
Les Cahiers du GERAD ISSN: 0711–2440

Combining surrogate strategies with MADS
for mixed-variable derivative-free optimization

A.-S. Crélot, C. Beauthier, D. Orban,
C. Sainvitu, A. Sartenaer

G–2017–70

August 2017

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2017-70) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2017-70) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
– Bibliothèque et Archives Canada, 2017

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
– Library and Archives Canada, 2017

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-70
https://www.gerad.ca/fr/papers/G-2017-70
https://www.gerad.ca/en/papers/G-2017-70
https://www.gerad.ca/en/papers/G-2017-70

Combining surrogate strate-
gies with MADS for mixed-
variable derivative-free opti-
mization

Anne-Sophie Crélot a

Charlotte Beauthier b

Dominique Orban c

Caroline Sainvitu b

Annick Sartenaer a

a Department of Mathematics and naXys, University of
Namur, 5000 Namur, Belgium

b Cenaero, Eole Building, 6041 Gosselies, Belgium

c GERAD & Department of Mathematics and Industrial
Engineering, Polytechnique Montréal (Québec) Canada,
H3C 3A7

anne-sophie.crelot@unamur.be

charlotte.beauthier@cenaero.be

dominique.orban@gerad.ca

caroline.sainvitu@cenaero.be

annick.sartenaer@unamur.be

August 2017

Les Cahiers du GERAD

G–2017–70

Copyright c© 2017 GERAD

ii G–2017–70 Les Cahiers du GERAD

Abstract: We consider the solution of derivative-free optimization problems with continuous, integer, discrete and
categorical variables in the context of costly black-box mixed-variable industrial problems. Our approach is based on
NOMAD, an implementation of the mesh-adaptive direct-search method (MADS), supplemented with surrogate models
and strategies in the local poll and global search steps. The surrogate models are radial basis function interpolations
managed by the surrogate-assisted evolutionary software MINAMO developed at Cenaero. The proposed approach is
validated on a collection of problems from the literature and we compare several surrogate-based strategies. In the
general mixed-variable case, the results show that employing MINAMO as a surrogate-based strategy within NOMAD
in the poll and search steps increases both robustness and efficiency when compared to MINAMO’s surrogate-based
evolutionary algorithm alone or to NOMAD. On problems with mixed-integer variables only, we also experiment with
the specialized mixed-integer solver BONMIN instead of MINAMO’s evolutionary algorithm in the search step. It turns
out to be slightly more efficient and substantially more robust when high accuracy is required.

Keywords: Derivative-free optimization, mixed-variable optimization, radial basis functions surrogates, categorical
variables, mesh adaptive direct-search algorithm, evolutionary algorithm

Résumé : Nous considérons les problèmes d’optimisation sans dérivées avec variables continues, entières, discrètes
et de catégorie dans le contexte d’applications industrielles avec objectif de type boı̂te noire coûteuse. Notre approche
se base sur NOMAD, une implémentation de la méthode de recherche directe adaptative (MADS), agrémentée de
fonctions substitut dans la sonde locale et la recherche globale. Les fonctions substitut sont des modèles d’interpolation
à base radiale gérées par le logiciel évolutionnaire MINAMO développé à Cenaero. Nous validons notre approche sur
un jeu de problèmes provenant de la littérature et comparons plusieurs stratégies liées aux fonctions substitut. Dans le
cas des variables mixtes, l’utilisation de MINAMO pour gérer les substituts dans les étapes de sonde et de recherche
améliore la robustesse et l’efficacité par rapport à MINAMO seul ou NOMAD seul. Dans le cas des variables continues
et entières seulement, nous utilisons le logiciel d’optimisation en nombres entiers BONMIN au lieu de MINAMO, qui
s’avère être plus efficace et substantiellement plus robuste lorsqu’une précision élevée est requise.

Mots clés : Optimisation sans dérivées, optimisation en variables mixtes, substituts à base radiale, variables de
catégorie, algorithme de méthode de recherche directe adaptative, algorithme évolutionnaire

Acknowledgments: The present research benefited from computational resources made available on the Tier-1
supercomputer of the Fédération Wallonie–Bruxelles, infrastructure funded by the Walloon Region under the grant
agreement number 1117545.

Les Cahiers du GERAD G–2017–70 1

1 Introduction

We consider the mixed-variable derivative-free optimization (DFO) problem

min
x

f (x) s.t. c(x)≤ 0, l ≤ x̄≤ u, (1)

where c(x) = (c1(x),c2(x), . . . ,cv(x))T , x= (x̄, xc) and x̄= (xr, xi, xd) with xr ∈Rnr , xi ∈Zni , xd ∈D=D1×·· ·×Dnd ,
xc ∈C =C1×·· ·×Cnc , nr+ni+nd = n̄ and n̄+nc = n. The sets Dk and Ck are at most countable ordered and unordered,
respectively. We call xr the continuous variables, xi the integer variables, xd the discrete variables and xc the categorical
variables. The vectors l and u ∈ Rn̄ represent lower and upper bounds on the ordered variables x̄. The constraints on
the ordered and categorical variables are nonrelaxable, i.e., they must always be satisfied. We denote by Ω the feasible
set of (1). We consider the objective f : Rnr ×Zni ×D×C → R and constraints c : Rnr ×Zni ×D×C → Rv as
black-boxes, i.e., typically costly functions to evaluate, that may be nonconvex, discontinuous or noisy, and whose
derivatives may not exist or be available.

In an industrial context, because of modelling choices, only nonintrusive DFO methods are considered. For example
at the applied research center Cenaero, problems of the form (1) arise in the design of turbomachinery outlet guide vanes
(Baert et al., 2015), cryogenic tanks (Mahajan et al., 2015) or composite materials (Madhavan and Martiny, 2013). The
variety of fields of application is an additional argument to keep methods as general as possible. Modeling problems
in such contexts often requires integer, discrete and/or categorical variables, e.g. the number of vanes in a turbine,
their outlet angles chosen from a prescribed finite set of possible angles, or an insulation material chosen from a given
catalog.

As computing capacity increases, so do the cost, complexity and size of black-box simulation problems. As de-
tailed in Section 2, few existing solvers are able to solve the general mixed-variable problem (1). At Cenaero, many
such problems are currently tackled by way of an online surrogate-assisted evolutionary algorithm (EA) (Forrester
and Keane, 2009) implemented as part of the MINAMO optimization suite (Sainvitu et al., 2009; Baert et al., 2015).
Surrogates play several roles in making such costly problems tractable. They act as inexpensive models for the time-
consuming objective and constraints and are used to guide the search towards improved iterates during local exploita-
tion and global exploration. Our goal, in this paper, is to propose a robust and efficient method to solve problem (1),
i.e., supported by convergence guarantees that do not interfere with efficiency considerations. To this aim, we consider
NOMAD, an implementation of the Mesh-Adaptive Direct-Search (MADS) family of methods (Audet et al., 2009;
Le Digabel, 2011) proved to be globally convergent (cf. Section 3.1), and supplement it with Radial Basis Function
(RBF) interpolation models constructed by MINAMO. Those models are used as surrogates in the local poll and global
search stages of NOMAD. In addition in the search step, those surrogates are exploited using a mixed evolutionary
algorithm or a branch-and-bound approach, depending on the nature of the variables.

The paper is organized as follows. Section 2 shortly reviews the DFO solvers literature and Section 3 outlines the
purpose of NOMAD and MINAMO together with the convergence properties of NOMAD. In Section 4, we first describe
our surrogate-based strategy. We next illustrate each stage of its construction and its performance on a set of analytical
problems. Section 5 reports numerical experiments on the real-world Heatshield problem (Kokkolaras et al., 2001;
Abramson, 2004). We conclude and give some perspectives in Section 6.

2 Related software and algorithms

When derivatives are not available, finite-difference approximations are effective in certain applications but can be
unreliable in the presence of noise, and unrealistic for expensive functions. DFO algorithms only use function values
and differ in the way they exploit this information to determine the new iterate. The Nelder and Mead (1965) simplex-
reflection method is one of the most commonly-implemented DFO algorithms. Conn et al. (2009) describe both
directional and model-based methods but focus on problems with continuous variables and only briefly mention the
adaptation of methods to mixed-integer problems. Kolda et al. (2003) give a detailed survey on direct-search methods.

In the DFO algorithms and software survey of Rios and Sahinidis (2013), only four out of the 22 solvers considered
can handle noncontinuous variables. Of those four, two are part of the TOMLAB Matlab toolbox (Holmström, 1997)

2 G–2017–70 Les Cahiers du GERAD

and are designed to solve problems with continuous and integer variables. The other two are NOMAD, which is the
only one that accepts categorical variables, and HOPSPACK (Platenga, 2009), a generating set search algorithm that
solves problems with continuous and integer variables.

New solvers later emerged. RBFOpt (Costa and Nannicini, 2014) is a free solver for unconstrained problems similar
to the rbfsolve method of TOMLAB. Newby and Ali (2015) present HEMBOQA as well as two modifications of
it, that are adaptations of BOBYQA (Powell, 2009) to handle integer variables. Müller et al. (2013b) develop SO-MI,
an algorithm based on RBF surrogates, to identify a global minimizer of problems with costly black-box functions in
real and integer variables. Müller et al. (2013a) introduce SO-I, which is dedicated to problems with integer variables
only. Finally MISO (Müller, 2015) defines an optimization framework that adapts several continuous surrogate-based
algorithms to mixed-integer problems.

Evolutionary and genetic algorithms have also been adapted to mixed-integer problems. NSGA-II (Deb et al., 2002)
implements a single- and multi-objective genetic algorithm for problems in continuous and binary variables. However
it is not well suited to solve problems involving expensive numerical simulations.

Other methods to solve mixed-variable problems are studied, without leading to software release. Bajer and Holeňa
(2010) present an approach based on RBF Networks and genetic algorithms for problems with continuous and discrete
variables. Herrera et al. (2014) develop a model-assisted method using multiple kernel regression, also designed for
mixed-variable problems. Liao et al. (2014) solve mixed-variable problems with an ant Colony Optimization. The
first two methods are well suited for problems with expensive functions while the last one may require many function
evaluations to solve a problem.

3 Background on Nomad and Minamo

This section gives an overview of the two solvers that are used in this work. Section 3.1 is dedicated to NOMAD. We
then describe MINAMO and its online surrogate-based optimization process in Section 3.2. Advantages and weaknesses
of both are highlighted in order to motivate the combination proposed in Section 4.

3.1 Nomad

NOMAD is a C++ implementation (Abramson, Audet, Couture, Dennis Jr., Le Digabel, and Tribes, https://www.
gerad.ca/nomad/) of the Mesh Adaptive Direct Search (MADS) algorithm for nonlinear optimization (Audet et al.,
2009; Le Digabel, 2011). It is designed for simulation-based constrained optimization, with black-box functions.
NOMAD also implements a MADS adapted to mixed variables (Abramson et al., 2009a) and can handle continuous,
integer, binary and categorical variables.

The MADS algorithm is a local iterative optimization method that relies on a mesh. To minimize f over the feasible
domain Ω, NOMAD uses a progressive barrier function denoted by (f ,h), where h is the constraint violation function

h(x) :=

v

∑
j=1

(max(c j(x),0))2 if x ∈ X ,

+∞ otherwise,
(2)

and where X is the subset of points x = (x̄, xc) ∈Rnr ×Zni ×D×C satisfying the non-relaxable constraints l ≤ x̄≤ u
and xc ∈C.

At each iteration k, f and h are evaluated at trial points with the aim to decrease one or both of them. An iteration
(and consequently a point) may be dominating, improving or unsuccessful. It is dominating if at least one trial point
dominates the current best feasible or current best infeasible point. A point y dominates a point x if and only if either
h(y)< h(x) and f (y)≤ f (x), or h(y)≤ h(x) and f (y)< f (x). If the iteration is not dominating and there is an infeasible
trial point improving the constraint violation but with higher objective value than the current best infeasible point, the
iteration is improving. Otherwise it is unsuccessful. During iteration k, the (optional) search step takes place first. If it
produces a dominating point, this point becomes the new current best solution and the next iteration is started, without

https://www.gerad.ca/nomad/
https://www.gerad.ca/nomad/

Les Cahiers du GERAD G–2017–70 3

going through the poll step. Otherwise the poll step is performed. If the latter fails to generate a dominating point and
the problem contains categorical variables, an extended poll step is performed. The next iteration then takes place.

The iterates generated by the MADS algorithm must always remain on the current, iteration dependent, mesh
defined at iteration k as

Mk =

 ⋃
(w̄,wc)∈Sk

{w̄+∆
m
k z | z ∈Zn̄}

×C,

where Sk denotes the set of points previously evaluated up to iteration k and ∆m
k ∈R+ is the mesh size parameter. If a

dominating point is found at the end of an iteration, the mesh size can be increased, while it remains unchanged after
an improving iteration and is decreased if the iteration is unsuccessful. The whole optimization process is represented
in the flowchart of Figure 1. We outline the main goals of each step in the remainder of this section.

Initialization
Search step
(optional)

Search step
done and

dominating?
Poll step

Update
iterate and
parameters

Poll step
dominating?

Extended
Poll step

(if nc 6= 0)

Stop?End

no

yes

no

yes

no

yes

Figure 1: Flowchart of Nomad.

Poll step The poll step is the heart of the MADS philosophy to ensure convergence of the sequence of iterates, under
appropriated assumptions, to a suitably defined stationary point. It generates a set of trial points around the current
iterate, xk, called the frame

Fk(xk) = {(x̄k +∆
m
k e,xc

k) : e ∈ Ek},

where Ek, the set of poll directions, is a positive spanning set satisfying technical conditions (Abramson et al., 2009a).
The trial poll points must remain in a neighborhood of the current iterate (with respect to ordered variables x̄) defined by
the poll size parameter ∆

p
k ∈R

+. The mesh and poll size parameters need to verify ∆m
k ≤ ∆

p
k for all k and limk∈K ∆m

k = 0
if and only if limk∈K ∆

p
k = 0 for any infinite index set K.

Three different strategies are available in NOMAD for generating the poll directions Ek. The GPS option corre-
sponds to coordinates directions, LTMADS (Audet and Dennis Jr, 2006) is a strategy using directions generated from
a lower triangular matrix, and ORTHOMADS (Abramson et al., 2009b) uses orthogonal directions. For each strategy,
the number of directions generated can be n+1 (minimal positive spanning set) or 2n (maximal positive spanning set).
Figure 2 shows two examples of a MADS frame and mesh in R2, using ORTHOMADS directions.

Once the frame is generated, an opportunistic strategy is used by default to evaluate f and h at its points. This
means that we stop scanning the frame as soon as a dominating point is found, if any. Prior to evaluate the true
objective function and constraints, we consider in Section 4 the ordering of the poll points using surrogate values.

4 G–2017–70 Les Cahiers du GERAD

xk

xk

Figure 2: Two examples of a MADS frame (blue diamonds) and mesh (gray circles) in R2 for the ordered variables. The square
is the `∞-norm ball of radius ∆

p
k centered at the current iterate xk. The spacing between mesh points is ∆m

k .

In the presence of categorical variables, whenever the poll step does not find a dominating iterate, the extended poll
step is performed. The latter consists in exploring new configurations for the categorical variables than the current xc

k,
based on a user-defined neighborhood structure (as there exists no natural order between the possible configurations).
The neighborhood structure for categorical variables is modeled by way of a set-valued function N : Ω→ 2Ω, where
2Ω represents the set of all possible finite subsets of Ω. Without loss of generality, we assume that N (x) is finite for
all x ∈Ω. Among all neighbors y = (ȳ,yc) ∈N (xk) with xc

k 6= yc, NOMAD selects the promising neighbors, i.e., those
satisfying some technical conditions based on its barrier function value (f ,h) (Abramson et al., 2009a). From each of
the selected points, a finite sequence of poll steps is performed. By default, each of these sequences starts with the
initial mesh size ∆m

0 , working on the ordered variables while keeping yc constant,1 and stops when its own current mesh
size reaches ∆m

k .

Note that when ∆m
k becomes small, this could imply a large number of inner iterations for each of the selected points.

Furthermore the descent is performed on surrogates when available. To avoid extra computation and evaluations of
surrogates, we add a new stopping criterion: a maximal number of surrogate evaluations per extended-poll descent.

Search step The optional search step takes place before the poll step and allows to search for a dominating point
lying on the current mesh using any strategy. Besides several independent strategies proposed by NOMAD, the users
may code any strategy they wish, as long as it generates a finite number of points lying on the mesh. We explain
our own strategies for that user search involving surrogates in Section 4. NOMAD’s default search step is made of a
speculative search, possibly followed by a model search. The former occurs when the previous iteration terminates
with a successful (dominating or improving) poll point. The speculative search then further explores the most recently
used successful direction. If the speculative search produces a new dominating point, a new iteration starts without
performing a poll step. Otherwise a model search is performed in which a quadratic model of the exact function is built
and minimized by NOMAD itself. Again if the model search produces a new dominating point, a new iteration starts.
Otherwise, attention turns to the poll step.

Handling discrete and categorical variables At the beginning of this section, we pointed out that NOMAD is able
to deal with continuous, integer, binary and categorical variables. Yet in the description of our problem (1), we also
include discrete variables. We can adapt the representation of discrete variables in two ways: whether considering
them as integer or as categorical variables. We choose the first option, that we implement using a mapping to match
each discrete variable to a new integer one.

This choice is motivated by the way NOMAD deals with categorical variables. Indeed, during the poll step described
above, only the non categorical variables are considered. The categorical variables are treated in the extended poll,
based on information provided by the user for the categorical neighborhood. Choosing to consider the discrete variables
as integer variables, we include their handling in the poll step instead of the extended poll step.

1The variable y should be indexed by k and with respect to the set of neighbors, but this is omitted here for clarity of notation.

Les Cahiers du GERAD G–2017–70 5

Convergence theory The global convergence of a method refers to convergence to a local solution from any starting
point. The global convergence properties of NOMAD rely on the poll step. Audet and Dennis Jr (2006) study the
continuous case, while Abramson et al. (2009a, Theorem 10) generalize the results to mixed-variable problems, also
considering the use of extended poll steps (Abramson et al., 2009a, Theorem 11). Those results rely on nonsmooth
analysis concepts, including hypertangent vectors, several flavors of tangent cones, and generalized directional deriva-
tives. The strongest results are obtained when Ω is a regular set, category that includes convex sets (Clarke, 1990,
Proposition 2.4.4) and sets described by smooth functions. Clarke (1990, Theorem 2.4.7) discussed more general
conditions for a regular feasible set for inequality constraints and Clarke et al. (1998, Chapter 2, Proposition 7.4) for
equality constraints, for instance.

3.2 Minamo

The multi-disciplinary optimization software MINAMO performs online Surrogate-Based Optimization (SBO) and de-
sign space exploration. Though it was initially designed for continuous problems, MINAMO has been generalized to
discrete and categorical variables (Baert et al., 2015). At each iteration of this process, MINAMO constructs surrogate
models of the objective and constraint functions. An evolutionary algorithm (EA) is employed to identify an approxi-
mate global solution of the problem defined by those surrogates. MINAMO is appropriate for solving (1) directly. The
main disadvantage of this approach is the lack of convergence properties of the evolutionary algorithm. In the remain-
der of this section, we detail the online SBO, the surrogates, the EA and other features of MINAMO. In Section 4, we
exploit the MINAMO surrogates and SBO within NOMAD in order to accelerate the convergence and to retain global
convergence properties.

Online SBO Surrogate-Based Optimization starts by generating a Design of Experiments (DoE). The DoE is a set of
points covering the search space, where the objective and constraints are evaluated, and that forms an initial database.
A first set of surrogates, fs for f and cs for c, is built from the information in the database. The goal is to define
surrogates that are cheap to evaluate yet capture features of the true objective and constraints.

As the iterations progress, MINAMO performs evaluations of the objective and constraints at new points, called
candidates, that are entered into the database along with their corresponding function values. This in turn allows
MINAMO to adaptively construct improved surrogate models.

MINAMO uses an EA to find an improved candidate x∗ as an approximate minimizer of a merit function (Booker
et al., 1998) associated to

min
x

fs(x) s.t. cs(x)≤ 0, l ≤ x̄≤ u, (3)

that combines fs, cs, and additional terms meant to encourage exploration of the feasible space. The actual f and c are
evaluated at x† and optionally at other points computed during the optimization process. The new set of samples is then
appended to the database. Updating the database during the process enables dynamic surrogates to represent f and c
more accurately in the interesting zone as the algorithm proceeds. For this reason, SBO is said to be online. Once the
database is updated, the next iteration is entered and the scheme is repeated until a stopping criterion is met (typically
a maximal number of objective and constraint evaluations). Figure 3 represents a flowchart of online SBO. Note that
the first pass in “update the database” means filling an empty database with information coming from the initial DoE.

Generate
a DoE

Evaluate
using f and c

Update the
database

Stop?

Build fs
and cs

Find x∗

with the EA

End

no

yes

Figure 3: Flowchart of online SBO.

6 G–2017–70 Les Cahiers du GERAD

Surrogates MINAMO implements several types of surrogates, including RBF Networks and Kriging (Forrester et al.,
2008; Conn et al., 2009). RBF are well suited to model highly multimodal functions, even when the size of the problem
increases, and require fewer interpolation points than polynomial models.

An RBF interpolation model can be expressed as a linear combination of radial basis functions

RBF(x) =
s

∑
i=1

ωigi(‖x− ti‖,σi), (4)

where ti, i = 1, . . . ,s are the interpolation points, ωi, i = 1, . . . ,s, are weights to be determined and gi, i = 1, . . . ,s, are
radial basis functions. The latter depend on the interpolation points ti and on parameters σi > 0. If there are only
continuous and integer variables, a specific procedure, called Move-Limit, selects the interpolation points within a
neighborhood of the current best iterate. The size of the neighborhood evolves with the iterations in a similar way as in
the trust-region method (Conn et al., 2000). In the presence of discrete and/or categorical variables, all the points from
the database are used as interpolation points.

The radial basis functions considered by MINAMO are of Gaussian type, g(θ ,σ) = exp(− 1
2 θ 2/σ2), or of multi-

quadric type, g(θ ,σ) = (1+θ 2/σ2)
1
2 . MINAMO also proposes an automated TunedRBF that combines Gaussian and

multiquadric basis functions. In such a TunedRBF model, gi and σi are selected by MINAMO in order to determine ac-
curate surrogates based on a correlation coefficient computed by a Leave-One-Out (LOO) procedure. More precisely,
MINAMO implements an Efficient LOO suggested by Rippa (1999). Contrary to Kriging models, RBF surrogates’ pa-
rameters are less expensive to tune. The weights ωi are determined by solving a linear system Gω = Y that expresses
the interpolation conditions.

The choice of the norm in (4) completes the definition of the RBF model. In the absence of categorical variables,
the Euclidean norm is used. Otherwise, a specific heterogeneous distance is defined based on the work of McCane and
Albert (2008) and Wilson and Martinez (1997).

Evolutionary algorithm SBO uses an EA (Goldberg, 1989; Affenzeller et al., 2009) to solve (3). This choice is
motivated by several arguments: EAs are zero-th order methods, often able to identify global solution(s), robust and
applicable to noisy, nonlinear, discontinuous, black-box functions. In addition, EAs can handle continuous, integer,
discrete and categorical variables.

The EA implemented in MINAMO follows the general steps of a genetic algorithm: variation and selection of
individuals. Variation is done through the application of cross-over and mutation operators while selection consists in
the tournament method. In addition, elitism is also applied to a few individuals. Internally, individuals are represented
by real numbers. The EA in MINAMO handles constrained problems through the constraint tournament selection (Deb,
2000), which is based on the comparison between two individuals. If both are feasible, the individual with a better
objective function value is selected. If only one of the two is feasible, the feasible individual is retained. If neither is
feasible, the one with the smallest constraint violation is selected.

4 Combining Nomad and Minamo

Surrogate models can be used at several stages during a NOMAD iteration. During the poll step, neighbors on the
frame can be ordered according to surrogate objective and constraint values in hope of reducing the number of actual
objective and constraint evaluations before a success. In addition, surrogates can help find an improved iterate as an
approximate solution of a surrogate problem in the search step. By using an EA to minimize a surrogate, we encourage
global exploration of the search space. In practice, we must often operate within a given budget, e.g., a fixed number
of function evaluations or simulations. Employing surrogates at both the local and global levels possibly increases the
chances of finding a better solution within the budget allowed.

In what follows, we first describe our testing environment. We next present and compare the numerical results.

Les Cahiers du GERAD G–2017–70 7

4.1 Testing environment

Our experiments revolve around two sets of test problems. Set I contains problems without any categorical variable,
while Set II contains problems with at least one categorical variable. The distinction is motivated by the fact that the
heterogeneous distance used in the presence of categorical variables (mentioned on page 9) makes the RBF surrogates
nondifferentiable. The use of methods that rely on derivatives of the surrogates will thus be limited to some problems
of Set I, i.e. problems including only continuous and integer variables (this is imposed by the use of a mixed-integer
solver). We employ such a method on mixed-integer problems, as detailed below.

Test problems Set I consists in the 17 problems listed in Table 1 and Set II consists in the 20 problems with categorical
variables listed in Table 2. In the tables, problems of type A are classic continuous optimization test problems to which
we impose that some variables be integer, discrete, or categorical (if in Set II). Problems of type B represent physical
problems with mixed variables.

For each problem, Tables 1 and 2 report the number of continuous, integer, discrete and categorical variables as nr,
ni, nd and nc, respectively. The column n gives the total number of variables and the column v indicates the number of
constraints. The source of each problem is indicated in the last column.

For problems involving categorical variables, the neighborhood structure of a point x is given by N (x) as follows.
A neighbor of x = (x̄,xc) is a point of the form (x̄,yc) where yc agrees with xc on all components but one, of index i say,
which is chosen as an element of Ci \{xc

i }. Note that, by convention, one assumes that fixed variables are eliminated
from the problem. In order to allow a wide exploration of the search space, all possible neighbors of x appear in N (x).

Table 1: Test problems without categorical variables (Set I).

Type Name nr ni nd nc n v Reference

A BarnesCase1 1 0 1 0 2 3 (Robinson et al., 2006)
A BarnesCase2 1 1 0 0 2 3 (Robinson et al., 2006)
B CarSideImpact 9 0 2 0 11 10 (Gandomi et al., 2011)
A G07Case3 2 2 6 0 10 8 (Regis, 2014)
A G09 4 3 0 0 7 4 (Regis, 2014)
A MysteryCase1 1 0 1 0 2 0 (Sasena, 2002)
A MysteryCase2 1 1 0 0 2 0 (Sasena, 2002)
A MysteryCase6 1 0 1 0 2 0 (Sasena, 2002)
B PressureVessel 2 2 0 0 4 3 (Cagnina et al., 2008)
A RastriginCase1 1 0 1 0 2 0 (Yang, 2010)
A RastriginCase2 1 1 0 0 2 0 (Yang, 2010)
B ReinforcedConcreteBeam 1 1 1 0 3 2 (Gandomi et al., 2011)
A RosenbrockCase1 1 0 1 0 2 0 (Yang, 2010)
A RosenbrockCase2 1 1 0 0 2 0 (Yang, 2010)
B SpeedReducer 6 1 0 0 7 11 (Cagnina et al., 2008)
B Spring 2 1 0 0 3 4 (Huang and Arora, 1997)
B SteppedCantileverBeam 4 2 4 0 10 11 (Gandomi et al., 2011)

Running numerical experiments The budget of black-box function and constraint evaluations is divided into two
parts: one for building the first DoE and the other to perform the optimization. The initial DoE is built using 3n
evaluations, while the number of evaluations available for the optimization phase is fixed at 100 for each problem.

In order to have meaningful results and to be able to make comparisons, we perform multiple runs for each method
on each problem. Indeed, the optimization methods under consideration are sensitive to starting points (i.e., here, the
DoEs) and the EA includes randomness. We thus generate 50 different DoEs for each problem, on which we run each
method once.

The results are presented using the performance and data profiles (Moré and Wild, 2009) based on the number of
function evaluations needed to find x satisfying

f (x0)− f (x)≥ (1− τ)(f (x0)− fbest), (5)

where x0 denotes the initial point, fbest is the best objective value across all methods for a given problem, and τ ∈ (0, 1)
is a fixed tolerance. Smaller values of τ require a final objective value closer to fbest . As our test sets include constrained

8 G–2017–70 Les Cahiers du GERAD

Table 2: Test problems with categorical variables (Set II).

Type Name nr ni nd nc n v Reference

A BarnesCase3 1 0 0 1 2 3 (Robinson et al., 2006)
B CarSideImpactDC 9 0 0 2 11 10 (Gandomi et al., 2011)
A G07Case4 2 2 0 6 10 8 (Regis, 2014)
A G09IC 4 0 0 3 7 4 (Regis, 2014)
A MysteryCase3 1 0 0 1 2 0 (Sasena, 2002)
B PressureVesselIC 2 0 0 2 4 3 (Cagnina et al., 2008)
A RastriginCase3 1 0 0 1 2 0 (Yang, 2010)
A RastriginCase12 2 2 3 3 10 0 (Yang, 2010)
A RastriginCase22 8 2 4 6 20 0 (Yang, 2010)
B ReinforcedConcreteBeamDC 1 1 0 1 3 2 (Gandomi et al., 2011)
B ReinforcedConcreteBeamIC 1 0 1 1 3 2 (Gandomi et al., 2011)
B ReinforcedConcreteBeamIDC 1 0 0 2 3 2 (Gandomi et al., 2011)
A RosenbrockCase3 1 0 0 1 2 0 (Yang, 2010)
A RosenbrockCase12 2 2 3 3 10 0 (Yang, 2010)
A RosenbrockCase22 8 2 4 6 20 0 (Yang, 2010)
B SpeedReducerIC 6 0 0 1 7 11 (Cagnina et al., 2008)
B SpringIC 2 0 0 1 3 4 (Huang and Arora, 1997)
B SteppedCantileverBeamDC 4 2 0 4 10 11 (Gandomi et al., 2011)
B SteppedCantileverBeamIC 4 0 4 2 10 11 (Gandomi et al., 2011)
B SteppedCantileverBeamIDC 4 0 0 6 10 11 (Gandomi et al., 2011)

problems and multiple runs to deal with randomness, we need to adapt the measures used to produce the profiles. On
constrained problems, we replace f (x0) by f f eas in (5), where f f eas is defined as the objective function value at the first
feasible iterate found during the optimization process. Note that such a feasible iterate exists for all our test problems.
Otherwise no feasible solution is found and the run is viewed as a failure. One way of handling multiple runs for each
problem is to produce profiles based on the mean or median of the results. However such data aggregation results in a
loss of information and we prefer to consider each run as a different instance of the problem. For example, if 50 runs
are performed on each of the 20 test problems, a profile is produced as if there were 1000 instances. Moreover each
instance of a given problem has its own f f eas, as the initial DoE may differ, but only one fbest is defined per problem,
based on results across all methods and all instances of the problem.

4.2 Numerical results without using surrogates derivatives

In what follows, we compare four methods on the two sets of test problems. None of these methods rely on the
possible availability of surrogates derivatives. The three first methods are variants of NOMAD, whose characteristics
are described below. The fourth one is the default version of MINAMO SBO, as described in Section 3.2. We add this
method, labeled MINAMO in the following, for comparison purposes.

Nomad as reference method In the default version of NOMAD, the search step differs slightly whether we solve
problems of Set I or II. For problems of Set I, two types of search are activated: the speculative search and the model
search. For problems involving categorical variables (Set II), the model search is disabled. The poll step is based on
the generation of 2n directions using the ORTHOMADS method, along with the opportunistic strategy. As for the
extended poll step, it uses the neighborhood structure previously described. Finally, all algorithmic parameters are set
to their default value. We only impose a maximal number of 100 black-box evaluations, which typically serves as a
stopping criterion. In what follows, we use version 3.8.0 of NOMAD and we refer to this method as NOMAD.

Nomad+ as using surrogates in the poll step At the beginning of the poll step, NOMAD+ calls MINAMO to build
TunedRBF surrogates fs and cs based on all information stored in the database. Those surrogates are combined into a
surrogate barrier function (fs,hs). The surrogate constraint violation hs is defined by replacing c j with cs j in (2). We
evaluate (fs,hs) at all trial poll points and order them in increasing values of this surrogate barrier function. The actual
barrier function (f ,h) is then evaluated at each point in order. The opportunistic strategy stops the process as soon as
an improvement is obtained in the actual barrier function. The search step strategy is unchanged.

Les Cahiers du GERAD G–2017–70 9

Nomad+/Minamo as using surrogates both in the poll and search steps In order to measure the impact
of the user search, the default search strategies i.e., speculative and model search are deactivated. The search step in
NOMAD+/MINAMO is exclusively made of a user search in which (3) is based on TunedRBF surrogates and solved
using the EA implemented in MINAMO. Indeed, in the presence of categorical variables, TunedRBF surrogates are
not differentiable. Otherwise, a poll step takes place under the form described for NOMAD+ above, using updated
surrogates taking account of the point generated by the search step. In this case, up to 2n black-box evaluations (at
worst) can be spent in the poll step.

In addition, we propose variants of NOMAD+/MINAMO denoted NOMAD+/MINAMO Sk. In NOMAD+/MINAMO

the user search corresponds to a single iteration of MINAMO SBO. In the Sk variants, we allow k iterations (meaning
k black-box evaluations) of MINAMO SBO. These variants give more freedom to MINAMO with respect to NOMAD.
Note that NOMAD+/MINAMO S1 is identical to NOMAD+/MINAMO.

We summarize the features of each method in Table 3, where “I” and “I / II” indicate a feature activated for
problems of Set I only, and of both sets, respectively. Note that experiments showed that adding speculative search in
NOMAD+/MINAMO does not have a significant impact on accuracy or robustness.

Table 3: Summary of the features of the four methods for problems of Sets I and II.

Poll step Search step
Method Default Surrogate Speculative Quadratic User

NOMAD I / II I / II I
NOMAD+ I / II I / II I
NOMAD+/MINAMO Sk I / II I / II

MINAMO

Performance profiles Figure 4 shows the performance profiles comparing NOMAD, NOMAD+, NOMAD+/MINAMO,
MINAMO and NOMAD+/MINAMO S10 for τ = 10−3, τ = 10−5 and τ = 10−7.

The use of a surrogate in the poll step slightly improves the efficiency and robustness, except for low values of τ

in Set I. Building and evaluating fs and cs does not have any significant impact on the duration of the optimization.
Building surrogates only needs to be done when the database is updated. The training time depends on the size of the
problem and on the number of interpolating points, but always remains of the order of a second for problems up to 32
variables in our experiments using a 2.5GHz computer.

In all cases, NOMAD+/MINAMO (i.e. using surrogates in the search step) is substantially more efficient and more
robust than both NOMAD and NOMAD+ and MINAMO in the absence of categorical variables. Surrogates have more
impact when used in the search step than in the poll step. However it is interesting to keep them in both steps as their
construction and evaluation time is small.

The S10 version of NOMAD+/MINAMO always helps improve efficiency. While it is also more robust on problems
of Set II, the S1 version surpasses the S10 variant in terms of robustness on problems from Set I.

With τ = 10−3, NOMAD+/MINAMO is less efficient but substantially more robust than MINAMO. As τ decreases,
the efficiency gap disappears and NOMAD+/MINAMO finds the lowest objective value on almost 30% of the problems
of Set I, against 20% for MINAMO when τ = 10−7. Even when τ = 10−3, NOMAD+/MINAMO S10 remains the most
efficient approach. In addition to being supported by convergence guarantees, NOMAD+/MINAMO Sk identifies lower
objective values than MINAMO within the same evaluation budget. Choosing a smaller or larger value for the number
k of black-box evaluations per user search is a way of selecting a more robust or a more efficient method respectively
in the case of Set I (problems without categorical variables). We recommend a larger value of k for problems with
categorical variables (set II).

Further analysis of the results shows that complementing NOMAD with surrogates increases the probability of
finding a feasible solution within the allowed number of evaluations. The decrease of the objective value with respect
to the number of evaluations is often faster for MINAMO than for NOMAD+/MINAMO. However the latter tends to find
lower objective values.

10 G–2017–70 Les Cahiers du GERAD

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOMAD

NOMAD+

NOMAD+/MINAMO

MINAMO

NOMAD+/MINAMO S10

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Performance profiles for test sets I (left) and II (right). From top to bottom, the rows correspond to τ = 10−3, τ = 10−5

and τ = 10−7.

When looking at profiles considering constrained and unconstrained problems separately, we observe a difference
in the methods behaviour. When working on Set I (see Figure 5), all the curves involving NOMAD are higher for uncon-
strained problems. This means more efficient and more robust methods. For all accuracy levels τ ,
NOMAD+/MINAMO is more efficient and robust on unconstrained problems, while on constrained problems MI-
NAMO and NOMAD+/MINAMO S10 remains the most efficient. Similar observations apply to Set II, see Figure 6, but
NOMAD+/MINAMO S10 surpasses NOMAD+/MINAMO in terms of efficiency for unconstrained problems in this case.

Les Cahiers du GERAD G–2017–70 11

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOMAD3.8.0
NOMAD+
NOMAD+/MINAMO
MINAMO
NOMAD+/MINAMO S10

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Performance profiles for test sets I, unconstrained (left) and constrained (right) problems. From top to bottom, the
rows correspond to τ = 10−3, τ = 10−5 and τ = 10−7.

12 G–2017–70 Les Cahiers du GERAD

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOMAD3.8.0

NOMAD+

NOMAD+/MINAMO

MINAMO

NOMAD+/MINAMO S10

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Performance profiles for test sets II, unconstrained (left) and constrained (right) problems. From top to bottom, the
rows correspond to τ = 10−3, τ = 10−5 and τ = 10−7.

Les Cahiers du GERAD G–2017–70 13

4.3 Numerical results exploiting surrogates derivatives

On problems without categorical variables (Set I), the TunedRBF surrogates computed by MINAMO are differentiable
and we have access to their derivatives. In this section, we consider, as a sixth method, another variant of NOMAD in
which an approximate solution of (3) is identified using the derivative-based mixed-integer solver BONMIN (Bonami
et al., 2008).2 We refer to this approach as NOMAD+/BONMIN and compare its performance with the five methods
outlined in Section 4.2.

As BONMIN only handles continuous and integer variables, we need the application of NOMAD+/BONMIN to the
eight problems of Table 1 for which nd = 0. In this case, (3) becomes a mixed-integer nonlinear program (MINLP),
which we solve with BONMIN with default parameters for nonconvex MINLP problems (relaxations are solved from
three different starting points and softer branching rules are applied) (Bonami and Lee, 2013). Note that though discrete
variables in the collections of problems we consider are treated as integers via a mapping (see Section 3.1) the approach
used in BONMIN would be meaningless as it solves relaxations (with respect to integer constraints).

Figure 7 shows performance profiles on the eight problems of Table 1 for which nd = 0 with NOMAD+/BONMIN

added to the comparison, and with τ = 10−3 and τ = 10−5. When τ = 10−3 the efficiency of NOMAD+/MINAMO is
similar to that of NOMAD+/BONMIN but NOMAD+/MINAMO is slightly more robust. When τ = 10−5

NOMAD+/BONMIN is both more efficient and more robust than NOMAD+/MINAMO. At that tolerance level,
NOMAD+/BONMIN has approximately the same efficiency as MINAMO, but is substantially more robust. Overall,
NOMAD+/BONMIN tends to behave similarly to NOMAD+/MINAMO but is able to identify solutions with a lower
objective value. When τ = 10−7 the profile is similar to the profile for τ = 10−5.

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOMAD

NOMAD+

NOMAD+/MINAMO

MINAMO

NOMAD+/MINAMO S10

NOMAD+/BONMIN

Figure 7: Performance profiles on problems with continuous and integer variables for τ = 10−3 (left) and τ = 10−5 (right).

5 Numerical experiments on the Heatshield problem

The Heatshield problem models a thermal insulation system. A number of heat intercepts are placed between a cold
and a hot surface to be insulated from each other so that their temperature can be kept constant. The problem involves
continuous, integer and categorical variables. The problem has been studied since the late 1970s (Hilal and Boom,
1977) but Kokkolaras et al. (2001) include categorical variables in the specification of the problem for the first time.
Abramson (2004) solves the problem with categorical variables and additional nonlinear constraints. We first present
the problem and related notation. Next we explain how we modify it with respect to previous studies and present
numerical results.

2BONMIN is an open-source C++ solver available at https://www.coin-or.org/Bonmin/

https://www.coin-or.org/Bonmin/

14 G–2017–70 Les Cahiers du GERAD

5.1 Problem description

Four groups of variables describe the system. The number of intercepts ` is a positive integer. The cold and hot surfaces
correspond to intercepts 0 and `+1, respectively. The temperature at intercept i is Ti, i = 0, . . . , `+1, with T0 = Tcold
and T`+1 = Thot ≥ Tcold. The temperatures should be nondecreasing when going from the cold to the hot surface, i.e.

Ti ≤ Ti+1, 0≤ i≤ `. (6)

The insulators used between intercepts form a vector of categorical variables I = [I1, I2, . . . , I`+1] whose i-th component
corresponds to the insulator type between intercepts i− 1 and i, 1 ≤ i ≤ `+ 1. Insulator i has a thickness denoted by
Wi ∈R+, 1≤ i≤ `+1. Thicknesses also have to verify

`

∑
i=1

Wi ≤ L, (7)

where L > 0 is the fixed distance between the cold and hot surfaces. The sizes of the vectors T , I and W depend on the
variable `, i.e. the problem has one integer variable, `+1 categorical variables and 2` continuous variables.

The objective function represents the total refrigeration power required by the system. It depends on the heat flow
from an intercept to the next given by Fourier’s law. Kokkolaras et al. (2001) state the objective as

`

∑
i=1

TCEi

(
Thot

Ti
−1
)[

Ai+1

Wi+1

∫ Ti+1

Ti

κ(T, Ii+1)dT − Ai

Wi

∫ Ti

Ti−1

κ(T, Ii)dT
]
, (8)

where TCEi is the thermodynamic cycle efficiency coefficient at intercept i, Ai is the cross-sectional area of insulator
i and κ is the thermal conductivity. Kokkolaras et al. (2001) minimize (8) subject to the bound constraints Wi ≥ 0 for
1≤ i≤ ` and constraints (6) and (7).

Abramson (2004) starts from the same problem and adds three new nonlinear constraints to it. The problem then
corresponds to a load-bearing system. The nonlinear constraints related to the load Γ and stress of the system are
the inequalities

Γ

Ai
≤ ōi = min{oi(T, Ii) : Ti−1 ≤ Ti ≤ Ti+1}, 1≤ i≤ `+1, (9)

where oi(T, Ii) is the tensile yield strength at insulator i. Following Abramson (2004), (9) hold as equalities at optimality
and can be used to substitute Ai =

Γ

ōi
in the problem. A second nonlinear constraint added by Abramson (2004) imposes

that the total mass of the system cannot exceed the maximal allowable mass µmax. Its expression is

`

∑
i=1

ρi(Ii)
Wi

ōi
≤ µmax

Γ
, (10)

where ρi(Ii) is the density of the material used as insulator i. Finally the constraint associated with the system’s thermal
expansion or contraction can be expressed as

`

∑
i=1

[∫ Ti
Ti−1

φ(T, Ii)κ(T, Ii)dT∫ Ti
Ti−1

κ(T, Ii)dT

](
Wi

L

)
≤ δ

100
, (11)

where φ(T, Ii) is the unit thermal contraction from intercept i to any point between intercepts i and i− 1 and δ is a
limit on the total contraction of the system expressed as a percentage. This optimization problem, denoted Heatshield,
is made of the objective function (8) where Ai is replaced by F/ōi, constraints (6)–(7), (10)–(11) and the bound
constraints.

5.2 Problem formulation

In this section, we test the methods of Table 3 on the Heatshield problem. We use the same insulator types and problem
parameters as Kokkolaras et al. (2001) and Abramson (2004).

Les Cahiers du GERAD G–2017–70 15

Because our surrogates and EA only apply to optimization problems of constant size, we fix the number of in-
tercepts to ` = 10, based on the choice discussed by Kokkolaras et al. (2001), and solve the problem with respect to
variables T , I and W . With ` fixed, we must adjust our definition of neighborhood structure. Kokkolaras et al. (2001)
and Abramson (2004) consider three classes of neighbors: adding an intercept, removing an intercept and modifying
an insulator type. We only retain the third strategy, where the neighbors of a choice of material are all other possible
material choices.

Preliminary numerical experiments on Heatshield showed that the linear constraints (6) and (7) are well handled
by NOMAD but cannot be satisfied when optimizing with the EA. The initial DoE and all points generated by the EA
were infeasible with respect to (6) and (7). In such a case, the simulation code returns a constant value that denotes
infeasibility, regardless of the constraint violation, and this results in meaningless surrogates. The failure is due to the
very low probability of finding a point satisfying (6) and (7) in the space defined by the bound constraints during the
random-based exploration of EA and DoE methods.

To overcome this difficulty we slightly modify the model in order to only generate points satisfying (6) and (7).
These 2 constraints are removed from the problem formulation, resulting in an optimization problems with only 2
nonlinear constraints. In this new model the value W̃i is bounded between 0 and 100 and represents a percentage. The
actual thickness Wi of insulator i, 1≤ i≤ `, can be determined by multiplying W̃i by the remaining free space between
intercept i−1 and the hot surface, i.e., L−∑

i−1
k=1 Wk. We apply the same reasoning to temperature variables: T̃i denotes

a percentage, 1≤ i≤ `. The current gap between Ti−1 and Thot, multiplied by T̃i is added to Ti−1 to obtain Ti, implying
that (6) is always satisfied.

The advantage of the updated formulation is highlighted by running NOMAD (the only method that does not involve
surrogates and/or EA) to solve both formulations. We compare the solution obtained after 200 function evaluations
for both modeling approaches. The number of variables of Heatshield (n = 32) is slightly higher than that of the
problems used in the previous section (n ≤ 20). To keep a small budget of function evaluations while still adapting it
to Heatshield size, we fix the maximal number of function evaluations to 200.

Figure 8 reports comparative results of NOMAD for 50 instances of Heatshield. We compute y, the logarithm of
the ratio of the final objective value on the original model to that on the updated model. Positive vertical bars indicate
a lower final objective value in the updated model, meaning that the updated formulation provides better results. A
lower objective value is found on 50% of the instances using the updated model. Therefore we favor working with the
updated formulation in the following.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

instances

y

Figure 8: Ratios of final objective values using Nomad 3.8.0 on Heatshield.

We also have observed a large difference between the order of the objective function and those of the constraints.
To overcome this issue, we choose to optimize the logarithm of the objective function (8).

When we generate random points within the bounds and satisfying (6) and (7), most of them are highly infeasible
with respect to the thermal expansion constraint (11). On the contrary, the points generated during the optimization
process have a value close to zero for (11), i.e., feasible or close to feasibility. Such points with a very high value for
constraint (11) are unwanted and we choose to flag them as failures for surrogate building.

16 G–2017–70 Les Cahiers du GERAD

5.3 Numerical results

We now compare NOMAD, NOMAD+, NOMAD+/MINAMO, MINAMO and the S10, S20 and S50 versions of NO-
MAD+/MINAMO on the updated Heatshield model. We build 50 DoEs comprised of 320 points each, i.e., 10 times the
number of variables. We then perform the optimization with a budget of 600 function evaluations. For each method
we plot the current best feasible objective value as a function of the number of objective evaluations. The left-hand
subplot corresponds to a mean on the 50 runs, the middle subplot to the best solution and the right-hand subplot to the
worst solution.

0 200 400 600

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

number of function evaluations

f(
x
)

Best solution

0 200 400 600
5.5

6

6.5

7

7.5

8

number of function evaluations

f(
x
)

Worst solution

0 200 400 600
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

number of function evaluations

f(
x
)

Mean solution

NOMAD

NOMAD+

NOMAD+/MINAMO

MINAMO

NOMAD+/MINAMO S10

NOMAD+/MINAMO S20

NOMAD+/MINAMO S50

Figure 9: Mean, best and worst function value with respect to the number of function evaluations on Heatshield.

Heatshield is a constrained problem. As stated in Section 4.2, MINAMO tends to find a better solution for such
problems. On average, we can observe on Figure 9 that MINAMO’s curve is the lowest one. However, MINAMO is the
slowest approach on heatshield, taking 75 hours of CPU time on average while 3 hours are needed by NOMAD+ and 6
hours for NOMAD+/MINAMO.

Figure 9 also shows the different levels of improvement brought by the surrogates in NOMAD. Using surro-
gates in the poll step (NOMAD+) implies a faster decrease of the objective function with respect to NOMAD. NO-
MAD+/MINAMO is only slightly better than NOMAD. Detailed results show that MINAMO needs a few iterations
to find an improved point. A single MINAMO iteration is permitted in the NOMAD+/MINAMO search step, and it
is unsuccessful most of the time. This limits the efficiency of the S1 approach. On the contrary, the S10, S20 and
S50 approaches show increasing improvement as more and more iterations are allowed during the user search. In the
early iterations, S10 and S20 behave in a similair way to MINAMO. NOMAD+/MINAMO S50 even decreases faster
than MINAMO.

This corroborates the importance of supplementing NOMAD with surrogates, both in the poll and search steps. On
the other hand MINAMO still provides solutions with lower objective. This leaves room for exploring new surrogate
strategies, taking into account efficiency and speed of the process.

We now compare our best solutions to those of Abramson (2004), which he obtained by a mixed-variable gener-
alized pattern-search algorithm. In Table 4, we compare its solution to the best solution obtained with NOMAD 3.8.0,
for the same problem modelling and parameters. NOMAD 3.8.0 can even find a better solution. Note that only the
normalized power value is given in the litterature. For comparison purpose, we compute the unnormalized power for

Les Cahiers du GERAD G–2017–70 17

the litterature solution and the normalized value for our solution. This computation involves variables, meaning that a
lower power does not imply a lower normalized power.

Table 4: Best solutions from Abramson (2004) and from Nomad with our modelling, without any limit in term of function
evaluations. Materials are abbreviated by the following: A = aluminum, E = epoxy (normal).

NOMAD from Abramson (2004) NOMAD 3.8.0
Intercept I W T I W T

1 E 0.625 4.25 A 0.0263 4.2
2 E 8.125 7.7375 E 8.3221 7.6592
3 E 7.9688 12.369 E 8.9516 12.6251
4 E 7.8125 18.094 E 3.2780 14.9481
5 E 12.344 29.912 E 17.0828 29.9322
6 E 26.094 71.094 E 23.9056 71
7 E 8.125 105.94 A 0.1059 71
8 E 5.3125 135.47 E 10.5150 115.5042
9 E 5 165.94 E 7.1791 156.3061

10 E 5.625 202.03 E 8.4931 207.4460
11 E E

Power 106.35509 101.80249
Norm. Power 23.768 9.2759

As we work with a fixed number of intercepts (i.e., ` is fixed), we have to start from a different point than Kokkolaras
et al. (2001) and Abramson (2004). Fixing ` also prohibits escaping local minima by exploring solutions with fewer or
more intercepts. This, along with the poll directions defined in a different way and a very limited number of function
evaluations (600), leads to different final solutions in terms of materials, thicknesses and temperatures. The way we
reformulate the problem has an impact on the final solution as well. We observe in Table 5 larger thicknesses and
temperatures in the first components of the solution. Remember that the power values given in Table 5 are expressed
in logarithm.

Table 5: Best solutions from Minamo, Nomad and Nomad+/Minamo S50, allowing 600 function evaluations. Materials are
abbreviated by the following: N = nylon, E = epoxy (normal), Ep = epoxy (plane), T = teflon, S = steel and C = carbon steel.

MINAMO NOMAD NOMAD+/MINAMO S50
Intercept I W T I W T I W T

1 E 46.11 6.31 E 32.52 6.15 E 24.03 5.31
2 E 31.30 78.82 E 42.79 92.05 E 39.50 67.02
3 E 11.99 169.96 E 17.01 212.72 E 15.55 209.76
4 E 7.47 299.78 E 4.79 295.29 E 7.94 227.42
5 N 1.40 299.92 E 1.72 299.69 E 8.60 270.89
6 N 0.45 299.98 E 0.24 299.76 E 1.91 294.60
7 S 0.74 299.99 E 0.40 299.92 Ep 2.09 298.72
8 Ep 0.48 299.99 E 0.43 299.97 E 0.18 299.10
9 C 0.02 299.99 E 0.05 299.99 Ep 0.15 299.64

10 Ep 0.02 299.99 N 0.00 299.99 N 0.04 299.79
11 S T N

Power 5.088088 5.049059 5.071348
Norm. Power 7.55792 6.61567 7.42807

Using our simulation code, we find the same normalized objective values for the full model solution. In terms
of normalized power, best solutions are produced by NOMAD, NOMAD+/MINAMO S50 and MINAMO, all of them
are better than Abramson (2004) solution. However the unnormalized power defined by (8) at the solution is higher
because of the variables involved in the normalization computation.

6 Conclusion

In the context of mixed-variable optimization problems with expensive black-box function evaluations and no access
to derivatives, few solvers are available. We propose new approaches to meet the demand of industry in solving such
challenging problems.

18 G–2017–70 Les Cahiers du GERAD

We develop a method based on NOMAD supplemented by RBF surrogate models minimized by way of the EA
implemented as part of MINAMO. Our method is supported by convergence guarantees and improves the efficiency
and robustness of NOMAD and MINAMO alone. This is a framework combining NOMAD and MINAMO, and we could
consider using other surrogates and EA than MINAMO.

Using surrogates in the poll and/or search steps makes our approach flexible. For mixed-integer problems we
also propose an extra strategy using BONMIN to minimize the surrogate in the search step. Numerical experiments
with a very limited number of expensive black-box evaluations show that all variants are efficient and improve the
solution obtained with NOMAD alone. We are also competitive with respect to MINAMO on analytical problems as
we provide comparable solutions in terms of accuracy while being more robust. Experiments on the mixed-variable
problem Heatshield show the importance of problem formulation and encourage us to study new surrogates strategies.
In particular, we could improve the approach to be able to solve problems of variable size effectively.

In order to further improve our approach, we plan to investigate the building and exploitation of surrogates, espe-
cially in the presence of categorical variables. Surrogates such as Gaussian Process Models (Qian et al., 2008) can be
designed efficiently to represent functions involving mixed variables.

A Test problems description

A.1 Barnes

Minimize

f (x) = 75.196+3.81x1−0.126x2
1 +2.5056∗10−3x3

1−1.034∗10−5x4
16.83x2−0.0302x1x2

+1.281∗10−3x2x2
1−3.525∗10−5x2x3

1 +2.266∗10−7x2x4
1−0.256x2

23.46∗10−3x3
2

−1.35∗10−5x4
2 +

28.106
x2 +1

+5.237∗10−6x2
1x2

2 +6.3∗10−8x3
1x2

2 +1.663∗10−6x1x3
2

+2.867e0.0005x1x2

Subject to

g1(x) = −
(x1x2

700
−1
)
≤ 0

g2(x) = −
(

x2

5
− x2

1
625

)
≤ 0

g3(x) = −
(x2

50
−1
)2
−
(x1

500
−0.11

)
≤ 0

Bound constraints and variables types for

Case1 x1 ∈ {3,9,26,49,60,78}, 0.0≤ x2 ≤ 60.0, x1 discrete, x2 ∈R
Case2 0≤ x1 ≤ 80, 0.0≤ x2 ≤ 60.0, x1 ∈N, x2 ∈R
Case3 x1 ∈ {0,10,20,30,40,50,60,70,80}, 0.0≤ x2 ≤ 60.0, x1 categorical, x2 ∈R

A.2 CarSideImpact

Minimize
f (x) = 1.98+4.90x1 +6.67x2 +6.98x3 +4.01x4 +1.78x5 +2.73x7

Subject to

g1(x) = 1.16−0.3717x2x4−0.00931x2x10−0.484x3x9 +0.01343x6x10−1≤ 0

g2(x) = 0.261−0.0159x1x2−0.188x1x8−0.019x2x7 +0.0144x3x5 +0.0008757x5x10

+0.08045x6x9 +0.00139x8x11 +0.00001575x10x11−0.32≤ 0

Les Cahiers du GERAD G–2017–70 19

g3(x) = 0.214+0.00817x5−0.131x1x8−0.0704x1x9 +0.03099x2x6−0.018x2x7 +0.0208x3x8

+0.121x3x9−0.00364x5x6 +0.0007715x5x10−0.0005354x6x10 +0.00121x8x11−0.32≤ 0

g4(x) = 0.74−0.061x2−0.163x3x8 +0.001232x3x10−0.166x7x9 +0.227x2
2−0.32≤ 0

g5(x) = 28.98+3.818x3−4.2x1x2 +0.0207x5x10 +6.63x6x9−7.7x7x8 +0.32x9x10−32≤ 0

g6(x) = 33.86+2.95x3 +0.1792x10−5.057x1x2−11.0x2x8−0.0215x5x10−9.98x7x8 +22.0x8x9−32≤ 0

g7(x) = 46.36−9.9x2−12.9x1x8 +0.1107x3x10−32≤ 0

g8(x) = 4.72−0.5x4−0.19x2x3−0.0122x4x10 +0.009325x6x10 +0.000191x2
11−4≤ 0

g9(x) = 10.58−0.674x1x2−1.95x2x8 +0.02054x3x10−0.0198x4x10 +0.028x6x10−9.9≤ 0

g10(x) = 16.45−0.489x3x7−0.843x5x6 +0.0432x9x10−0.0556x9x11−0.000786x2
11−15.7≤ 0

Bound constraints and variables types for

Default 0.5≤ x1,x3,x4 ≤ 1.5, 0.45≤ x2 ≤ 1.35, 0.875≤ x5 ≤ 2.625, 0.4≤ x6,x7 ≤ 1.2,
x8,x9 ∈ {0.192,0.345} (discrete), 0.5≤ x10,x11 ≤ 1.5

DC 0.5≤ x1,x3,x4 ≤ 1.5, 0.45≤ x2 ≤ 1.35, 0.875≤ x5 ≤ 2.625, 0.4≤ x6,x7 ≤ 1.2,
x8,x9 ∈ {0.192,0.345} (categorical), 0.5≤ x10,x11 ≤ 1.5

A.3 G07

Minimize

f (x) = x2
1 + x2

2 + x1x2−14x1−16x2 +(x3−10)2 +4(x4−5)2 +(x5−3)2 +2(x6−1)2

+5x2
7 +7(x8−11)2 +2(x9−10)2 +(x10−7)2 +45

Subject to

g1(x) = −105+4x1 +5x2−3x7 +9x8 ≤ 0

g2(x) = 10x1−8x2−17x7 +2x8 ≤ 0

g3(x) = −8x1 +2x2 +5x9−2x10−12≤ 0

g4(x) = 3(x1−2)2 +4(x2−3)2 +2x2
3−7x4−120≤ 0

g5(x) = 5x2
1 +8x2 +(x3−6)2−2x4−40≤ 0

g6(x) = x2
1 +2(x2−2)2−2x1x2 +14x5−6x6 ≤ 0

g7(x) = 0.5(x1−8)2 +2(x2−4)2 +3x2
5− x6−30≤ 0

g8(x) = −3x1 +6x2 +12(x9−8)2−7x10 ≤ 0

Bound constraints and variables types for

Case3 xi ∈ {−10,−5,0,1.3,2.2,5,8.2,8.7,9.5,10} ∀i = 1 : 6,
−10.0≤ x7 and x8 ≤ 10.0, −10≤ x9 and x10 ≤ 10,
x1 to x6 discrete, x7,x8 ∈R, x9,x10 ∈N

Case4 xi ∈ {−10,−5,0,1.3,2.2,5,8.2,8.7,9.5,10} ∀i = 1 : 6,
−10.0≤ x7 and x8 ≤ 10.0, −10≤ x9 and x10 ≤ 10,
x1 to x6 categorical, x7,x8 ∈R, x9,x10 ∈N

A.4 G09

Minimize

f (x) = (x1−10)2 +5(x2−12)2 + x4
3 +3(x4−11)2 +10x6

5 +7x2
6 + x4

7−4x6x7−10x6−8x7

Subject to

g1(x) = 2x2
1 +3x4

2 + x3 +4x2
4 +5x5−127≤ 0

20 G–2017–70 Les Cahiers du GERAD

g2(x) = 7x1 +3x2 +10x2
3 + x4− x5−282≤ 0

g3(x) = 23x1 + x2
2 +6x2

6−8x7−196≤ 0

g4(x) = 4x2
1 + x2

2−3x1x2 +2x2
3 +5x6−11x7 ≤ 0

Bound constraints and variables type for

Default −10≤ xi ≤ 10 ∀i = 1 : 7 and xi ∈N ∀i = 1 : 3 and xi ∈R ∀i = 4 : 7.
IC −10≤ xi ≤ 10 ∀i = 1 : 7,

xi ∈N treated as categorical variable ∀i = 1 : 3, xi ∈R,∀i = 4 : 7.

A.5 Mystery

Minimize
f (x) = 2+0.1(x2− x2

1)
2 +(1− x1)

2 +2(2− x2)
2 +7sin(0.5x1)sin(0.7x1x2)

Bound constraints and variables type for

Case1 x1 ∈ {−0.5,0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}, −0.5≤ x2 ≤ 5.0, x1 discrete, x2 ∈R
Case2 0≤ x1 ≤ 5, −0.5≤ x2 ≤ 5.0, x1 ∈N, x2 ∈R
Case3 x1 ∈ {1,2,3}, −0.5≤ x2 ≤ 5.0, x1 categorical, x2 ∈R
Case6 x1 ∈ {1,2,3}, −0.5≤ x2 ≤ 5.0, x1 discrete, x2 ∈R

A.6 PressureVessel

Minimize
f (x) = 0.6224x1x3x4 +1.7781x2x2

3 +3.1661x2
1x4 +19.84x2

1x3

Subject to

g1(x) = −x1 +0.0193x3 ≤ 0

g2(x) = −x2 +0.00954x3 ≤ 0

g3(x) = −πx2
3x4−

4
3

πx3
3 +1296000≤ 0

Bound constraints and variables types for

Default x1 = 0.0625n1, x2 = 0.0625n2 where n1 and n2 ∈N, x3 and x4 ∈R
and where 1≤ n1 ≤ 99,1≤ n2 ≤ 99,10.0≤ x3 ≤ 200.0, 10.00≤ x4 ≤ 200.0

IC x1 = 0.0625n1, x2 = 0.0625n2 where n1 and n2 ∈N treated as categorical variables, x3
and x4 ∈R and where 1≤ n1 ≤ 99,1≤ n2 ≤ 99,10.0≤ x3 ≤ 200.0, 10.00≤ x4 ≤ 200.0

A.7 Rastrigin

Minimize

f (x) = 10n+
n

∑
i=1

(x2
i −10cos(2πxi))

Bound constraints and variables types for

Case1 x1 ∈ {−5,−3,−1,0,1,3,5}, −5.0≤ x2 ≤ 5.0, x1 discrete, x2 ∈R
Case2 −5≤ x1 ≤ 5, −5.0≤ x2 ≤ 5.0, x1 ∈N, x2 ∈R
Case3 x1 ∈ {−5,−3,−1,0,1,3,5}, −5.0≤ x2 ≤ 5.0, x1 categorical, x2 ∈R
Case12 x1, x2 ∈ {−5,−3,−1,0,1,3,5}, x3 ∈ {−5,0,2,5}, x4, x5 ∈ {−5,−3,−1,0,1,3,5},

x6 ∈ {0,1,2,3}, −5.0≤ x7, x8 ≤ 5.0, −5≤ x9, x10 ≤ 5,
x1 to x3 discrete, x4 to x6 categorical, x7,x8 ∈R, x9,x10 ∈N

Case22 xi ∈ {−5,−3,−1,0,1,3,5} ∀i = 1 : 8, x9, x10 ∈ {0,1,2,3}, −5≤ xi ≤ 5 ∀i = 11 : 20,
x1 to x4 discrete, x5 to x10 categorical, x11,x12 ∈N, x13 to x20 ∈R

Les Cahiers du GERAD G–2017–70 21

Table 6: Possible values for variable A in ReinforcedConcreteBeam problem.

0.2 0.8 1.4 2 2.64 3.41 4.03 4.84 6.16 8 11.06
0.31 0.88 1.55 2.17 2.79 3.52 4.2 5 6.32 8.4 11.85
0.4 0.93 1.58 2.2 2.8 3.6 4.34 5.28 6.6 8.69 12
0.44 1 1.6 2.37 3 3.72 4.4 5.4 7.11 9 13
0.6 1.2 1.76 2.4 2.08 3.95 4.65 5.53 7.2 9.48 14
0.62 1.24 1.8 2.48 2.1 3.96 4.74 5.72 7.8 10.27 15
0.79 1.32 1.86 2.6 3.16 4 4.8 6 7.9 11

A.8 ReinforcedConcreteBeam

Minimize
f (A,b,h) = 29.4A+0.6bh

Subject to

g1(A,b,h) = h−4b≤ 0

g2(A,b,h) = 180b+7.375A2−Abh≤ 0

Bound constraints and variables types for

Default A chosen among discrete values from Table 6,
28≤ b≤ 40, 5.0≤ h≤ 10.0, b ∈N and h ∈R

DC A chosen among categorical values from Table 6,
28≤ b≤ 40, 5.0≤ h≤ 10.0, b ∈N and h ∈R

IC A chosen among discrete values from Table 6,
28≤ b≤ 40, 5.0≤ h≤ 10.0, b ∈N treated as a categorical variable and h ∈R

IDC A chosen among categorical values from Table 6,
28≤ b≤ 40, 5.0≤ h≤ 10.0, b ∈N treated as a categorical variable and h ∈R

A.9 Rosenbrock

Minimize

f (x) =
n−1

∑
i=1

(1− xi)
2 +100(xi+1− x2

i)
2

Bound constraints and variables types for

Case1 x1 ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, −2.0≤ x2 ≤ 2.0, x1 discrete, x2 ∈R
Case2 −2≤ x1 ≤ 2, −2.0≤ x2 ≤ 2.0, x1 ∈N, x2 ∈R
Case3 x1 ∈ {0,1,2}, −2.0≤ x2 ≤ 2.0, x1 categorical, x2 ∈R
Case12 x1,x2 ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, x3 ∈ {−1.8,0,1,0.6,1.6},

−2.0≤ x4,x5 ≤ 2.0, x6 ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, x7 ∈ {2,0,1},
x8 ∈ {0.5,1,−1,0.5,−2,2,−0.5,0}, −2≤ x9,x10 ≤ 2,
x1 to x3 discrete, x4,x5 ∈R, x6 to x8 categorical, x9,x10 ∈N

Case22 xi ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, ∀i = 1 : 8, x9,x10 ∈ {2,0,1},
−2≤ xi ≤ 2, ∀i = 11 : 20,
x1 to x4 discrete, x5 to x10 categorical, x11,x12 ∈N, x13 to x20 ∈R

A.10 SpeedReducer

Minimize

f (x) = 0.7854x1x2
2(3.3333x2

3 +14.9334x3−43.0934)−1.508x1(x2
6 + x2

7)

+7.477(x3
6 + x3

7)+0.7854(x4x2
6 + x5x2

7)

22 G–2017–70 Les Cahiers du GERAD

Subject to

g1(x) = 27− x1x2
2x3 ≤ 0

g2(x) = 397.5− x1x2
2x2

3 ≤ 0

g3(x) = 1.93x3
4− x2x3x4

6 ≤ 0

g4(x) = 1.93x3
5− x2x3x4

7 ≤ 0

g5(x) =

√
(745.0x4)

2 +16.9×106x2
2x2

3−110x2x3x3
6 ≤ 0

g6(x) =

√
(745.0x5)

2 +157.5×106x2
2x2

3−85x2x3x3
7 ≤ 0

g7(x) = x2x3−40≤ 0

g8(x) = 5x2− x1 ≤ 0

g9(x) = x1−12x2 ≤ 0

g10(x) = 1.9+1.5x6− x4 ≤ 0

g11(x) = 1.9+1.1x7− x5 ≤ 0

Bound constraints and variables types for

Default 2.6≤ x1 ≤ 3.6, 0.7≤ x2 ≤ 0.8, 17≤ x3 ≤ 28, 7.3≤ x4 and x5 ≤ 8.3,
2.6≤ x6 ≤ 3.9, 5≤ x7 ≤ 5.5, x3 ∈N, x1, x2 and x4 to x7 ∈R

IC 2.6≤ x1 ≤ 3.6, 0.7≤ x2 ≤ 0.8, 17≤ x3 ≤ 28, 7.3≤ x4 and x5 ≤ 8.3,
2.6≤ x6 ≤ 3.9, 5≤ x7 ≤ 5.5, x3 ∈N treated as categorical, x1, x2 and x4 to x7 ∈R

A.11 Spring

Minimize
f (x) = (x3 +2)x1x2

2

Subject to

g1(x) = 71785x4
2− x3

1x3 ≤ 0

g2(x) = 5108x2
2(4x2

1− x1x2)+12566(x1x3
2− x4

2)−64187128x5
2(x1− x2)≤ 0

g3(x) = x2
1x3−140.45x2 ≤ 0

g4(x) = x1 + x2−1.5≤ 0

Bound constraints and variables types for

Default 0.25≤ x1 ≤ 1.3, 0.05≤ x2 ≤ 2.0, 2≤ x3 ≤ 15, x1, x2 ∈R and x3 ∈N
IC 0.25≤ x1 ≤ 1.3, 0.05≤ x2 ≤ 2.0, 2≤ x3 ≤ 15, x1, x2 ∈R

and x3 ∈N treated as categorical

A.12 SteppedCantileverBeam

Minimize
f (x) = l(x1x2 + x3x4 + x5x6 + x7x8 + x9x10)

Subject to

g1(x) = 6Pl−σmaxx9x2
10 ≤ 0

g2(x) = 6P(2l)−σmaxx7x2
8 ≤ 0

g3(x) = 6P(3l)−σmaxx5x2
6 ≤ 0

g4(x) = 6P(4l)−σmaxx3x2
4 ≤ 0

g5(x) = 6P(5l)−σmaxx1x2
2 ≤ 0

Les Cahiers du GERAD G–2017–70 23

g6(x) =
Pl3

E

(
244x3x3

4x5x3
6x7x3

8x9x3
10 +148x1x3

2x5x3
6x7x3

8x9x3
10 +76x1x3

2x3x3
4x7x3

8x9x3
10

+ 28x1x3
2x3x3

4x5x3
6x9x3

10 +4x1x3
2x3x3

4x5x3
6x7x3

8
)
−δmaxx1x3

2x3x3
4x5x3

6x7x3
8x9x3

10 ≤ 0

g7(x) = x2−20x1 ≤ 0

g8(x) = x4−20x3 ≤ 0

g9(x) = x6−20x5 ≤ 0

g10(x) = x8−20x7 ≤ 0

g11(x) = x10−20x9 ≤ 0

Bound constraints and variables types for

Default x1 ∈ {1,2,3,4,5}, x2 and x4 ∈ {45.0,50.0,55.0,60.0}, x3 and x5 ∈ {2.4,2.6,2.8,3.1},
x6 ∈ {30,31, ...,65}, 1≤ x7 ≤ 5, 30≤ x8 ≤ 65, 1≤ x9 ≤ 5, 30≤ x10 ≤ 65
x1 and x6 ∈N, x2 to x5 discrete and x7 to x10 ∈R

DC x1 ∈ {1,2,3,4,5}, x2 and x4 ∈ {45.0,50.0,55.0,60.0}, x3 and x5 ∈ {2.4,2.6,2.8,3.1},
x6 ∈ {30,31, ...,65}, 1≤ x7 ≤ 5, 30≤ x8 ≤ 65, 1≤ x9 ≤ 5, 30≤ x10 ≤ 65
x1 and x6 ∈N, x2 to x5 categorical and x7 to x10 ∈R

IC x1 ∈ {1,2,3,4,5}, x2 and x4 ∈ {45.0,50.0,55.0,60.0}, x3 and x5 ∈ {2.4,2.6,2.8,3.1},
x6 ∈ {30,31, ...,65}, 1≤ x7 ≤ 5, 30≤ x8 ≤ 65, 1≤ x9 ≤ 5, 30≤ x10 ≤ 65
x1 and x6 ∈N treated as categorical variables , x2 to x5 discrete and x7 to x10 ∈R

IDC x1 ∈ {1,2,3,4,5}, x2 and x4 ∈ {45.0,50.0,55.0,60.0}, x3 and x5 ∈ {2.4,2.6,2.8,3.1},
x6 ∈ {30,31, ...,65}, 1≤ x7 ≤ 5, 30≤ x8 ≤ 65, 1≤ x9 ≤ 5, 30≤ x10 ≤ 65
x1 and x6 ∈N treated as categorical variables, x2 to x5 categorical and x7 to x10 ∈R

Parameters

P = 50000N, L = 500cm, l = 100cm, δmax = 2.7cm, σmax = 14000N/cm2, E = 2×107N/cm2

References
Abramson, M. A. 2004. Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search

Algorithm. Optimization and Engineering 5:157–177.

Abramson, M. A., C. Audet, J. W. Chrissis, and J. G. Walston. 2009a. Mesh adaptive direct search algorithms for mixed variable
optimization. Optimization Letters 3:35–47.

Abramson, M. A., C. Audet, G. Couture, J. E. Dennis Jr., S. Le Digabel, and C. Tribes. Consulted on May 23rd, 2017. The NOMAD
project. Software available at https://www.gerad.ca/nomad/.

Abramson, M. A., C. Audet, J. E. Dennis Jr., and S. Le Digabel. 2009b. ORTHOMADS: a deterministic MADS instance with
orthogonal directions. SIAM Journal on Optimization 20:948–966.

Affenzeller, M., S. Wagner, S. Winkler, and A. Beham. 2009. Genetic Algorithms and Genetic Programming: Modern Concepts
and Practical Applications. Numerical Insights. CRC Press.

Audet, C., S. Le Digabel, and C. Tribes. 2009. NOMAD user guide. Cahier du GERAD, Montreal, QC, Canada .

Audet, C., and J. E. Dennis Jr. 2006. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on
Optimization 17:188–217.

Baert, L., C. Beauthier, M. Leborgne, and I. Lepot. 2015. Surrogate-based optimisation for a Mixed-Variable Design Space: Proof
of Concept and Opportunities for Turbomachinery Applications. Montreal, Canada: ASME 2015–GT2015-43254.

Bajer, L., and M. Holeňa. 2010. Intelligent Data Engineering and Automated Learning – IDEAL 2010: 11th International Confer-
ence, Paisley, UK, September 1-3, 2010. Proceedings, chap. Surrogate Model for Continuous and Discrete Genetic Optimization
Based on RBF Networks, pp. 251–258. Springer Berlin Heidelberg.

Bonami, P., L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and
A. Wachter. 2008. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization 5:186–204.

https://www.gerad.ca/nomad/

24 G–2017–70 Les Cahiers du GERAD

Bonami, P., and J. Lee. 2013. BONMIN Users’ Manual. Version 1.7.

Booker, A. J., J. E. Dennis Jr, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset. 1998. A Rigourous Framework for
Optimization of Expensive Functions by Surrogates. ICASE Report No. 98-47 .

Cagnina, L. C., S. C. Esquivel, and C. A. C. Coello. 2008. Solving Engineering Optimization Problems with the Simple Constrained
Particle Swarm Optimizer. Informatica 32:319–326.

Clarke, F. H. 1990. Optimization and Nonsmooth Analysis. SIAM.

Clarke, F. H., Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski. 1998. Nonsmooth Analysis and Control Theory. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Conn, A., N. Gould, and P. Toint. 2000. Trust-Region Methods. Number 01 in MPS-SIAM Series on Optimization. Philadelphia,
USA: SIAM.

Conn, A. R., K. Scheinberg, and L. N. Vicente. 2009. Introduction to Derivative-Free Optimization. Number 08 in MPS-SIAM
Series on Optimization. Philadelphia, USA: SIAM.

Costa, A., and G. Nannicini. 2014. RBFOpt: an open-source library for black-box optimization with costly function evaluations.
Optimization Online 2014-09-4538 .

Deb, K. 2000. An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and
Engineering 186:311–338.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE
Transaction on Evolutionary Computation 6(2):181–197.

Forrester, A., A. Sobester, and A. Keane. 2008. Engineering Design via Surrogate Modelling. WILEY.

Forrester, A. I. J., and A. J. Keane. 2009. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences 50–79.

Gandomi, A. H., X.-S. Yang, and A. H. Alavi. 2011. Mixed variable structural optimization using Firefly Algorithm. Computers
and Structures 89:2325–2336.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman.

Herrera, M., A. Guglielmetti, M. Xiao, and R. F. Coelho. 2014. Metamodel-assisted optimization based on multiple kernel regression
for mixed variables. Structural and Multidisciplinary Optimization 49:979–991.

Hilal, M. A., and R. W. Boom. 1977. Optimization of mechanocal supports for large superconductive magnets. Advances in
Cryogenic Engineering 22:224–232.

Holmström, K. 1997. TOMLAB - An Environment for Solving Optimization Problems in MATLAB. Stockholm, Sweden: Nordic
MATLAB Conference ’97, October 28-29.

Huang, M.-W., and J. S. Arora. 1997. Optimal design with discrete variables: some numerical experiments. International journal
for numerical methods in engineering 40:165–188.

Kokkolaras, M., C. Audet, and J. E. Dennis Jr. 2001. Mixed Variable Optimization of the Number and Composition of Heat
Intercepts in a Thermal Insulation System. Optimization and Engineering 2:5–29.

Kolda, T. G., R. M. Lewis, and V. Torczon. 2003. Optimization by Direct Search: New Perspectives on Some Classical and Modern
Methods. SIAM Review 45:385–482.

Le Digabel, S. 2011. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm. ACM Transactions on Mathe-
matical Software 37:1–15.

Liao, T., K. Socha, M. M. de Oca, T. Stutzle, and M. Dorigo. 2014. Ant Colony Optimization for Mixed-Variable Optimization
Problems. Evolutionary Computation, IEEE Transactions on 18:503–518.

Madhavan, V., and P. Martiny. 2013. Accounting for manufacturability constraints in the optimisation of composites structures.
Montreal, Canada: The 19th international conference on composite materials.

Mahajan, A., V. Madhavan, C. Beauthier, T. Lonfils, I. Tapeinos, and S. Koussios. 2015. High-fidelity multi-sphere hypersonic vehi-
cle cryogenic tank design by mixed-variable surrogate-based optimization methods. Krakow, Poland: 6th European Conference
for AeroSpace Sciences, EUCASS.

Les Cahiers du GERAD G–2017–70 25

McCane, B., and M. H. Albert. 2008. Distance functions for categorical and mixed variables. Pattern Recognition Letters 27:986–
993.

Moré, J. J., and S. M. Wild. 2009. Benchmarking Derivative-Free Optimization Algorithms. SIAM Journal on Optimization
20:172–191.

Müller, J. 2015. MISO: mixed-integer surrogate optimization framework. Optimization and Engineering 1–27.

Müller, J., C. A. Shoemaker, and R. Pichè. 2013a. SO-I: a surrogate model algorithm for expensive nonlinear integer programming
problems including global optimization applications. Journal of Global Optimization 59:865–889.

Müller, J., C. A. Shoemaker, and R. Pichè. 2013b. SO-MI: A surrogate model algorithm for computationally expensive nonlinear
mixed-integer black-box global optimization problems. Computers and Operations Research 40:1383–1400.

Nelder, J. A., and R. Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7:308–313.

Newby, E., and M. M. Ali. 2015. A trust-region-based derivative free algorithm for mixed integer programming. Computational
Optimization and Applications 60:199–229.

Platenga, T. D. 2009. HOPSPACK 2.0 User Manual. Tech. Rep. SAND2009-6265, Sandia National Laboratories, Albuquerque.

Powell, M. J. D. 2009. The BOBYQA algorithm for bound constrained optimization without derivatives. Tech. Rep. DAMTP
2009/NA06, Cambridge University.

Qian, P. Z. G., H. Wu, and C. F. J. Wu. 2008. Gaussian Process Models for Computer Experiments with Qualitative and Quantitative
Factors. Technometrics 50:383–396.

Regis, R. G. 2014. Constrained Optimization by Radial Basis Function Interpolation for High-Dimensional Expensive Black-Box
Problems with Infeasible Initial Points. Engineering Optimization 46:218–243. Online supplement.

Rios, L. M., and N. V. Sahinidis. 2013. Derivative-free optimization: a review of algorithms and comparison of software implemen-
tations. Journal of Global Optimization 56:1247–1293.

Rippa, S. 1999. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in
Computational Mathematics 11(2-3):193–210.

Robinson, T., K. Willcox, M. Eldred, and R. Haimes. 2006. Multifidelity Optimization for Variable-Complexity Design. Portsmouth,
Virginia: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.

Sainvitu, C., V. Iliopoulou, and I. Lepot. 2009. Global Optimization with Expensive Functions - Sample Turbomachinery Design
Application. Leuven, Belgium: 14th Belgian-French-German Conference on Optimization.

Sasena, M. J. 2002. Flexibility and Afficiency Enhancements for Constrained Global Design Optimization with Kriging Approxi-
mations. Ph.D. thesis, University of Michigan.

Wilson, D., and T. Martinez. 1997. Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6:1–34.

Yang, X.-S. 2010. Engineering Optimization: An introduction with Metaheuristic Applications, chap. Test problems in optimization.
John Wiley and Sons.

	Introduction
	Related software and algorithms
	Background on Nomad and Minamo
	Nomad
	Minamo

	Combining Nomad and Minamo
	Testing environment
	Numerical results without using surrogates derivatives
	Numerical results exploiting surrogates derivatives

	Numerical experiments on the Heatshield problem
	Problem description
	Problem formulation
	Numerical results

	Conclusion
	Test problems description
	Barnes
	CarSideImpact
	G07
	G09
	Mystery
	PressureVessel
	Rastrigin
	ReinforcedConcreteBeam
	Rosenbrock
	SpeedReducer
	Spring
	SteppedCantileverBeam

