seek an

optimal or near-optimal solution by solving q′ subproblems based on the variables’ reduced costs with respect

to the duals for an improved lower bound. IVD starts from the solution of the DVD phase and so has good

upper and lower bounds (and the related dual information). IVD uses the well-known fixation technique to

reduce the problem size. Here, c̄j is the dual reduced cost of variable xj computed with the LP dual values

µ (so c̄j ≥ 0 for all variables), zub = c · x̄ is the upper bound, and zlb is the lower bound. If z̄lb + c̄j > zub, we

remove column Aj from the constraint matrix (fixing its variable xj to 0). This is a well-known theoretical

result. This decomposition becomes very useful as we approach optimality because the gap between the

upper and lower bounds is small, so we apply this to complete the solution process. Algorithm 4 outlines the

procedure; q′ is a parameter tuned by experimentation.

Algorithm 4 IVD pseudocode

Price columns using µ (i.e., compute their reduced costs).

Sort the variables in increasing order of reduced cost and reindex them.

For k = 1 to q′

For all j, if z̄lb + c̄j > zub, J = J \ {j}, i.e., xj = 0.

Build SPk by considering the first k
|J|
q′ variables.

Solve SPk with ISUD.

x̄ = x̄+ dk, zub = c · x̄.

If zub − zlb ≤ ε, terminate ISU2D.

End for.

Algorithm 4 is also monotonic because we locally and strictly improve a solution at each iteration. It is finite

because the problem is bounded.
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4 Computational results

In this section, we compare mono- and multi-thread versions of the standard methods, namely CPLEX and

ISUD, to ISU2D with three different splitting methods: ISU2D1 and ISU2D2 use w1 and w2 respectively (see

Section 3.2.3), and ISU2D3 applies multistage splitting: w2 followed by w1. Our results show that ISU2D is

faster and gives a better solution than the other methods.

We implemented ISU2D using C++ and the MPI (Message Passing Interface) library. The library provides

parallelization and communication between processes. We use the bipartition algorithm (Kernighan and Lin

1972) to partition the weighted graph G. The tests were performed on a Unix Dell Precision T1700 with a

3.30 GHz Intel Xeon E3-1226 V3 Quad-Core processor. The computational times are in seconds.

4.1 Instances

We test ISU2D on the aircrew and bus driver scheduling instances used by Zaghrouti et al. (2014). The 90

instances require reoptimization after a perturbation because of unforeseen events. The reoptimized schedules

usually have many components in common with the original schedules. In practice, there are generally

penalties in the objective function to discourage changes, so many schedules are unchanged in the reoptimized

solution. For a given instance, we define the perturbation ratio ρ to be the percentage of columns of the

reoptimized solution that are present in the original solution. This is a good indicator of the difficulty of an

instance: the larger ρ, the harder the instance.

We grouped the instances into three sets (small, medium, and large) and then into three subsets (easy,

moderate, and hard) corresponding to ρ = 50%, 65%, and 80% respectively. Each subset contains 10

instances. The aircrew scheduling instances are small, and we use the prefix AS. The bus driver scheduling

instances are medium and large, with the prefixes BM and BL. We add ρ to the instance name to indicate

the level of difficulty. We also add an incremental value to the name, e.g., BM80 indicates the set of hard

medium bus driver scheduling instances, and BM80-2 indicates instance number 2 of the same set.

Table 3 lists the characteristics of the instances: the average number of rows and columns and the average

density (number of nonzero elements per column). The bus driver instances have an average of 40 nonzero

elements per column, which is large. This makes the problem difficult for a traditional method such as CPLEX

because of the severe degeneracy and branching difficulties. The aircrew problems have low density (9 flights)

and are easier to solve.

Table 3: Instance characteristics

Set #rows #columns Density

Small aircrew scheduling (AS) 803 8904 9
Medium bus driver scheduling (BM) 1200 130000 40
Large bus driver scheduling (BL) 1600 570000 40

4.2 Testing methodology

We present aggregated results for the aircrew instances (Section 4.3) and then the bus driver instances (Sec-

tion 4.4). The detailed results are in the Appendix. For each class of instances, we compare the three

variants of ISU2D, and then we compare these variants to CPLEX (multi-thread version) and ISUD (mono-

and multi-thread versions).

For each variant of ISU2D, we report information for each phase. For DVD, we report the number of

iterations (#Itr), the time, and the improvement percentage (%Imp), i.e., Imp = 100 ∗ z0−zf
z0−z∗ where zf is the

final objective value obtained by DVD. For IVD, we report the percentage of columns (%Cols) and the time

to obtain the optimal value. Note that the averages are computed by considering only the instances that

ISUD solved to optimality.
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We use the following ratios to compare ISU2D to CPLEX and ISUD:

• The time reduction ratio Ta(b) between two algorithms a and b is defined as Ta(b) = 100 ∗ t(b)−t(a)
t(b)

where t(a) and t(b) are the computational times of a and b. We write C to indicate CPLEX, Is for the

sequential (i.e., mono-thread) ISUD, and Ip for the parallel (i.e., multi-thread) ISUD. For example, TC
is the time reduction factor of the current algorithm compared to CPLEX.

• The gap between the (final) solution value z(a) returned by algorithm a and the optimal value z∗ is

defined as Gap(a) = 100 ∗ z(a)−z∗
z∗ .

4.3 Aircrew scheduling results

Table 4 summarizes the results of the ISU2D variants on the aircrew instances; the detailed results are in

Table 9. We observe that DVD has beter performance in ISU2D2 than in ISU2D1: %Imp is significantly

higher in ISU2D2 (for a similar number of iterations and execution time). The number of instances solved

to optimality (#Opt) by DVD is 17 out of 30 in ISU2D2 and 11 out of 30 in ISU2D1. The success rate is

increased by 54%. This may be because w2 minimizes the reduced cost value (the improvement is proportional

to this value) whereas w1 maximizes the number of negative reduced cost columns regardless of the reduced

cost value.

For DVD in ISU2D3 the success rate is increased to 22 out of 30. The percentage of columns needed in

IVD to obtain an optimal solution is significantly lower in ISU2D3. The success rate is 10 out of 10 in AS50

and decreases as the difficulty increases.

Table 4: Summary of ISU2D results for small aircrew scheduling instances

ISU2D1 ISU2D2 ISU2D3

DVD IVD DVD IVD DVD IVD

Set #Itr Time %Imp #Opt Time %Cols #Itr Time %Imp #Opt Time %Cols #Itr Time %Imp #Opt Time %Cols

AS80 4 2.4 72 2 4.0 77 5 2.1 68 2 4.9 63 6 2.5 80 4 2.6 47
AS65 5 2.5 93 5 2.4 47 5 2.2 94 7 1.2 20 5 2.3 97 8 0.5 13
AS50 4 2.1 94 4 2.1 57 5 2.3 99 8 0.1 20 5 2.4 100 10 - -

Table 5 shows the average solution times of CPLEX and ISUD on the aircrew instances and compares

them to the ISU2D results. Table 10 gives the detailed results (the CPLEX gap is 0 for all these instances,

and we compute the reduction factor for only the instances where the gap is less than 1%). ISU2D3 has the

shortest computational time. It outperforms CPLEX: it is four times faster on easy instances and at least

twice as fast on hard instances. As expected, ρ influences the ISU2D results: the lower the value of ρ, the

better the performance of ISU2D.

ISU2D3 performs well against ISUD: ISU2D3 is almost twice as fast as mono-thread ISUD and almost

one and a half times faster than multi-thread ISUD. We note that multi-thread ISUD is only slightly faster

than mono-thread ISUD. The time reduction is around 10% because of the size of the instances and the high

overhead. This shows that the time reduction of ISU2D comes from the decomposition methods and not

from the parallelization.

Table 5: ISU2D vs. CPLEX and ISUD: Aircrew scheduling instances

C Is Ip ISU2D1 ISU2D2 ISU2D3

Set Time Time Time TC TIs TIp TC TIs TIp TC TIs TIp

AS80 10.2 8.6 7.1 36.3 24.4 8.4 31.4 18.6 1.4 50.0 40.7 28.2
AS65 9.8 5.9 5.1 50.0 16.9 3.9 65.3 42.4 33.3 71.4 52.5 45.1
AS50 10.1 5.1 4.4 58.4 17.6 0.0 76.2 52.9 42.8 76.2 52.9 42.8

Figure 3 shows the evolution of the objective value over time for CPLEX, ISUD, and the ISU2D variants on

instance AS80-1. The algorithms start from the same initial solution with an objective value equal to 376243.

This behavior is typical and representative of the other instances. We connect the points in this figure to
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Figure 3: Evolution of objective value over time

improve its readability. The ISU2D curves decrease more sharply than the ISUD curves because ISU2D

finds multiple descent directions in parallel. The ISUD curves are almost constant at the end of the solution

process because ISUD branching is heuristic and we terminate only when the last branching node is infeasible.

ISU2D instead uses the LP value to terminate as soon as the objective value is satisfactory. ISU2D3 improves

the ISUD solution time by 40% on this instance. The CPLEX curve initially decreases rapidly, but the rate

slows as it approaches an optimal solution. The ISU2D variants reach an optimal solution more quickly.

The three variants share similar behavior. We can rank the algorithms from best to worst (on this instance)

as follows: ISU2D3 � ISU2D2 � ISU2D1 � Multi-thread ISUD� Mono-thread ISUD� CPLEX.

4.4 Bus driver scheduling instances

CPLEX was unable to solve any bus driver instance within a time limit of half an hour for medium instances

and two hours for large instances. Note that CPLEX starts from the same initial solutions as ISUD and

ISU2D. We instead focus on comparing ISU2D and ISUD. The ISU2D variants solve all the medium and

large instances to optimality whereas ISUD fails to find the optimal solution for 40% of the medium and
difficult instances.

Table 6 presents the same information for the bus driver instances that Table 4 presented for the aircrew

instances; the detailed results are in Tables 11 and 13. The number of instances solved to optimality (#Opt)

by DVD is 6 in ISU2D1, 14 in ISU2D2 and 22 in ISU2D3. The success rate is almost quadrupled. As explained

in Section 4.3, ISU2D3 has a better splitting approach. Again, the percentage of columns needed to obtain

an optimal solution in IVD is significantly lower for ISU2D3. ISU2D3 solves 46% of the large instances to

optimality during DVD; this percentage decreases as the difficulty level increases.

Table 6: Summary of ISU2D results for bus driver scheduling instances

ISU2D1 ISU2D2 ISU2D3

DVD IVD DVD IVD DVD IVD

Set #Itr Time %Imp #Opt Time %Cols #Itr Time %Imp #Opt Time %Cols #Itr Time %Imp #Opt Time %Cols

MB-80 2 34 44 0 28 40 3 33 46 0 28 40 3 32 50 0 26 40
MB-65 2 33 58 0 48 41 3 33 58 0 34 42 3 34 60 1 36 38
MB-50 2 33 68 0 19 32 3 36 92 5 6 15 3 37 94 7 7 14

LB-80 3 206 41 0 244 43 3 198 41 0 189 43 4 200 44 0 164 43
LB-65 3 233 67 1 269 43 3 231 80 4 160 29 4 287 87 6 79.4 18
LB-50 3 218 88 5 139 25 3 206 88 5 108 26 3 225 95 8 38 10
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Table 7 shows the average solution times of CPLEX and ISUD for the bus driver instances and compares

them to the ISU2D results. Tables 12 and 14 give the detailed results. We note that the percentages and

their averages are computed for only the instances that were solved to optimality using ISUD. ISU2D3 is

again the best variant of ISU2D. ISU2D3 outperforms ISUD: on the large instances, it is four times faster

than the sequential ISUD and three times faster than the multi-thread ISUD. On the medium instances, the

reduction factor is lower because ISUD performs well. As the instance size increases, the reduction factor

becomes more important because the size of the CP increases and consequently the solution time (e.g., for

the simplex algorithm) increases much more (the observed complexity of the simplex algorithm is m2n where

m is the number of rows and n the number of columns). As expected, ρ influences the results of the ISU2D

variants: the lower the value of ρ, the better the performance of ISU2D.

In contrast to the small instances, the multi-thread ISUD is twice as fast as the mono-thread ISUD because

the instances are large enough and the overhead is rather small. However, ISU2D is much faster than the

multi-thread ISUD. The time reduction is much more important when the decomposition method is used.

Table 7: ISU2D vs. ISUD: bus driver scheduling instances

Is Ip ISU2D1 ISU2D2 ISU2D3

Set time time TIs TIp TIs TIp TIs TIp

MB-80 295 145 66.7 31.1 68.6 36.7 68.4 36.3
MB-65 241 109 61.3 18.1 65.9 27.2 64.2 23.8
MB-50 119 60 48.2 11.0 56.6 26.3 54.0 22.5

LB-80 2313 1203 77.4 60.8 81.9 67.3 82.2 68.9
LB-65 1806 1012 70.4 52.1 75.0 59.9 76.1 61.6
LB-50 1076 822 54.7 46.2 62.4 54.3 66.7 59.2

Figures 4 and 5 show the evolution of the objective value over time on MB80-1 and LB80-1 respectively

using the following algorithms: mono-thread ISUD, multi-thread ISUD, ISU2D1, ISU2D2, and ISU2D3.

ISU2D3 is the fastest, yielding improvements of 60% and almost 75% over ISUD on these instances. The

figures clearly show that the ISU2D variants outperform ISUD. The ISU2D curves decrease more sharply

than the ISUD curves. Moreover, the ISUD curves are almost constant at the end of the solution process

because there is no optimality proof, whereas the lower bound enables the ISU2D variants to stop when

the required solution quality is obtained. On LB80-1, the ISU2D2 curve decreases more rapidly than the

ISU2D1 curve, because ISU2D2 searches for the steepest descent direction at each iteration. ISU2D3 is better

than ISU2D2. We can rank the algorithms from best to worst as follows: ISU2D3 � ISU2D2 � ISU2D1 �
Multi-thread ISUD� Mono-thread ISUD.

Figure 4: Evolution of mono-thread ISUD, multi-thread ISUD, ISU2D1, ISU2D2, and ISU2D3 on MB80-1
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Figure 5: Evolution of mono-thread ISUD, multi-thread ISUD, ISU2D1, ISU2D2, and ISU2D3 on LB80-1

4.5 Summary of results

Table 8 summarizes the results. ISU2D3 is almost twice as fast as ISUD and almost three times faster than

CPLEX on the aircrew tests. It is almost three times faster than mono-thread ISUD and almost 1.5 times

faster than multi-thread ISUD on the medium bus driver tests. It is four times faster than mono-thread ISUD

and three times faster than multi-thread ISUD on the large bus driver tests. We can rank the algorithms

from best to worst as follows: ISU2D3 � ISU2D2 � ISU2D1 � Multi-thread ISUD� Mono-thread ISUD.

Table 8: Summary of results

Mono ISUD Multi ISUD CPLEX ISU2D3

Set Time Time Time Time TIs TIp

AS: Small aircrew scheduling 6.6 5.5 10.3 3.4 48.6 41.8
MB: Medium bus driver scheduling 181.3 83.8 - 56.4 62.4 27.9
LB: Large bus driver scheduling 1622.4 969.6 - 336.5 72.4 62.6

5 Conclusion

We have introduced the ISU2D double decomposition to find, in parallel, descent directions leading to im-

proved integer solutions. Our approach is applicable to vehicle and crew scheduling SPPs. It is especially

beneficial for large problems. We implemented three ISU2D variants and discussed their performance. They

differ in the splitting method that they use, and we demonstrated that multistage splitting is the best. ISU2D

was able to find optimal solutions for all the instances in less time than that required by ISUD and CPLEX.

Future research on splitting methods should be done to further improve the ISU2D performance. Splitting

methods could be based on time-space decomposition and business rules that are specific to the application.

Good dual values and and good weighting methods are the ingredients for a good ISU2D. In addition, combin-

ing ISU2D with heuristics that produce good initial solutions should significantly reduce the computational

time for large SPPs.
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6 Appendix: Detailed results

Table 9: ISU2D results for small aircrew scheduling instances

ISU2D1 ISU2D2 ISU2D3

DVD IVD Final DVD IVD Final DVD IVD Final

Instance #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap

AS80-1 6 4 100 - - 0 4 2 59 66 3 0 5 2 66 67 2 0
AS80-2 3 2 44 66 3 300 7 3 100 - - 0 7 3 100 - - 0
AS80-3 5 2 37 100 10 0 6 2 50 100 13 0 6 2 50 100 12 0
AS80-4 4 2 80 100 1 0 4 2 58 100 6 0 5 2 72 100 2 0
AS80-5 3 2 91 100 3 0 5 2 68 66 5 3 5 2 68 66 5 3
AS80-6 7 3 100 - - 0 4 2 78 66 6 108 11 4 100 - - 0.3
AS80-7 2 2 88 100 10 2 3 2 77 66 3 0 7 3 100 - - 0
AS80-8 3 2 46 100 10 291 5 2 100 - - 0 5 2 100 - - 0
AS80-9 3 2 64 100 3 0 4 2 35 100 9 0 5 2 58 66 5 0
AS80-10 4 2 58 100 5 0 5 2 62 66 5 170 6 2 62 66 5 100

AS65-1 7 3 100 - - 0 5 2 100 - - 0 5 2 100 - - 0
AS65-2 4 3 100 - - 0 7 4 100 - - 0 7 4 100 - - 0
AS65-3 4 2 98 100 2 0 6 2 91 67 1 0 6 2 91 66 1 0
AS65-4 3 2 90 100 3 0 5 2 100 - - 0 5 2 100 - - 0
AS65-5 3 2 74 100 9 0 5 2 100 - - 0 5 2 100 - - 0
AS65-6 4 2 100 - - 0 4 2 100 - - 0 4 2 100 - - 0
AS65-7 3 2 71 100 7 0 4 2 81 67 4 0 4 2 81 67 4 0
AS65-8 4 2 96 67 3 0 4 2 100 - - 0 4 2 100 - - 0
AS65-9 10 5 100 - - 0 3 2 66 67 7 0 6 3 100 - - 0
AS65-10 4 2 100 - - 0 6 2 100 - - 0 6 2 100 - - 0

AS50-1 4 2 94 100 2 0 5 2 96 100 1 0 6 3 100 - - 0
AS50-2 4 2 84 100 2 0 5 2 100 - - 0 5 2 100 - - 0
AS50-3 4 2 100 - - 0 4 2 100 - - 0 4 2 100 - - 0
AS50-4 3 2 78 67 5 4 6 2 100 - - 0 6 2 100 - - 0
AS50-5 4 2 100 - - 0 5 2 100 - - 0 5 2 100 - - 0
AS50-6 5 2 100 - - 0 4 2 100 - - 0 4 2 100 - - 0
AS50-7 4 2 96 100 2 0 4 2 100 - - 0 4 2 100 - - 0
AS50-8 3 2 89 100 10 1 8 4 99 - - 1 12 5 100 - - 0
AS50-9 5 3 100 - - 0 4 2 100 - - 0 4 2 100 - - 0
AS50-10 2 2 75 100 3 0 4 2 100 - - 0 4 2 100 - - 0
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Table 10: ISU2D vs. ISUD and CPLEX on small aircrew scheduling instances

C Is Ip ISU2D1 ISU2D2 ISU2D3

Instance Time Time Gap Time Gap TC TIs TIp TC TIs TIp TC TIs TIp

AS80-1 13 7 0 6 0 69.23 42.86 33.33 61.54 28.57 16.67 69.23 42.86 33.33
AS80-2 9 10 0 9 0 - - - 66.67 70.00 66.67 66.67 70.00 66.67
AS80-3 8 15 0 9 0 -50.00 20.00 -33.33 -87.50 0.00 -66.67 -75.00 6.67 -55.56
AS80-4 6 7 0 7 0 50.00 57.14 57.14 -33.33 -14.29 -14.29 33.33 42.86 42.86
AS80-5 13 9 0 7 0 61.54 44.44 28.57 - - - - - -
AS80-6 11 7 0 7 0 72.73 57.14 57.14 - - - 63.64 42.86 42.86
AS80-7 10 6 0 6 0 -20.00 -100.00 -100.00 50.00 16.67 16.67 70.00 50.00 50.00
AS80-8 17 9 0 7 0 - - - 88.24 77.78 71.43 88.24 77.78 71.43
AS80-9 8 9 0 7 0 37.50 44.44 28.57 -37.50 -22.22 -57.14 37.50 44.44 28.57
AS80-10 7 7 200 6 200 - - - - - - - - -

AS65-1 6 6 0 5 0 50.00 50.00 40.00 66.67 66.67 60.00 66.67 66.67 60.00
AS65-2 10 7 0 5 0 70.00 57.14 40.00 60.00 42.86 20.00 60.00 42.86 20.00
AS65-3 9 5 0 4 0 55.56 20.00 0.00 66.67 40.00 25.00 66.67 40.00 25.00
AS65-4 7 5 0 5 0 71.43 60.00 60.00 71.43 60.00 60.00 71.43 60.00 60.00
AS65-5 11 5 0 4 0 18.18 -80.00 -125.00 81.82 60.00 50.00 81.82 60.00 50.00
AS65-6 9 7 0 5 0 77.78 71.43 60.00 77.78 71.43 60.00 77.78 71.43 60.00
AS65-7 23 8 0 8 0 69.57 12.50 12.50 73.91 25.00 25.00 73.91 25.00 25.00
AS65-8 9 4 0 4 0 66.67 25.00 25.00 77.78 50.00 50.00 77.78 50.00 50.00
AS65-9 7 7 0 6 0 28.57 28.57 16.67 -28.57 -28.57 -50.00 57.14 57.14 50.00
AS65-10 7 5 0 5 0 71.43 60.00 60.00 71.43 60.00 60.00 71.43 60.00 60.00

AS50-1 22 5 0 5 0 81.82 20.00 20.00 86.36 40.00 40.00 86.36 40.00 40.00
AS50-2 9 5 0 4 0 55.56 20.00 0.00 77.78 60.00 50.00 77.78 60.00 50.00
AS50-3 5 5 0 4 0 60.00 60.00 50.00 60.00 60.00 50.00 60.00 60.00 50.00
AS50-4 9 7 0 7 0 - - - 77.78 71.43 71.43 77.78 71.43 71.43
AS50-5 19 4 0 3 0 89.47 50.00 33.33 89.47 50.00 33.33 89.47 50.00 33.33
AS50-6 9 5 0 3 0 77.78 60.00 33.33 77.78 60.00 33.33 77.78 60.00 33.33
AS50-7 7 4 0 4 0 42.86 0.00 0.00 71.43 50.00 50.00 71.43 50.00 50.00
AS50-8 8 5 0 5 0 -50.00 -140.00 -140.00 50.00 20.00 20.00 37.50 0.00 0.00
AS50-9 8 6 0 5 0 62.50 50.00 40.00 75.00 66.67 60.00 75.00 66.67 60.00
AS50-10 6 5 0 4 0 16.67 0.00 -25.00 66.67 60.00 50.00 66.67 60.00 50.00
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Table 11: ISU2D results for medium bus driver scheduling instances

ISU2D1 ISU2D2 ISU2D3

DVD IVD Final DVD IVD Final DVD IVD Final

Instance #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap

MB80-1 3 32 45 33 28 0 2 33 37 33 27 0 3 32 42 33 28 0
MB80-2 2 34 50 34 22 0 3 33 55 34 23 0 4 32 55 33 22 0
MB80-3 3 32 57 32 19 0 3 32 67 32 29 0 3 32 67 32 28 0
MB80-4 2 35 55 33 26 0 3 34 40 33 39 0 4 33 40 33 45 0
MB80-5 3 33 35 50 33 0 3 33 30 50 31 0 3 33 40 50 31 0
MB80-6 2 36 20 65 34 0 3 35 15 32 23 0 4 34 20 32 20 0
MB80-7 2 32 55 33 69 0 3 32 85 33 15 0 2 32 85 33 15 0
MB80-8 2 34 42 33 29 0 3 33 35 33 26 0 3 32 35 33 27 0
MB80-9 1 33 42 50 43 0 3 33 65 50 24 0 3 32 65 50 25 0
MB80-10 2 34 37 34 23 0 2 32 30 34 42 0 3 31 50 34 22 0

MB65-1 3 33 44 40 62 0 3 33 50 40 40 0 3 32 50 40 33 0
MB65-2 2 32 72 36 32 0 3 32 72 36 8 0 6 54 100 - - 0
MB65-3 1 32 59 64 118 0 3 32 50 50 42 0 3 32 50 50 34 0
MB65-4 1 34 51 36 69 0 3 33 64 36 44 0 3 32 64 36 52 0
MB65-5 2 32 47 36 40 0 3 32 50 36 37 0 3 32 50 36 37 0
MB65-6 3 34 70 32 23 0 3 32 67 32 29 0 2 32 67 33 32 0
MB65-7 1 33 48 50 44 0 2 32 39 50 84 0 2 31 39 50 83 0
MB65-8 3 33 66 35 26 0 3 34 59 35 4 0 3 33 59 33 5 0
MB65-9 1 34 47 30 40 0 3 33 44 50 34 0 3 32 44 50 36 0
MB65-10 2 33 79 50 24 0 2 33 82 50 22 0 2 32 82 50 23 0

MB50-1 2 34 69 50 11 0 3 35 100 - - 0 3 33 100 - - 0
MB50-2 1 33 72 34 19 4 3 33 92 34 16 0 2 32 92 34 16 0
MB50-3 2 30 85 10 2 0 3 29 94 10 2 6 5 47 100 - - 0
MB50-4 3 33 85 35 11 0 4 52 100 - - 0 4 52 100 - - 0
MB50-5 2 31 52 35 28 0 3 32 100 - - 0 3 31 100 - - 0
MB50-6 3 32 84 33 13 0 3 32 100 - - 0 3 32 100 - - 0
MB50-7 3 33 64 33 14 0 2 33 76 40 21 0 2 32 76 40 22 0
MB50-8 1 33 80 20 50 0 3 53 100 - - 0 3 52 100 - - 0
MB50-9 2 34 72 34 33 0 2 33 84 34 15 0 2 33 84 34 14 0
MB50-10 2 33 92 34 13 0 3 32 76 34 5 0 6 44 100 - - 0
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Table 12: ISU2D vs. ISUD on medium bus driver scheduling instances

Is Ip ISU2D1 ISU2D2 ISU2D3

Instance Time Gap Time Gap TIs TIp TIs TIp TIs TIp

MB80-1 379 0.0 147 0.0 84.17 59.18 84.17 59.18 84.17 59.18
MB80-2 178 0.0 93 0.0 68.54 39.78 68.54 39.78 69.66 41.94
MB80-3 139 0.0 70 0.0 63.31 27.14 56.12 12.86 56.83 14.29
MB80-4 152 0.0 86 0.0 59.87 29.07 51.97 15.12 48.68 9.30
MB80-5 145 22.6 90 22.6 - - - - - -
MB80-6 98 32.9 56 32.9 - - - - - -
MB80-7 371 0.0 147 0.0 72.78 31.29 87.33 68.03 87.33 68.03
MB80-8 97 41.1 62 41.1 - - - - - -
MB80-9 156 0.0 76 0.0 51.28 0.00 63.46 25.00 63.46 25.00
MB80-10 54 63.7 44 63.7 - - - - - -

MB65-1 214 0.0 93 0.0 55.61 -2.15 65.89 21.51 64.95 19.35
MB65-2 134 0.0 66 0.0 52.24 3.03 70.15 39.39 59.70 18.18
MB65-3 131 10.3 69 10.3 - - - - - -
MB65-4 238 12.3 93 12.3 - - - - - -
MB65-5 324 0.0 124 0.0 77.78 41.94 78.70 44.35 78.70 44.35
MB65-6 141 0.0 76 0.0 59.57 25.00 56.74 19.74 54.61 15.79
MB65-7 288 0.0 131 0.0 73.26 41.22 59.72 11.45 60.42 12.98
MB65-8 111 0.0 62 0.0 46.85 4.84 65.77 38.71 65.77 38.71
MB65-9 171 0.0 78 0.0 56.73 5.13 60.82 14.10 60.23 12.82
MB65-10 179 0.0 77 0.0 68.16 25.97 69.27 28.57 69.27 28.57

MB50-1 54 0.0 44 0.0 16.67 -2.27 35.19 20.45 38.89 25.00
MB50-2 94 0.0 51 0.0 44.68 -1.96 47.87 3.92 48.94 5.88
MB50-3 71 0.0 49 0.0 56.34 36.73 56.34 36.73 33.80 4.08
MB50-4 83 0.0 51 0.0 46.99 13.73 37.35 -1.96 37.35 -1.96
MB50-5 186 0.0 73 0.0 68.28 19.18 82.80 56.16 83.33 57.53
MB50-6 57 0.0 44 0.0 21.05 -2.27 43.86 27.27 43.86 27.27
MB50-7 158 0.0 77 0.0 70.25 38.96 65.82 29.87 65.82 29.87
MB50-8 155 0.0 71 0.0 46.45 -16.90 65.81 25.35 66.45 26.76
MB50-9 263 0.0 95 0.0 74.52 29.47 81.75 49.47 82.13 50.53
MB50-10 73 0.0 44 0.0 36.99 -4.55 49.32 15.91 39.73 0.00



20 G–2017–73 Les Cahiers du GERAD

Table 13: ISU2D results for large bus driver scheduling instances

ISU2D1 ISU2D2 ISU2D3

DVD IVD Final DVD IVD Final DVD IVD Final

Instance #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap #Itr Time %Imp %Cols Time %Gap

LB80-1 3 209 52 40 127 0 3 190 28 40 120 0 3 192 28 40 129 0
LB80-2 4 217 32 38 120 0 2 206 21 38 123 0 5 210 34 38 115 0
LB80-3 3 201 62 44 461 0 4 201 70 44 209 0 4 202 70 44 212 0
LB80-4 4 203 55 37 108 0 4 196 57 37 108 0 4 196 57 37 109 0
LB80-5 2 201 17 48 172 0 4 188 32 48 251 0 4 189 32 48 275 0
LB80-6 2 202 42 47 153 0 4 194 49 47 140 0 4 194 49 47 151 0
LB80-7 3 213 26 48 154 0 2 207 13 48 457 0 5 212 30 48 147 0
LB80-8 3 200 34 42 150 0 3 194 28 42 136 0 3 195 28 42 141 0
LB80-9 2 204 28 50 889 0 4 209 66 50 150 0 4 207 66 50 152 0
LB80-10 3 212 66 40 106 0 4 200 49 40 197 0 4 203 49 40 213 0

LB65-1 2 213 100 - - 0 3 231 100 - - 0 3 205 100 - - 0
LB65-2 3 214 58 44 283 0 7 213 60 44 312 0 7 524 100 - - 0
LB65-3 2 203 81 40 158 0 4 243 100 - - 0 4 246 100 - - 0
LB65-4 2 187 53 44 311 0 2 190 81 44 189 0 2 189 81 44 195 0
LB65-5 3 213 49 48 374 0 3 209 60 48 130 0 3 215 72 48 146 0
LB65-6 3 215 70 60 281 0 3 216 77 60 395 0 6 487 100 - - 0
LB65-7 3 196 61 45 453 0 2 192 56 45 247 0 3 199 70 45 232 0
LB65-8 3 207 77 50 384 0 3 236 100 - - 0 3 208 100 - - 0
LB65-9 3 210 53 48 248 0 4 386 100 - - 0 4 387 100 - - 0
LB65-10 3 201 63 46 207 0 3 196 28 46 332 0 4 201 47 46 221 0

LB50-1 2 233 100 - - 0 3 193 88 47 98 0 4 193 100 - - 0
LB50-2 3 202 88 53 108 0 3 202 100 - - 0 3 201 100 - - 0
LB50-3 2 220 100 - - 0 3 210 100 - - 0 3 207 100 - - 0
LB50-4 3 211 61 46 346 0 2 203 52 46 418 0 4 214 67 46 226 0
LB50-5 2 261 100 - - 0 2 208 76 53 213 0 5 394 100 - - 0
LB50-6 2 212 100 - - 0 3 212 100 - - 0 3 209 100 - - 0
LB50-7 3 210 79 56 150 0 3 210 79 56 151 0 3 208 79 56 154 0
LB50-8 2 211 100 - - 0 3 204 100 - - 0 2 200 100 - - 0
LB50-9 2 204 68 55 469 0 3 203 85 55 203 0 4 201 100 - - 0
LB50-10 2 222 85 42 318 0 3 222 100 - - 0 3 223 100 - - 0
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Table 14: ISU2D vs. ISUD on large bus driver scheduling instances

Is Ip ISU2D1 ISU2D2 ISU2D3

Instance Time Gap Time Gap TIs TIp TIs TIp TIs TIp

LB80-1 1822 0.0 1335 0.0 81.56 74.83 82.99 76.78 82.38 75.96
LB80-2 2594 0.0 1199 0.0 87.01 71.89 87.32 72.56 87.47 72.89
LB80-3 1485 0.0 1121 0.0 55.42 40.95 72.39 63.43 72.12 63.07
LB80-4 2411 0.0 1060 0.0 87.10 70.66 87.39 71.32 87.35 71.23
LB80-5 2867 0.0 1391 0.0 86.99 73.18 84.69 68.44 83.82 66.64
LB80-6 1419 0.0 802 0.0 74.98 55.74 76.46 58.35 75.69 56.98
LB80-7 4518 0.0 1321 0.0 91.88 72.22 85.30 49.74 92.05 72.82
LB80-8 2544 0.0 1532 0.0 86.24 77.15 87.03 78.46 86.79 78.07
LB80-9 1947 0.0 1067 0.0 43.86 -2.44 81.56 66.35 81.56 66.35
LB80-10 1522 0.0 1204 0.0 79.11 73.59 73.92 67.03 72.67 65.45

LB65-1 1375 0.0 854 0.0 84.51 75.06 83.20 72.95 83.27 73.07
LB65-2 935 0.0 666 0.0 46.84 25.38 43.85 21.17 43.96 21.32
LB65-3 769 0.0 636 0.0 53.06 43.24 68.40 61.79 68.01 61.32
LB65-4 1403 0.0 1106 0.0 64.50 54.97 72.99 65.73 72.63 65.28
LB65-5 2064 0.0 959 0.0 71.56 38.79 83.58 64.65 82.51 62.36
LB65-6 1842 0.0 1244 0.0 73.07 60.13 66.83 50.88 73.56 60.85
LB65-7 3470 0.0 1187 0.0 81.30 45.32 87.35 63.02 87.58 63.69
LB65-8 1657 0.0 1189 0.0 67.35 54.50 85.76 80.15 85.76 80.15
LB65-9 2579 0.0 1213 0.0 82.24 62.24 85.03 68.18 84.99 68.10
LB65-10 1965 0.0 1063 0.0 79.24 61.62 73.13 50.33 78.52 60.30

LB50-1 833 0.0 602 0.0 72.03 61.30 65.07 51.66 65.43 52.16
LB50-2 852 0.0 663 0.0 63.62 53.24 76.29 69.53 76.41 69.68
LB50-3 367 0.0 359 0.0 40.05 38.72 42.78 41.50 43.60 42.34
LB50-4 712 10.7 1970 10.7 - - - - - -
LB50-5 1215 0.0 951 0.0 78.52 72.56 65.35 55.73 67.57 58.57
LB50-6 350 0.0 329 0.0 39.43 35.56 40.29 36.47 40.29 36.47
LB50-7 3932 0.0 1040 0.0 90.84 65.38 90.82 65.29 90.79 65.19
LB50-8 649 0.0 586 0.0 67.49 63.99 68.72 65.36 69.18 65.87
LB50-9 577 0.0 520 0.0 -16.64 -29.42 29.64 21.92 65.16 61.35
LB50-10 1269 0.0 1198 0.0 57.45 54.92 82.66 81.64 82.43 81.39
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