
Les Cahiers du GERAD ISSN: 0711–2440

Factorization-free methods for computed
tomography

Y. Goussard, M. McLaughlin,
D. Orban

G–2017–65

August 2017

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2017-65) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2017-65) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
– Bibliothèque et Archives Canada, 2017

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
– Library and Archives Canada, 2017

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-65
https://www.gerad.ca/fr/papers/G-2017-65
https://www.gerad.ca/en/papers/G-2017-65
https://www.gerad.ca/en/papers/G-2017-65




Factorization-free methods for
computed tomography

Yves Goussard a

Maxime McLaughlin b

Dominique Orban b

a Department of Biomedical Engineering, Polytechnique
Montréal (Québec) Canada, H3C 3A7

b GERAD & Department of Mathematics and Industrial
Engineering, Polytechnique Montréal (Québec) Canada,
H3C 3A7 other example

yves.goussard@polymtl.ca

maxime.mclaughlin@polymtl.ca

dominique.orban@gerad.ca

August 2017

Les Cahiers du GERAD

G–2017–65

Copyright c© 2017 GERAD



ii G–2017–65 Les Cahiers du GERAD

Abstract: We study X-ray tomograqphic reconstruction using statistical methods. The problem is expressed
in cylindrical coordinates, which yield significant computational and memory savings, with nonnegativity
bounds. A change of variables involving a Fourier matrix attempts to improve the conditioning of the Hessian
but introduces linear inequality constraints. The scale and density of the problem call for factorization-free
methods. We argue that projections into the feasible set can be computed efficiently by solving a bound-
constrained linear least-squares problem with a fast operator. This motivates our interest towards projection-
based active-set methods for the reconstruction problem, namely a spectral projected gradient method and
a trust-region projected Newton method that we generalize to our specific scenario. For the projection
subproblem, we consider several projection-based methods for bound-constrained problems. We assess the
performance of several algorithm combinations on the reconstruction problem using synthetic data. Our
results show that the projected Newton method combined with efficient projection strategies applied to the
problem in cylindrical coordinates with linear inequality constraints is competitive in terms of run time with
a limited-memory BFGS applied to the problem in cartesian coordinates with simple bounds, but reduces
the memory footprint by a factor of about 233 on a 2D problem with 512×512 pixels.

Keywords: Factorization-free, convex constrained optimization, tomographic reconstruction,
medical imaging



Les Cahiers du GERAD G–2017–65 1

1 Introduction

Generally speaking, tomographic reconstruction methods fall within two categories: analytical techniques,

which rely on strong approximations to the data formation model, and statistical or algebraic techniques,

which make use of an estimation methodology. Since the inception of X-ray tomography, analytical methods

have been prevalent in clinical settings, mainly because of their limited computational requirements. However,

their limitations in terms of accuracy has been recognized early (Herman and Rowland, 1973), and statistical

methods have been repeatedly shown to produce superior results in many respects (Pan et al., 2009; Beister

et al., 2012). Nevertheless, practical use of statistical methods has remained limited, mostly because of high

computation times and large memory requirements. Recently, statistical approaches have been the subject

of renewed interest due to the increase in computer performance, pressure toward X-ray dose reduction and

development of new types of X-ray scanners, even though computation time and memory footprint remain

major difficulties.

An avenue to tackle these difficulties is to make use of nonstandard representations that can take advantage

of redundancies in the data collection process. Among them, formulation of the problem in cylindrical

coordinates (Thibaudeau et al., 2013; Goussard et al., 2013) has been shown to produce considerable reduction

of memory footprint without on the fly computation of the projection matrix, and significant acceleration of

the computation through straightforward parallelization. However, expressing the reconstruction problem in

cylindrical coordinates induces substantial ill conditioning, but the latter can be alleviated by appropriate

scaling. The main focus of our work is to investigate the various algorithms that can solve the scaled problem

and account for the nonnegativity constraints that the solution must satisfy.

Our paper is organized as follows. In Section 2, we describe how the reconstruction problem is ob-

tained from maximum a posteriori estimation. Its key features are that it is a large-scale regularized linear

least-squares problem with linear inequality constraints. To tackle this optimization problem, we consider

projection-based factorization-free active-set methods. We outline generic active-set method as well as the

various projection operations that are required by our algorithms in Section 3 and detail the methods that

we use in Section 4. Because some of the projection operations are cast as other optimization problems, we

address their solution in Section 5. We report the results of our reconstruction algorithm on synthetic data

in Section 6, and we study its behavior according to the choice of reconstruction solver, projection solver and

various parameters. Conclusions, as well as further improvements, appear in Section 7.

Implementations of our solvers are available in object-oriented MATLAB as part of the NLPLab opti-

mization framework available at https://bitbucket.org/maxmcl/nlplab.

2 Iterative reconstruction algorithm

X-ray tomography is an imaging modality based on the measurement of X-ray attenuation trough an unknown

object under several incidences. The goal of reconstruction is to recover the spatial distribution of linear X-

ray attenuation coefficients in the object from the measurements and a model of the X-ray attenuation

process—the data formation model. Typically, such models are based upon the Beer-Lambert law. Here,

we consider the stochastic version of the Beer-Lambert law, and we show how probability estimation can be

used to perform the reconstruction.

2.1 Stochastic Beer-Lambert law and discretization

In tomographic reconstruction, the Beer-Lambert law relates the attenuation of an energy beam, that travels

through an object, with a distribution of attenuation coefficients µ(x) : Rndim → R, where ndim is the number

of spatial dimensions (typically 1, 2 or 3). We assume that the uncertainty on the transmitted intensities

is dominated by the quantum effects related to the attenuation of the X-ray beams by matter. Under that

hypothesis, the photon counts collected by the detectors can be modeled as a Poisson distribution P(l),

where l is the parameter of the distribution. We introduce the random variable N representing the photon

counts of realization vector n ∈ Rnmeas , where nmeas is the number of intensity measurements. Furthermore,

https://bitbucket.org/maxmcl/nlplab


2 G–2017–65 Les Cahiers du GERAD

we assume both the attenuation coefficients and the source to be energy independent. Consequently, the

monochromatic stochastic Beer-Lambert law that will be considered hereafter is

N ∼ P
(
n0 e

−
∫
Li
µ(x) dx

)
, (1)

where n0 ∈ R is the peak energy of the source, Li represents a linear path through the patient µ(x) and ni
an intensity measurement collected by a detector.

The sinogram, often called projections (not to be confused with mathematical projections) or projec-

tion data, is

y := ln
(n0

n

)
, (2)

where the logarithm and division occur componentwise.

In practice, nmeas is determined by the angular discretization of the rotation of the source and the

detectors, as well as the total number of detectors. Assuming three-dimensional (3D) reconstruction, the

subscript i = 1, . . . , nmeas denotes an i-th measurement, obtained at an i-th scan angle, detector and

axial position.

In order to obtain an expression of Equation (1) that is suited to numerical methods, the domain of µ

must be discretized in nvox voxels, such that µj , the j-th component of µ, is assigned to the j-th voxel. This

is done by the means of a discretization function ξ(x) that can be interpreted as an ndim-dimensional mesh.

Hence, µ becomes independent of x and can be excluded from the integrand of Equation (1), which becomes

a collection of ray-voxel intersection lengths along Li,∫
Li

µ(x) dx

∫
Li

∑
j

µjξj(x) dx =
∑
j

µj

∫
Li

ξj(x) dx =
∑
j

pijµj ,

where we define

pij :=

∫
Li

ξj(x) dx.

We call µ ∈ Rnvox the vector of attenuation coefficients, and P ∈ Rnmeas×nvox the projection matrix that

contains the intersection lengths. We may now rewrite Equation (1) as

N ∼ P
(
n0 e−Pµ

)
. (3)

Assuming independent and identically distributed (i.i.d.) photon counts, Equation (3) has the conditional

probability density function

P (N = n | µ) =
∏
i

exp
(
−n0 e−[Pµ]i

)(
n0 e−[Pµ]i

)ni

ni!

 , (4)

where [Pµ]i designates the i-th component of Pµ. Hence, using this expression, we can evaluate the proba-

bility of measuring the intensities n given µ. Naturally, we will seek the distribution that is the most likely

according to our data, which corresponds to maximum likelihood estimation.

2.2 Maximum likelihood

The maximum likelihood (ML) estimator of the conditional probability distribution Equation (4) is

µ̂ML = argmax P (N = n | µ) subject to µ ≥ 0, (5)

where we impose the physical constraint µ ≥ 0. Instead of maximizing Equation (4), we may equivalently

minimize the negative log-likelihood,

L(n | µ) =
∑
i

[
n0 e−[Pµ]i +ni[Pµ]i + log(ni!)

]
. (6)



Les Cahiers du GERAD G–2017–65 3

Minimizing Equation (6) under nonnegativity constraints remains difficult given its nonlinear nature and

compels us to consider different approaches. Sauer and Bouman (1993) circumvent this issue by applying a

second-order Taylor expansion to Equation (6), where each term is expanded about y, so that, after dropping

terms that do not depend on µ, the objective function reduces to a least-squares residual

L(n | µ) ≈ 1
2 ‖Pµ− y‖

2
∆N

(7)

where y is defined in (2) and ∆N = diag (ni)i=1, ..., nmeas
acts as a weighing matrix, where greater penalties

are assigned to higher values of ni. Indeed, since they correspond to less attenuated beams, they have higher

signal-to-noise ratio and thus less uncertainty. To further simplify our model, we set ∆N = I. Finally, by

substituting Equation (7) into Equation (5), the maximum likelihood estimator becomes:

µ̂ML = argmin 1
2 ‖Pµ− y‖

2
subject to µ ≥ 0. (8)

One might note that Equation (8) can also be obtained by assuming that the measured photon counts follow

a normal distribution. Moreover, since we know that µ describes biological tissues, we might expect the

reconstructed µ to follow certain behaviors. Exploiting this prior knowledge is possible through maximum a

posteriori estimation.

2.3 Maximum a posteriori and penalty function

Bayes’s theorem lets us introduce a prior distribution P (µ) that reflects our knowledge on µ. The maximum

a posteriori (MAP) estimate is the most probable value of P (µ | n) taking the physical constraint µ ≥ 0 into

account, i.e.,

µ̂MAP ∈ argmax
P (n | µ)P (µ)

P (n)
subject to µ ≥ 0. (9)

Instead of maximizing Equation (9), we once again minimize the negative of its logarithm, so that assuming

an exponential prior

P (µ) ∝ e−λφ(µ) (λ > 0),

amounts to replacing Equation (8) with the penalized problem

minimize
µ

f(µ) subject to µ ≥ 0, f(µ) := 1
2 ‖Pµ− y‖

2
+ λφ(µ). (10)

Hence, under our assumptions and approximations, the reconstruction of an image can be cast as the solution

of the bound-constrained regularized linear least-squares problem (10).

We favor penalty functions that preserve convexity of the objective of Equation (10) and that smoothen

the attenuation coefficients, i.e. that penalize strong local variations. To this end, Goussard et al. (2013)

employ L 2 or L 2 L 1 penalty functions, either directly on µ or on the difference between neighboring voxels.

If the L 2 norm is used, we refer to the first case as a penalty on the object, and to the second as a penalty

on the gradient of the object.

The L 2-penalty can be written

φL 2
(µ) = 1

2

ndim∑
n=1

µTD(n)T
Γ(n)D(n)µ,

where Γ(n), n = 1, . . . , ndim, are diagonal weight matrices corresponding to volume elements for each voxel,

i.e. they take into account the variable size of each voxel, and D(n), n = 1, . . . , ndim, are the identity if the

penalty applies to the object, or first-derivative matrices if the penalty applies to the gradient of the object.

Note that the superscript (n) indicates the n-th matrix and not powers. The L 2 L 1-penalty can be

written

φL 2 L 1
(µ) =

ndim∑
n=1

eTΓ(n)
(
δ2e+ (D(n)µ)2

)1/2

where δ is a nonzero real parameter, e is the vector of ones, and the square and square root are applied

componentwise to vectors.



4 G–2017–65 Les Cahiers du GERAD

2.4 Scaled problem in cylindrical coordinates

As indicated in Section 1, Thibaudeau et al. (2013) and Goussard et al. (2013) achieved large gains in memory

requirements and reconstruction time by discretizing µ in cylindrical coordinates. Cylindrical coordinates

allow us to benefit from geometric redondances in the data acquisition process, which translate into a block-

circulant structure for the projection matrix. Hence, only a single row of blocks of P needs to be stored,

which greatly reduces the memory footprint (generally by a factor of several hundreds with respect to storage

of the full projection matrix in Cartesian coordinates).

Unfortunately, Goussard et al. (2013) and Golkar (2013) show that state-of-the-art methods, such as

L-BFGS-B (Byrd et al., 1995; Zhu et al., 1997), converge slowly near the origin when applied to Equation (10)

due to the poor conditioning of P . Observe that PTP is block circulant and that φ can be chosen so

the Hessian of f in (10) remains block circulant. Using the fact that block-circulant matrices may be

block-diagonalized by Fourier transforms—see, e.g., (Petersen and Pedersen, 2007), there exists a Hermitian,

block-diagonal and positive-definite matrix Π such that

∇2f(µ) = PTP + λ∇2φ(µ) = 1
n F ?

n Π Fn,

where Fn is a discrete Fourier transform (DFT) and n = nvox. Golkar (2013) proposes to seek a diagonal

and positive-definite approximation ∆ ≈ Π and to perform the diagonal scaling in Fourier space

C = 1
n F ?

n ∆−1/2 Fn, (11)

in hopes to improve the conditioning of (10). The simple choice ∆ = diag (Π) has proved effective in practice

and is what we use in our implementation.

The change of variables µ = Cx leads to the scaled problem

minimize
x

1
2 ‖PCx− y‖

2
+ λφ(Cx) subject to Cx ≥ 0. (12)

The disadvantage of (12) is that the scaling converts simple bounds into linear inequality constraints.

To illustrate the importance of scaling Equation (10), we report approximate condition numbers κ in

cylindrical and Cartesian coordinates on a 2D problem of 128×128 pixels in Figure 1 for various values of

the penalty parameter λ. Our approximations are lower bounds on the actual condition number because

computing eigenvalues is time intensive, even for such a small problem. The example of Section 6 uses a

finer resolution, which results in smaller voxels near the origin, and is likely to have worse conditioning.

Figure 1 shows that both regularization and scaling have the potential to improve the condition number of

the Hessian drastically.

In a practical implementation, Fn and F ?
n can be applied to a vector in O(n log n) time by way of

the FFT (Cooley and Tukey, 1965), even though they would materialize as dense matrices. Thus, C can

also be applied to a vector in O(n log n) time. The presence of such fast operators are one of the reasons

why it is necessary to devise factorization-free methods for Equation (12). Leveraging the nature of C also

allows us to design efficient projection operations, which is why we focus our attention on projection-based

active-set methods.

3 Primal active-set methods

Consider a generic optimization problem with linear inequality constraints

minimize
x∈Rn

f(x) subject to aT
i x ≥ bi, i = 1, . . . , m, (13)

and assume that x∗ is a local solution. Primal active-set methods are designed from the principle that were the

optimal active-set at x∗ A(x∗) known ahead of time, it would suffice to solve the equality-constrained problem

minimize
x∈Rn

f(x) subject to aT
i x = bi, i ∈ A(x∗).



Les Cahiers du GERAD G–2017–65 5

Figure 1: Condition number estimate (κ) of the Hessian as a function of λ. We compare the Hessian in Cartesian (“cart”) and
cylindrical (“cyl”) coordinates for L 2 penalty functions on the object (“ObjL2”) and on the gradient of the object (“GradObjL2”)
using the scaling matrix (“DiagF”) or not (“Id”). Note that the scaling matrix (11) only applies in cylindrical coordinates.

The k-th iteration of an active-set method consists in approximately solving the equality-constrained sub-

problem

minimize
x∈Rn

f(x) subject to aT
i x = bi, i ∈ A(xk), (14)

where A(xk) ≈ A(x∗). The estimate A(xk) is then updated based on local information at the current iterate,

including the inactive constraints that are violated, the gradient of f , and possibly Lagrange multiplier

estimates.

When the constraints of Equation (13) are simple bounds, those of Equation (14) merely fix a subset of

variables. For more general linear inequalities, Equation (14) is a problem with linear equality constraints.

The convergence of active-set methods relies on the fact that there are only finitely many possible active-set

estimates and that, once the correct active-set has been identified, so has a local solution to Equation (13).

For more information on active-set methods, we refer the interested reader to, e.g., (Luenberger and Ye, 2008,

Chapter 12).

The active-set methods that we consider below belong to the family of projected direction methods. In

such methods, certain projection operations are repeatedly applied along the iterations and it is crucial that

they be performed efficiently. Recall that if V ⊆ Rn is a closed convex set, and if x̄ ∈ Rn, the projection

PV [x̄] of x̄ into V is well defined, unique and solves

minimize
x∈Rn

1
2 ‖x− x̄‖

2
subject to x ∈ V. (15)

Our algorithms require that we design three different projection operations. The first one consists of projecting

a vector into the feasible set of Equation (13), whereas the second one consists of projecting a vector into

a face of the feasible set of Equation (13), i.e. into the feasible set of Equation (14). The last one can be

interpreted as a mixture of the previous projections and consists of projecting into a face of the feasible set

while maintaining the feasibility of the inactive constraints. We now describe how we perform each type of

projection in the context of the problem Equation (12).

3.1 Projection into the polyhedral feasible set

We first describe how a projection into the feasible set of Equation (12),

F = {x | Cx ≥ 0} , (16)



6 G–2017–65 Les Cahiers du GERAD

may be computed efficiently. The projection PF [x̄], with x̄ ∈ Rn, solves

minimize
x∈Rn

1
2 ‖x− x̄‖

2
subject to Cx ≥ 0, (17)

where C is given by Equation (11). Unfortunately, Equation (17) appears nearly as difficult as Equation (12).

However, as a convex problem, Equation (17) has a Lagrange dual—see, e.g., (Boyd and Vandenberghe,

2010)—whose objective is

g(z) = inf
x

1
2 ‖x− x̄‖

2 − zTCx,

where z ≥ 0 are Lagrange multipliers associated to the constraints of Equation (17) and the argument of the

infimum is the Lagrangian of Equation (17). The infimum is attained for x = x̄ + CTz, which, when injected

into the definition of g, yields

g(z) = − 1
2‖C

Tz + x̄‖2 + 1
2‖x̄‖

2.

If we neglect constant terms in the objective function, the Lagrange dual of Equation (17), which consists in

maximizing g(z) subject to z ≥ 0, may be written

minimize
z∈Rn

1
2‖C

Tz + x̄‖2 subject to z ≥ 0. (18)

The dual problem Equation (18) is a bound-constrained linear least-squares problem with a fast operator.

If we identify a solution z? of Equation (18), we may recover a solution of Equation (17), i.e. PF [x̄], as

x? = x̄ + CTz?. We employ primal active-set methods, such as those presented in Section 5, to solve

Equation (18) and note that the projection of any z̄ ∈ Rn into the nonnegative orthant can be computed

easily as the componentwise max(z̄, 0).

3.2 Projection into the active face of the polyhedral feasible set

We now describe how a projection into the active face of Equation (16),

A = {x | BCx = 0} , (19)

may be computed efficiently, where the restriction operator B contains the rows of the identity corresponding

to the active-set {i | cT
i x = 0}. The projection PA[x̄] solves

minimize
x∈Rn

1
2 ‖x− x̄‖

2
subject to BCx = 0. (20)

The optimality conditions of Equation (20) may be written as the symmetric indefinite system[
I CTBT

BC

] [
x
y

]
=

[
x̄
0

]
, (21)

where y is the vector of Lagrange multipliers associated to the constraints of Equation (20), or, equivalently,

as the smaller symmetric positive-definite system

BCCTBTy = BCx̄. (22)

Alternatively, we also recognize Equation (21) and Equation (22) as the optimality conditions of the Lagrange

dual of Equation (20), which is the unconstrained linear least-squares problem

minimize
y

1
2‖C

TBTy − x̄‖2, (23)

and from which we recover x = x̄− CTBTy.

In our implementation, we consider several possible ways of solving Equation (20). The first is to solve

Equation (21) using MINRES (Paige and Saunders, 1975), an iterative method for symmetric, not necessarily

definite, linear systems that ensures that the system residual decreases monotonically. The second is to solve

Equation (22) with PCG (Hestenes and Stiefel, 1952) or MINRES, which is reasonable in this case because



Les Cahiers du GERAD G–2017–65 7

the system is defined by a fast operator that we expect to have a moderate condition number. The third

is to solve Equation (23) using an iterative method for linear least-squares problems such as LSQR (Paige

and Saunders, 1982) or LSMR (Fong and Saunders, 2011). By design, LSQR and LSMR applied to (23)

are equivalent to PCG and MINRES applied to (22), respectively, in exact arithmetic, but should be more

accurate and less sensitive to ill-conditioning in finite precision. Early experiments suggest that the first

approach does not show any advantage compared to the other two and typically requires more storage. Thus

we do not consider it further in the sequel.

3.3 Projection into the “mixed” set

The last type of projection we encounter consists of projecting into the active face Equation (19), while

ensuring that the remaining inactive constraints remain satisfied. This “mixed” set

M =
{
x
∣∣ BCx = 0, ACx ≥ 0

}
(24)

is a mixture of the two previous sets, where B is the restriction matrix defined in Section 3.2 and A

is the restriction matrix that contains the rows of the identity corresponding to the inactive constraints

{i | cT
i x > 0}. The projection PM[x̄] solves

minimize
x∈Rn

1
2 ‖x− x̄‖

2
subject to BCx = 0, ACx ≥ 0, (25)

which is a special case of Equation (17) where part of the Lagrange multipliers correspond to equality

constraints and are free. The dual of Equation (25) is

minimize
z∈Rn

1
2‖C

Tz + x̄‖2 subject to Az ≥ 0. (26)

Thus, solving Equation (26) is at most as difficult as solving Equation (18) and can be done using the same

techniques.

4 Solving the reconstruction problem

In this section, we present the methods that we consider to solve problem Equation (12). We first consider a

spectral projected gradient (SPG) method (Birgin et al., 2001) First-order methods are attractive due to their

low computational cost per iteration, i.e. they don’t require Hessian products and only require projections

on the feasible set Equation (16). Their main drawback is slow convergence near the minimum, which often

materializes as short “zig-zagging” steps. Even though those methods seem beneficial from a computational

point of view, they might require considerably more work than second-order methods to reach a solution.

Thus we also develop a novel adaptation of the Newton trust-region solver TRON (Lin and Moré, 1999) to

the case of linear inequality constraints defined by a fast operator. Our adaptation of TRON requires the

three different types of projection described in Section 3.1, Section 3.2 and Section 3.3 respectively.

4.1 Non-monotone spectral projected-gradient method

The non-monotone spectral projected gradient (SPG) algorithm described in Algorithm 1 is based on the

refinements to the original algorithm of Barzilai and Borwein (1988) proposed by Birgin et al. (2001) and

Birgin and Mart́ınez (2002). Projected-gradient methods are suited to problems with a closed convex feasible

set such that projections into this set are inexpensive. In our case, we consider Equation (12) and compute

projections into the feasible set F using the procedure outlined in Section 3.1.

Some of the details of Algorithm 1 are stated in Section A. Algorithm 1 uses Barzilai-Borwein step lengths

and a non-monotone Armijo linesearch in conjunction with the projected gradient step.

Barzilai and Borwein (1988) proposed two step lengths. Birgin et al. (2001) recommend using only one

of the two step lengths, but Dai and Fletcher (2005), Frassoldati et al. (2008), Bonettini et al. (2009) and

di Serafino et al. (2017) employ alternating step length strategies in order to further improve convergence.

We use the adaptive step length schemes that provide rules for choosing between the two step lengths with

dynamic thresholds, such as Algorithm 6 and Algorithm 7.



8 G–2017–65 Les Cahiers du GERAD

Algorithm 1 Non-monotone spectral projected gradient

1: Initialize x0 = PF [x0], k = 0, α0 = 1 and g0 = ∇f(x0)
2: while stopping criteria not met do
3: dk = PF [xk − αkgk]− xk
4: compute λk using Algorithm 4
5: update xk+1 = xk + λkdk and gk+1 = ∇f(xk+1)
6: set sk = xk+1 − xk and yk = gk+1 − gk
7: update αk using either Algorithm 5, Algorithm 6 or Algorithm 7
8: k = k + 1
9: end while

4.2 TRON for linear inequalities

Lin and Moré (1999) argue that the convergence theory of TRON for bound constraints continues to apply

to the case of a linear inequality constraints. In this section, we describe our adaptation of TRON to linear

inequalities and emphasize the most costly subproblems. We refer the reader to (Lin and Moré, 1999) for

a complete description of the algorithm. Our contention is that when the linear inequality constraints are

defined by a fast operator, an efficient implementation remains possible.

TRON is a trust-region active-set method for problems of the form Equation (13). At each iteration, we

construct a quadratic approximation of the objective,

ψ(w) = gT
kw + 1

2w
THkw, (27)

where gk = ∇f (xk) and Hk = ∇2f (xk). A central subproblem consists in minimizing ψ(w) on the active

face of the feasible set, while respecting a trust-region bound. Lin and Moré (1999) establish convergence by

requiring that the decrease in the quadratic approximation achieved by a trial step be at least a fraction of

the decrease achieved by an approximate Cauchy step.

An approximate Cauchy step, denoted sC , is an approximate minimizer of ψ along the projected-gradient

direction, i.e.,

sC = PF [xk − αgk]− xk, (28)

where the feasible set F is defined in (16), such that α achieves sufficient decrease, and such that the trust-

region bound is satisfied. We employ the same strategy as Lin and Moré (1999) to obtain sC , except that we

limit the number of extrapolation steps, which play no role in guaranteeing convergence, but help take larger

steps. Both interpolation and extrapolation steps require one projection and one Hessian product, both of

which are costly in our case.

Before tackling the trust-region subproblem, which is the core of the algorithm, we define the active-set,

representing the constraints that are at their bound at xk, and the breakpoints, which are the step lengths

along a direction w from xk such that previously inactive constraints become active.

4.2.1 Computing the active-set and breakpoints for linear inequalities

Given the feasible set Equation (16) and xk ∈ F , the active-set at xk is

A(xk) = {i | cT
i xk = 0}, (29)

where cT
i is the i-th row of C.

To compute the breakpoints, we first find the set of indices of inactive constraints that could become

violated—or active—if we take a step w from xk:

L = {i | cT
i xk > 0 and cT

i w < 0}. (30)

We then compute the positive step lengths αL along w such that at least one additional constraint becomes

active for the indices Equation (30):

αL i = −c
T
i xk

cT
i w

(i ∈ L ), (31)



Les Cahiers du GERAD G–2017–65 9

where αL i > 0 denotes the i-th component of αL . Because our interest in the breakpoints is to put boundaries

on interpolation and extrapolation steps, we pick the minimal and maximal values of Equation (31).

An additional difficulty is that, in general, we cannot project into F exactly ; we must solve Equation (18)

approximately. We employ a relative measure ε defined by a projection tolerance, noted εproj, the norm of C

and the norm of xk:

ε = εproj · ‖C‖ · ‖xk‖ . (32)

In other words, we use a relaxed definition of Equation (29) and Equation (30). Given Equation (11), we have

‖C‖ = ‖∆‖−1/2
(we do not include the factor 1/n in the constraint definition), which is readily available.

Nearly-active constraints at xk are those for which |cT
i xk| ≤ ε. We stress that the correct identification of the

active-set proves to be critical in practice and the implementation is highly sensitive to the value of εproj.

4.2.2 Solving the Trust-Region problem

Lin and Moré (1999) find an approximate minimizer of (27) on the active face and inside the trust region

by constructing a sequence of minor iterates. Generating the latter not only allows to update the active-set

at each iteration, but also to take projected steps in order to add more constraints to the active-set. The

purpose of this strategy is to quickly determine whether the minimizer of ψ lies in the current active face.

Minor iterates are defined so as to ensure both the convergence of the method and feasibility with respect to

the feasible set and the trust region. More precisely, a minor iterate xk,j is defined as

xk,j+1 = PM[xk,j + αw?] (33)

where M is the set Equation (24), xk,1 := xk + sC and w? is chosen such that∥∥w? + xk,j − xk
∥∥ ≤ ∆.

We refer the reader to (Lin and Moré, 1999) for more details. In order to compute Equation (33), we use

the procedure outlined in Section 3.3. Finally, xk,j+1 must also satisfy a sufficient decrease condition and

a suitable α is obtained by way of a linesearch. We now describe how w? is obtained as an approximate

minimizer of the trust-region subproblem.

For bound-constrained problems, reducing a problem to the active face simply implies fixing a subset of

variables. Hence, w? can be obtained by minimizing ψ(w) subject to the trust region on the free variables.

Lin and Moré (1999) employ the truncated conjugate gradient method (TRCG) proposed by Steihaug (1983).

In our case, such simplification is not possible. We obtain w? as an approximate solution of the quadratic

optimization problem with linear equality and trust-region constraints

minimize
w

ψ(w + s)

subject to BCw = 0

‖w + s‖ ≤ ∆,

(34)

where s = xk,j − xk represents the current step from xk, and B is the restriction matrix composed of the

rows of the identity corresponding to indices in A(xk,j).

We solve Equation (34) using the projected truncated conjugate-gradient method (Gould et al., 2001,

2013), which essentially amounts to applying TRCG and projecting each conjugate-gradient search direction

into A.

Once w? is obtained, the next minor iterate is computed using Equation (33). Lin and Moré (1999)

propose to terminate the procedure if either
∥∥xk,j − xk∥∥ > ∆ or if the decrease condition

‖ZT∇ψ(s)‖ ≤ εgrad ‖Z
Tgk‖

is satisfied, where εgrad > 0 is a tolerance, typically 1e−2, and the columns of Z form an orthonormal basis

for the nullspace of BC—note that the implementation never needs to compute Z explicitly. The former

simply implies that we have crossed the trust-region boundary, and the latter that s satisfies a sufficient

decrease condition for the inactive variables.



10 G–2017–65 Les Cahiers du GERAD

4.2.3 TRON algorithm

In summary, we extend the algorithm of Lin and Moré (1999) to the case of linear inequality constraints.

The rules governing the update of the trust-region radius and to determine whether a step is valid are the

same as those of Lin and Moré (1999). If a step is rejected, we added the option of an Armijo backtracking

linesearch. Algorithm 2 summarizes the projected Newton method.

Algorithm 2 TRON for linear inequalities

1: Initialize x0 = P[x0], f0 = f(x0) and g0 = ∇f(x0)
2: while stopping criteria on Equation (12) not satisfied do
3: Compute ψ(w) Equation (27)
4: Compute the Cauchy step Equation (28)

5: while
∥∥xk,j − xk∥∥ ≤ ∆ and ‖ZT∇ψ(s)‖ > εgrad ‖Z

T
gk‖ do

6: Update the active-set Equation (29)
7: Solve Equation (34) using the projected TRCG method
8: Compute the next minor iterate Equation (33)
9: end while

10: Update the trust-region radius and either accept or reject the step
11: end while

5 Solving the projection subproblem

Our current implementation requires accurate solutions of Equation (18) and Equation (26), which we an-

ticipate first-order methods may not be able to achieve. In order to validate this claim, we compare SPG,

presented in Section 4.1, with second-order methods for the solution of Equation (18) and Equation (26).

The other solvers that we consider are the two-metric projection (TMP) algorithm of Gafni and Bertsekas

(1984), the original trust-region Newton solver (TRON) of Lin and Moré (1999), and the L-BFGS-B solver

of Zhu et al. (1997). Since TRON and SPG were detailed previously, we now detail our implementation of

TMP. To a reasonable extent, L-BFGS-B may be understood as a special case of TMP.

5.1 Two-metric projection algorithm

The two-metric projection algorithm (TMP) of Gafni and Bertsekas (1984) is similar to the projected Newton

method of Bertsekas (1982). Broadly speaking, two-metric projection methods are active-set methods that

use second-order information to rescale the steepest descent direction. However, when the feasible set is

defined by simple bounds l ≤ x ≤ u, simplifications occur and stronger convergence results can be obtained

using the binding set instead of the active-set. The binding set comprises the indices of the variables that

are at their bound and are likely to remain there were a gradient-descent step taken:

B(xk) = {i | (xki = li and gki > 0) or (xki = ui and gki < 0)}, (35)

where xki and gki are the i-th components of xk and gk. A rescaled gradient step dk is then computed for

the free variables, i.e., those not in B(xk), as the solution of

minimize
dk

1
2d

T
kQkdk + gT

k dk subject to dki = 0, i ∈ B(xk), (36)

where Qk is a symmetric approximation of the Hessian of the objective—possibly a quasi-Newton

approximation—such that Qk is positive definite when restricted to the subspace of free variables. Such

methods regained interest recently in the context of large-scale bound-constrained problems, including those

arising from machine learning (Schmidt et al., 2011). In our experience, whereas quasi-Newton approxima-

tions of the Hessian Hk may yield faster computations, attaining tighter optimality tolerances often proves to

be impossible. Thus, we allow Qk = Hk—the Hessian of the objective function—and provide Krylov methods

to solve Equation (36). The optimality conditions of Equation (36) may be written as the linear system

(BHkB
T)Bdk = −Bgk, (37)



Les Cahiers du GERAD G–2017–65 11

where B is the restriction matrix formed with the rows of the identity corresponding to indices i 6∈ B(xk)

and the remaining components of dk are set to zero. As in Section 3.2, candidate Krylov methods for

Equation (37) include PCG (Hestenes and Stiefel, 1952) and MINRES (Paige and Saunders, 1975), as well as

their counterparts LSQR (Paige and Saunders, 1982) and LSMR (Fong and Saunders, 2011). However, given

that LSQR and LSMR handle Equation (37) as a linear least-squares problem, they cannot benefit from the

fact that the Hessian Hk of Equation (18) or Equation (26) is

Hk = CCT =
(

1
n F ?

n ∆−1/2 Fn

)(
1
n F ?

n ∆−1/2 Fn

)T

= 1
n F ?

n ∆−1 Fn,

thus saving two FFT operations. Moreover, whereas Equation (22) had to be solved once to project into the

active face, Equation (37) must be solved at each iteration of TMP. For that reason, we recommend PCG

and MINRES.

Algorithm 3 summarizes the two-metric projection algorithm that we consider, where P+ is the projection

into the nonnegative orthant.

Algorithm 3 Two-metric projection algorithm for bounded problem

1: Initialize x0 = P+[x0], k = 0 and g0 = ∇f(x0)
2: while stopping criteria not met do
3: compute the binding set Equation (35)
4: compute the descent direction Equation (36)
5: compute the new iterate xk+1 = P+[xk + αkdk] where αk > 0 is obtained via a projected Armijo linesearch.
6: end while

6 Numerical results

In this section, we compare SPG and TRON in order to identify which performs best on Equation (12).

Given that projections play a crucial role in our implementations, we are also interested in determining which

solvers lead to both more accurate projections and shorter run times. To that effect, we compare various

combinations of reconstruction solvers and projection solvers for the solution of Equation (12). Synthetic

projection data, i.e. intensity measurements, as well a realistic human phantom, are provided by the software

XCAT, developed by Segars et al. (2008). The geometric parameters and X-ray source characteristics were

chosen to emulate a standard clinical scanner, with a measurement quality comparable to that of standard

acquisition protocols. Using different techniques for data generation and reconstruction allows us to avoid

the inverse crime Wirgin (2004) to a large extent.

We consider a 2D example consisting of a slice of abdomen, shown in Figure 2, and aim to reconstruct it

from the corresponding intensity measurements. Our example contains 512×512 square pixels of length 0.7

mm each, and the sinogram was obtained from 672 detectors and 1, 160 scan angles. In Cartesian coordinates,

nmeas = 672 · 1, 160 = 779, 520 and nvox = 5122 = 262, 144. In cylindrical coordinates, recall that we assume

that the number of angular elements must be an integer multiple of the scan angles. Say we consider 1, 160

angular elements, the number of radial elements is 5122/1, 160 ≈ 225.9, which we round up to 226. The

effective number of voxels is then nvox = 226 × 1160 = 262, 160. Thus, we have slightly more voxels in

cylindrical coordinates due to the size difference between polar and square pixels.

We study the impact of the penalty function by comparing L 2 penalty functions on the gradient and on

the object respectively. For each solver, we use the norm of the projected gradient as an optimality measure.

For Equation (10) and Equation (12), we use the stopping condition

‖xk − P[xk − gk]‖ ≤ εa + εr ‖x0 − P[x0 − g0]‖,

with εa = εr = 1e−8 and where P is either P+ or PF . We set εproj = 1e−11 for the projection opera-

tions Equation (18), Equation (20) and Equation (26). We set a tolerance of 1e−15 on the progress to

avoid stagnation in case the norm of the search direction or the improvement in the objective becomes too

small. Finally, we limit the total run time to 15 minutes and allow a maximum of 5 minutes for any one

projection operation.



12 G–2017–65 Les Cahiers du GERAD

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

Figure 2: Original phantom: slice of abdomen, 512×512 pixels of size 0.7 mm × 0.7 mm. Sinogram obtained from 672 detectors
and 1, 160 projection angles.

To further validate our results, we compare our algorithms with L-BFGS-B applied to Equation (10) in

Cartesian coordinates, which is our benchmark and offers the best results according to Hamelin (2009). Our

goal is to obtain similar performance as L-BFGS-B, while reducing drastically the memory footprint. In this

specific example, the projection matrices in Cartesian coordinates and cylindrical coordinates require about

1.0Gb and 4.4Mb, respectively, i.e., cylindrical coordinates allow savings of a factor of about 233. However,

keep in mind that Equation (10) in Cartesian coordinates and Equation (12) in cylindrical coordinates are

different problems altogether. All solvers are implemented in MATLAB except L-BFGS-B, which is in C++.

The tables of results use the following nomenclature. The columns PA and PF indicate the choice of

method to compute the corresponding projection. The column labeled KKT gives the final optimality residual

‖xk − P[xk − gk]‖, “time” gives the run time in seconds, f(x∗) is the final objective value, ‖µ < 0‖ is the

final infeasibility, “#P” and “#C” are the number of operator-vector products with P and C, respectively,

and their adjoints, “#iter” is the number of iterations, “#PF” and “#PA” are the number of projections into

the feasible set and into an active face. The numbers of projections PF and PM are grouped together given

the similarity of the projection problems. The failure codes reported are as follows: “cpu” indicates that the

maximum run time was exceeded, “prog” indicates that the improvement in the objective function was too

small and “xfail” indicates an unknown failure.

Table 1, Table 2, and Table 3 report the results of L-BFGS-B on (10) and TRON and SPG on (12) using

a penalty on the gradient of the object.

Table 1: L-BFGS-B applied to Equation (10) using a L 2 penalty function on the gradient of the object with λ = 15.

Proj. Solver KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

N/A 3.4e−6 2.0e2 6.8e3 0 136 N/A 61 N/A N/A

Similarly, Table 4, Table 5 and Table 6 compare L-BFGS-B, TRON and SPG using a penalty on the

object.

For both penalty functions, TRON is effective and fast, and is accurate in terms of final infeasibility,

especially when combined with either LSQR or LSMR to apply PA and TMP-PCG or TMP-MINRES to

apply PF . Most combinations perform reasonably, with a few exceptions; mostly combinations involving

SPG that are less accurate, stagnate or fail to converge.

Furthermore, the results highlight the effectiveness of the scaling Equation (11), as the run times for TRON

are similar to those for L-BFGS-B. Such results are encouraging and show the potential of specifically-tailored

projection methods for large-scale problems.



Les Cahiers du GERAD G–2017–65 13

Table 2: TRON reconstruction results on Equation (12) using a L 2 penalty function on the gradient of the object with λ = 0.1.

PA PF KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

LSQR

TMP-PCG 3.6e−5 1.5e2 6.9e3 2.2e−14 240 5914 9 46 86
TMP-MINRES 3.6e−5 1.4e2 6.9e3 2.1e−14 240 5840 9 46 86

SPG 2.0e−5 1.4e2 6.9e3 1.1e−8 240 5527 9 46 86
TRON 3.6e−5 4.6e2 6.9e3 3.2e−14 240 33337 9 46 86

L-BFGS-B 3.5e−5 1.4e2 6.9e3 2.4e−7 246 4619 9 47 87

LSMR

TMP-PCG 3.6e−5 1.5e2 6.9e3 2.1e−14 240 5908 9 46 86
TMP-MINRES 3.6e−5 1.5e2 6.9e3 2.1e−14 240 5834 9 46 86

SPG 2.4e−4 1.4e2 6.9e3 1.7e−9 250 5405 9 46 86 prog.
TRON 3.6e−5 4.6e2 6.9e3 3.1e−14 240 29182 9 46 86

L-BFGS-B 3.5e−5 1.4e2 6.9e3 2.4e−7 246 4645 9 47 87

MINRES

TMP-PCG 3.6e−5 1.4e2 6.9e3 3.6e−9 240 4471 9 46 86
TMP-MINRES 3.6e−5 1.4e2 6.9e3 3.6e−9 240 4397 9 46 86

SPG 3.0e−5 1.3e2 6.9e3 3.8e−9 242 3997 9 45 87
TRON 3.6e−5 4.5e2 6.9e3 3.6e−9 240 27164 9 46 86

L-BFGS-B 3.5e−5 1.2e2 6.9e3 2.4e−7 246 3109 9 47 87

PCG

TMP-PCG 3.6e−5 1.5e2 6.9e3 1.7e−11 240 4855 9 46 86
TMP-MINRES 3.6e−5 1.4e2 6.9e3 1.7e−11 240 4781 9 46 86

SPG 2.0e−5 1.3e2 6.9e3 2.8e−8 238 4240 9 46 84
TRON 3.6e−5 4.6e2 6.9e3 1.7e−11 240 27524 9 46 86

L-BFGS-B 3.5e−5 1.3e2 6.9e3 2.4e−7 246 3523 9 47 87

Table 3: SPG reconstruction results on Equation (12) using a L 2 penalty function on the gradient of the object with λ = 0.1.

Step PF KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

BB1

TMP-PCG 3.5e−5 8.1e2 6.9e3 2.6e−15 610 41867 176 353 0
TMP-MINRES 2.8e−4 8.6e2 6.9e3 2.6e−15 729 41190 209 419 0 prog.

SPG 7.9e−4 3.7e2 6.9e3 3.0e−7 499 18143 139 279 0 prog.
TRON 1.4e0 9.0e2 6.9e3 3.0e−14 166 54611 49 99 0 cpu

L-BFGS-B 6.6e−5 6.0e2 6.9e3 1.8e−7 535 16948 156 313 0

ABB

TMP-PCG 2.5e−4 4.8e2 6.9e3 4.3e−15 218 26889 70 141 0 prog.
TMP-MINRES 2.6e−4 4.2e2 6.9e3 2.5e−15 218 22370 70 141 0 prog.

SPG 4.5e−3 1.9e2 6.9e3 1.0e−6 244 9889 66 133 0 prog.
TRON 2.8e−2 9.0e2 6.9e3 2.3e−14 156 56879 50 101 0 cpu

L-BFGS-B 3.8e−4 4.1e2 6.9e3 1.2e−7 262 11797 77 155 0 prog.

ABBmin1

TMP-PCG 4.2e−4 5.0e2 6.9e3 6.8e−15 240 27727 75 151 0 prog.
TMP-MINRES 4.2e−4 4.3e2 6.9e3 2.6e−15 240 23065 75 151 0 prog.

SPG 1.8e−4 2.4e2 6.9e3 2.4e−7 327 11937 84 171 0 prog.
TRON 7.1e−2 9.0e2 6.9e3 4.0e−7 158 56808 50 101 0 cpu

L-BFGS-B 5.0e−4 4.1e2 6.9e3 1.3e−7 259 11604 74 149 0 prog.

ABBSS

TMP-PCG 2.2e−4 5.2e2 6.9e3 2.0e−12 257 29508 83 167 0 prog.
TMP-MINRES 5.6e−4 4.5e2 6.9e3 3.3e−15 257 24537 83 167 0 prog.

SPG 9.6e−5 2.2e2 6.9e3 2.7e−9 271 11693 86 173 0
TRON 7.8e−4 6.9e2 6.9e3 4.8e−15 227 41694 73 147 0 prog.

L-BFGS-B 7.0e−4 3.7e2 6.9e3 8.0e−8 249 10812 79 159 0 prog.

Table 4: L-BFGS-B applied to Equation (10) using a L 2 penalty function on the object with λ = 25.

Proj. Solver KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

N/A 2.3e−6 1.0e2 1.2e5 0 114 N/A 49 N/A N/A

The discrepancy between the run times for TRON and SPG confirms that projections into the feasible

set Equation (17) dominate the cost of the projections on the active face Equation (20). It is thus favorable

to avoid taking too many projected gradient steps.

Our results show that, despite appearing prohibitive for large-scale problems, second-order methods can

be competitive after all, provided that subproblems can be solved efficiently.



14 G–2017–65 Les Cahiers du GERAD

Table 5: TRON reconstruction results on Equation (12) using a L 2 penalty function on the object with λ = 0.1.

PA PF KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

LSQR

TMP-PCG 1.9e−4 1.2e2 7.1e4 2.8e−14 193 5740 8 38 63
TMP-MINRES 1.9e−4 1.2e2 7.1e4 2.6e−14 193 5297 8 38 63

SPG 1.9e−4 1.1e2 7.1e4 2.9e−10 193 5367 8 38 63
TRON 1.9e−4 4.3e2 7.1e4 6.2e−14 193 33407 8 38 63

L-BFGS-B 1.9e−4 1.2e2 7.1e4 1.1e−7 193 4303 8 38 63

LSMR

TMP-PCG 1.9e−4 1.2e2 7.1e4 2.5e−14 193 5738 8 38 63
TMP-MINRES 1.9e−4 1.2e2 7.1e4 2.4e−14 193 5295 8 38 63

SPG 1.9e−4 1.1e2 7.1e4 3.2e−10 193 5207 8 38 63
TRON 1.9e−4 4.2e2 7.1e4 6.1e−14 193 33536 8 38 63

L-BFGS-B 1.9e−4 1.3e2 7.1e4 1.1e−7 193 4323 8 38 63

MINRES

TMP-PCG 1.9e−4 1.2e2 7.1e4 1.2e−15 193 4885 8 38 63
TMP-MINRES 1.9e−4 1.1e2 7.1e4 1.2e−15 193 4441 8 38 63

SPG 7.3e−5 1.1e2 7.1e4 4.8e−10 222 4909 9 43 73
TRON 2.5e−3 4.0e2 7.1e4 4.6e−11 160 32301 7 33 51 cpu.

L-BFGS-B 1.9e−4 1.2e2 7.1e4 1.2e−7 193 3416 8 38 63

PCG

TMP-PCG 1.9e−4 1.2e2 7.1e4 1.0e−11 193 5139 8 38 63
TMP-MINRES 1.9e−4 1.2e2 7.1e4 1.0e−11 193 4696 8 38 63

SPG 7.3e−5 1.1e2 7.1e4 4.3e−10 222 5142 9 43 73
TRON 1.9e−4 4.2e2 7.1e4 1.0e−11 193 33556 8 38 63

L-BFGS-B 1.9e−4 1.2e2 7.1e4 1.1e−7 193 3657 8 38 63

Table 6: SPG reconstruction results on Equation (12) using a L 2 penalty function on the object with λ = 0.1.

Step PF KKT time f(x
?
) ‖µ < 0‖ #P #C #iter #PF #PA fail

BB1

TMP-PCG 1.5e−4 3.2e2 7.1e4 2.0e−15 406 17031 118 237 0
TMP-MINRES 2.8e−4 3.2e2 7.1e4 8.8e−16 410 16161 120 241 0 prog.

SPG 2.1e−4 2.6e2 7.1e4 4.9e−8 384 15080 107 215 0 prog.
TRON 3.3e−5 6.1e2 7.1e4 1.1e−14 397 43760 116 233 0

L-BFGS-B 1.3e−4 3.0e2 7.1e4 5.4e−7 376 9505 110 221 0

ABB

TMP-PCG 2.8e−3 1.9e2 7.1e4 6.5e−15 211 11351 68 137 0 prog.
TMP-MINRES 2.8e−3 1.9e2 7.1e4 9.3e−16 211 10253 68 137 0 prog.

SPG 4.9e−3 1.6e2 7.1e4 4.5e−10 202 11187 65 131 0 prog.
TRON 1.0e−4 8.0e2 7.1e4 1.2e−6 235 58716 75 151 0

L-BFGS-B 1.9e−4 2.2e2 7.1e4 2.7e−7 227 7548 73 147 0

ABBmin1

TMP-PCG 3.5e−4 2.1e2 7.1e4 2.5e−15 228 11776 70 141 0 prog.
TMP-MINRES 3.7e−4 2.0e2 7.1e4 9.4e−16 220 10335 68 137 0 prog.

SPG 1.7e−4 1.7e2 7.1e4 1.2e−8 219 11308 68 137 0
TRON 1.4e−3 4.9e2 7.1e4 3.6e−14 213 37906 66 133 0 prog.

L-BFGS-B 3.7e−4 2.2e2 7.1e4 1.3e−7 220 7333 68 137 0 prog.

ABBSS

TMP-PCG 1.9e−4 2.0e2 7.1e4 7.7e−14 221 11486 71 143 0
TMP-MINRES 7.9e−4 1.7e2 7.1e4 7.8e−16 196 9608 63 127 0 prog.

SPG 1.3e−4 1.8e2 7.1e4 2.0e−10 233 11579 75 151 0
TRON 1.9e−4 4.9e2 7.1e4 1.4e−14 219 37979 71 143 0

L-BFGS-B 1.9e−4 2.3e2 7.1e4 1.3e−7 233 7598 75 151 0

Figure 3 illustrates reconstructed images for the “best” candidate with each penalty function and each

solver. Given that the results are fairly similar and that no combination stands out from the others, we pick

those with the best overall performance: the combinations of SPG/ABB/TMP-MINRES and TRON/LSQR/

TMP-MINRES. For the projection on the active face, we tend to favor LSQR and LSMR over their PCG

and MINRES counterparts because of their improved numerical stability.



Les Cahiers du GERAD G–2017–65 15

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V
(a) TRON on Equation (12), λ = 0.1

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

(b) TRON on Equation (12), λ = 0.1

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

(c) SPG on Equation (12), λ = 0.1

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

(d) SPG on Equation (12), λ = 0.1

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

(e) L-BFGS-B on Equation (10), λ = 15

-150 -100 -50 0 50 100 150
x (mm)

-150

-100

-50

0

50

100

150

y 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
-R

 A
tt.

, c
m

-1
, 7

0 
ke

V

(f) L-BFGS-B on Equation (10), λ = 25

Figure 3: Reconstruction results using the L 2 norm on the gradient of the object (left) and the L 2 norm on the object (right).
Problem Equation (12) is posed in cylindrical coordinates while Equation (10) is posed in Cartesian coordinates.



16 G–2017–65 Les Cahiers du GERAD

7 Discussion

We studied and designed factorization-free implementations for Equation (12) by capitalizing on its fast

Jacobian operator. This motivated us to develop efficient projection operations, and efficient implementations

of projection-based active-set methods.

Our results not only show the effectiveness of specifically tailored projected methods but also that second-

order methods on large-scale problems arising from image reconstruction can be viable.

Moreover, the drastic reduction in memory requirements obtained using cylindrical coordinates might

allow the application of iterative methods to 3D tomographic reconstruction on common computers. For

that reason, we believe that the present work is a step towards applying iterative methods in clinical settings

in the near future.

The impact of inexact projection must be assessed and it would be interesting to have theoretical results

indicating how inexact projections are allowed to be. For the moment, we are content with using tight

tolerances on the projection solvers, which ensure that infeasibility is insignificant in comparison to the

accuracy of the iterates. Finally, we are considering factorization-free implementations of other approaches,

including interior-point methods and proximal algorithms.

Implementations of our solvers are available in object-oriented MATLAB as part of the NLPLab opti-

mization framework available at https://bitbucket.org/maxmcl/nlplab.

Appendix A Step length updates for Barzilai-Borwein methods

In this section, we state the non-monotone Armijo linesearch proposed by Birgin et al. (2001) and Birgin and

Mart́ınez (2002) as Algorithm 4. This line search uses quadratic interpolation to initialize λtemp. Typical

values are γ = 1e−4, σ1 = 0.1, σ2 = 0.9 and m = 10.

Algorithm 4 Safeguarded non-monotone Armijo line search

1: Given 0 < σ1 < σ2 < 1, γ ∈ (0, 1), m ∈ N+
0 , xk ∈ R

n
, ∇f(xk) and a direction dk,

2: set fmax = max{f(xk−j) | 0 ≤ j ≤ min(k, m− 1)}
3: set λk = 1, xk+1 = xk + λkdk, δ = ∇f(xk)

T
dk

4: while f(xk+1) > fmax + γλkδ do

5: λtemp = −λ2kδ/(2(f(xk+1)− f(xk)− λkδ))
6: if σ1 ≤ λtemp ≤ σ2 then
7: set λk = λtemp

8: else
9: set λk =

λk
2

10: end if
11: xk+1 = xk + λkdk
12: end while
13: return λk, xk+1

We now state the various step length update schemes that we consider for Algorithm 1. Recall that at

iteration k, sk = xk+1 − xk and yk = gk+1 − gk.

Algorithm 5, known as the first Barzilai-Borwein step length (BB1), gives the step used by Birgin et al.

(2001). Typical values for αmax and αmin are 1.0e3 and 1.0e−3 respectively.

Algorithm 5 Safeguarded first Barzilai-Borwein step (BB1)

1: Given the step length safeguards αmax > αmin > 0 and vectors sk and yk
2: if s

T
kyk < 0 then

3: return αmax

4: else
5: return min{αmax, max{αmin, s

T
ksk/s

T
kyk}}

6: end if

https://bitbucket.org/maxmcl/nlplab


Les Cahiers du GERAD G–2017–65 17

We now state the various adaptative update rules that we consider. For a survey, we refer the reader

to the works of di Serafino et al. (2017). Algorithm 6 (ABBmin1), suggested by Frassoldati et al. (2008),

determines whether the first or the smallest of the last mα second Barzilai-Borwein step length should be

used, given a threshold value τ . The original ABB algorithm presented by Zhou et al. (2006) can be derived

from Algorithm 6 if we set mα = 1. Typical values of the parameters are τ = 0.8 and mα = 9.

Algorithm 6 Adaptive minimal Barzilai-Borwein step (ABBmin1)

1: Given τ , the memory mα and the inputs sk and yk,

2: compute α
(1)

= s
T
ksk/s

T
kyk and α

(2)
= s

T
kyk/y

T
kyk

3: if α
(2)

< τ α
(1)

then
4: return min{α(2)

j | j = max(1, k −mα), . . . , k}
5: else
6: return α

(1)

7: end if

Bonettini et al. (2009) propose Algorithm 7 (ABBSS), that is similar to Algorithm 6, but uses a dynamic

threshold τ and safeguards on α, as in Algorithm 5. Because Equation (12) is already scaled, we set the

scaling matrix as the identity in our implementation of Algorithm 7. Typical values of the parameters are

τ = 0.5 and mα = 2.

Algorithm 7 Safeguarded adaptive minimal B.-B. step with dynamic threshold (ABBSS)

1: Given τ , αmax > αmin > 0, the memory mα and vectors sk and yk,

2: if s
T
kyk ≤ 0 then

3: α
(1)

= αmax

4: α
(2)

= αmax

5: else
6: α

(1)
= max{αmin, min{sT

ksk/s
T
kyk, αmax}}

7: α
(2)

= max{αmin, min{sT
kyk/y

T
kyk, αmax}}

8: end if
9: if α

(2) ≤ τ α(1)
then

10: α = min{α(2)
j | j = max(1, k −mα), . . . , k}

11: τ = 0.9 · τ
12: else
13: α = α

(1)

14: τ = 1.1 · τ
15: end if
16: return α

Appendix B TRON for bounded problems compared to IPOPT

In this section, we validate our MATLAB implementation of TRON solver against IPOPT (Wächter and

Biegler, 2006) on a selection of bound-constrained problems from the CUTE library in AMPL format.1

Our implementation of TRON accomodates (13) and we specialize it to bound constraints by supplying

appropriate projection functions—see Section 3.1, Section 3.2 and Section 3.3. IPOPT is run with default

parameters. Table 7 uses the same failure codes as in Section 6. Given the smaller sizes of the problems, we

reduced the maximal allowed run time to 120 seconds and added a limit of 1e5 iterations, corresponding to

the the error code “iter”.

Table 7: TRON vs. IPOPT on bound-constrained problems from CUTE.

Problem Solver KKT time f(x
?
) #iter #f #g #H fail

3pk
IPOPT 3.10e−12 2e−2 1.72e0 11 12 12 11
TRON 6.68e−7 2e−1 1.72e0 111 111 111 220

Continued on next page

1
https://github.com/mpf/Optimization-Test-Problems

https://github.com/mpf/Optimization-Test-Problems


18 G–2017–65 Les Cahiers du GERAD

Table 7 – continued from previous page

Problem Solver KKT time f(x
?
) #iter #f #g #H fail

allinit
IPOPT 3.87e−15 4e−3 1.67e1 12 20 13 12
TRON 4.97e−9 1e2 1.67e1 18 44 9 44 prog.

bdexp
IPOPT 8.82e−11 1e−1 2.13e−8 21 22 22 21
TRON 4.45e−9 2e−1 2.13e−8 22 22 22 42

biggsb1
IPOPT 3.92e−16 2e−2 1.50e−2 20 21 21 20
TRON 2.73e−10 7e−1 1.50e−2 530 530 530 1058

bqpgabim
IPOPT 1.39e−17 8e−3 −3.79e−5 18 24 19 18
TRON 8.26e−11 3e−2 −3.79e−5 8 8 8 14

bqpgasim
IPOPT 5.02e−17 8e−3 −5.52e−5 19 25 20 19
TRON 3.29e−10 2e−2 −5.52e−5 26 84 13 66 prog.

camel6
IPOPT 9.92e−16 8e−3 −1.03e0 11 12 12 11
TRON 2.46e−14 1e−2 −1.03e0 9 11 9 17

chenhark
IPOPT 1.67e−15 3e−2 −2.00e0 21 22 22 21
TRON 5.47e−8 5e1 −2.00e0 3376 3434 3360 6767 prog.

cvxbqp1
IPOPT 2.74e−12 6e−1 2.25e6 11 12 12 11
TRON 2.78e−15 1e−2 2.25e6 2 2 2 2

deconvb
IPOPT 2.44e−9 1e1 3.04e−13 10000 47482 10001 10000 iter.
TRON 3.36e−9 5e−2 1.33e−12 46 49 46 91

eg1
IPOPT 4.24e−16 4e−3 −1.43e0 8 9 9 8
TRON 2.38e−8 1e2 −1.13e0 19 51 7 48 cpu.

explin
IPOPT 4.34e−14 1e−2 −7.24e5 19 20 20 19
TRON 2.33e−6 1e2 −7.24e5 34 51 19 82 cpu.

explin2
IPOPT 2.77e−14 2e−2 −7.24e5 19 20 20 19
TRON 7.16e−5 1e2 −7.24e5 31 48 14 77 prog.

hadamals
IPOPT 1.73e−14 2e−1 2.53e1 109 110 110 109
TRON 2.00e−9 2e−2 8.13e2 10 10 10 18

harkerp2
IPOPT 2.55e−15 2e−2 −5.00e−1 17 18 18 17
TRON 0.00e0 1e−2 −5.00e−1 3 3 3 4

hart6
IPOPT 1.90e−15 8e−3 −3.32e0 9 15 10 9
TRON 4.59e−8 1e2 −3.32e0 24 48 11 63 prog.

hatflda
IPOPT 2.23e−14 8e−3 9.52e−21 11 12 12 11
TRON 6.21e−13 2e−2 3.47e−25 30 30 30 58

hatfldb
IPOPT 7.39e−15 1e−2 5.57e−3 11 12 12 11
TRON 2.00e−15 1e−2 5.57e−3 27 27 27 52

hatfldc
IPOPT 1.16e−16 4e−3 6.44e−24 6 7 7 6
TRON 0.00e0 5e−3 0.00e0 6 6 6 10

himmelp1
IPOPT 5.79e−15 1e−2 −6.21e1 13 21 14 13
TRON 1.09e−8 1e2 −6.21e1 23 91 14 56 prog.

hs110
IPOPT 3.68e−15 4e−3 −4.58e1 7 8 8 7
TRON 8.44e−12 1e−2 −4.58e1 18 18 18 34

hs3mod
IPOPT 0.00e0 8e−3 −9.99e−9 6 7 7 6
TRON 0.00e0 5e−3 0.00e0 5 5 5 8

logros
IPOPT 4.18e−13 8e−2 0.00e0 76 679 77 76
TRON 2.56e−9 1e2 0.00e0 47 81 33 115 cpu.

Continued on next page



Les Cahiers du GERAD G–2017–65 19

Table 7 – continued from previous page

Problem Solver KKT time f(x
?
) #iter #f #g #H fail

maxlika
IPOPT 1.51e−12 2e−2 1.14e3 20 26 21 20
TRON 5.71e−11 4e−2 1.15e3 14 18 14 28

mccormck
IPOPT 9.17e−16 4e0 −4.57e4 18 237 19 18
TRON 4.69e−5 1e2 −4.57e4 30 98 16 77 cpu.

mdhole
IPOPT 0.00e0 4e−2 −9.99e−9 48 119 49 48
TRON 8.64e−18 1e−2 1.87e−37 15 21 15 30

ncvxbqp1
IPOPT 9.18e−13 3e1 −1.99e10 261 262 262 261
TRON 5.67e−16 2e−2 −1.99e10 2 2 2 2

ncvxbqp2
IPOPT 2.82e4 1e2 −1.33e10 1161 1162 1162 1161 xfail.
TRON 1.27e−2 1e2 −1.33e10 32 59 13 81 cpu.

ncvxbqp3
IPOPT 1.02e5 1e2 −6.32e9 975 976 976 975 xfail.
TRON 1.76e−3 1e2 −6.56e9 29 117 14 72 prog.

nonscomp
IPOPT 2.51e−11 3e−1 1.96e−8 27 88 28 27
TRON 7.88e−7 1e−1 9.79e−15 12 12 12 22

obstclal
IPOPT 2.73e−16 1e−2 1.40e0 15 16 16 15
TRON 2.23e−11 8e−3 1.40e0 11 13 11 21

obstclbl
IPOPT 2.35e−16 4e−3 2.88e0 12 13 13 12
TRON 3.36e−9 1e2 2.88e0 20 91 8 50 cpu.

obstclbu
IPOPT 2.49e−16 8e−3 2.88e0 13 14 14 13
TRON 2.16e−11 6e−3 2.88e0 7 7 7 12

oslbqp
IPOPT 9.09e−17 1e−2 6.25e0 17 18 18 17
TRON 0.00e0 4e−3 6.25e0 2 2 2 2

palmer1
IPOPT 1.77e−9 4e−1 1.18e4 766 1983 767 767 prog.
TRON 1.87e−8 3e−2 2.82e4 61 61 61 120

palmer5a
IPOPT 1.91e1 7e0 2.82e−2 10000 50184 10001 10000 iter.
TRON 8.91e−4 5e0 5.86e−2 9802 10000 9802 19695 prog.

palmer5b
IPOPT 2.15e−11 4e−2 9.75e−3 80 203 81 80
TRON 1.63e−5 2e−1 1.50e−2 422 437 422 849

palmer5d
IPOPT 1.55e−12 0e0 8.73e1 1 2 2 1
TRON 3.09e−8 4e−3 8.73e1 4 4 4 6

palmer5e
IPOPT 6.24e−3 8e0 2.07e−2 10000 69390 10001 10000 iter.
TRON 5.39e−4 6e0 3.87e−2 9967 10000 9967 19948 prog.

palmer6a
IPOPT 7.28e−11 1e−1 5.59e−2 288 701 289 288
TRON 1.78e−7 2e−1 5.59e−2 372 384 372 747

palmer6e
IPOPT 7.06e−13 6e−2 2.24e−4 28 64 29 28
TRON 7.00e−7 1e−1 2.24e−4 177 207 177 367

palmer7e
IPOPT 2.12e3 7e0 6.46e0 10000 40833 10001 10000 iter.
TRON 3.06e−6 5e−1 1.02e1 944 991 944 1908

palmer8a
IPOPT 4.32e−13 4e−2 7.40e−2 86 172 87 86
TRON 4.15e−7 4e−2 7.40e−2 75 75 75 148

palmer8e
IPOPT 1.56e−11 1e−2 6.34e−3 28 44 29 28
TRON 9.79e−7 4e−2 6.34e−3 74 82 74 149

pentdi
IPOPT 4.44e−16 2e−2 −7.50e−1 18 19 19 18
TRON 0.00e0 4e−3 −7.50e−1 2 2 2 2

Continued on next page



20 G–2017–65 Les Cahiers du GERAD

Table 7 – continued from previous page

Problem Solver KKT time f(x
?
) #iter #f #g #H fail

probpenl
IPOPT 2.62e−5 1e2 −9.32e4 2548 2989 2549 2548 xfail.
TRON 3.24e−6 1e−2 3.99e−7 2 2 2 2

pspdoc
IPOPT 1.11e−16 8e−3 2.41e0 8 16 9 8
TRON 4.33e−14 5e−3 2.41e0 8 8 8 14

qr3dls
IPOPT 3.80e−14 1e−1 1.34e−21 50 115 51 50
TRON 2.61e−10 4e−1 4.66e−18 92 109 92 190

qrtquad
IPOPT 3.18e−11 2e−2 −3.65e6 30 48 31 30
TRON 3.16e−6 1e2 −3.65e6 62 178 50 151 prog.

qudlin
IPOPT 3.55e−15 2e−2 −7.20e3 53 101 54 53
TRON 0.00e0 2e−3 −7.20e3 2 2 2 2

s368
IPOPT 1.55e−16 1e−1 3.01e−20 7 8 8 7
TRON 0.00e0 9e−3 0.00e0 1 1 1 0

scon1dls
IPOPT 4.83e−12 1e0 1.65e−16 458 2379 459 458
TRON 2.91e−4 1e2 8.06e−4 8830 9757 8830 18061 cpu.

sim2bqp
IPOPT 2.95e−18 4e−3 −9.99e−9 8 9 9 8
TRON 0.00e0 3e−3 0.00e0 2 2 2 2

simbqp
IPOPT 2.97e−18 8e−3 −9.99e−9 8 9 9 8
TRON 0.00e0 3e−3 0.00e0 2 2 2 2

sineali
IPOPT 1.70e−2 6e0 −1.90e3 10000 26766 10001 10000 iter.
TRON 4.44e−6 1e2 −1.90e3 20 33 9 50 cpu.

torsion-1
IPOPT 1.59e−16 1e−1 −4.18e−1 17 18 18 17
TRON 8.52e−10 1e2 −4.18e−1 35 123 24 81 prog.

torsion-2
IPOPT 1.90e−16 2e−1 −4.18e−1 18 19 19 18
TRON 9.13e−11 4e−1 −4.18e−1 27 34 27 55

torsion-3
IPOPT 2.33e−16 2e−1 −4.18e−1 18 19 19 18
TRON 2.75e−11 5e−1 −4.18e−1 32 43 32 66

yfit
IPOPT 4.20e−12 2e−2 6.67e−13 49 97 50 49
TRON 1.35e−8 3e−2 1.63e−12 63 81 63 132

References
Barzilai, J., and J. M. Borwein. 1988. Two-point step size gradient methods. IMA J. Numer. Anal. 8:141–148.

Beister, M., D. Kolditz, and W. Kalender. 2012. Iterative Reconstruction Methods in X-ray CT. Physica Medica
28:94–108.

Bertsekas, D. P. 1982. Projected Newton Methods for Optimization Problems with Simple Constraints. SIAM J.
Control Optim. 20:221–246.

Birgin, E. G., and J. M. Mart́ınez. 2002. Large-Scale Active-Set Box-Constrained Optimization Method with Spectral
Projected Gradients. Sci. (80-. ). 23:101–125.

Birgin, E. G., J. M. Mart́ınez, and M. Raydan. 2001. Algorithm 813: SPGsoftware for convex-constrained optimization.
ACM Trans. Math. Softw. 27:340–349.

Bonettini, S., R. Zanella, and L. Zanni. 2009. A scaled gradient projection method for constrained image deblurring.
Inverse Probl. 25:015002.

Boyd, S., and L. Vandenberghe. 2010. Convex Optimization, vol. 25. New York, NY, USA: Cambridge University
Press.

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu. 1995. A Limited Memory Algorithm for Bound Constrained Optimization.
SIAM J. Sci. Comput. 16:1190–1208.



Les Cahiers du GERAD G–2017–65 21

Cooley, J. W., and J. W. Tukey. 1965. An Algorithm for the Machine Calculation of Comples Fourier Series. Math.
Comput. 19:297–301.

Dai, Y. H., and R. Fletcher. 2005. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic
programming. Numer. Math. 100:21–47.

di Serafino, D., V. Ruggiero, G. Toraldo, and L. Zanni. 2017. On the steplength selection in gradient methods for
unconstrained optimization. Tech. rep., Optimization Online. URL http://www.optimization-online.org/DB_

HTML/2017/01/5832.html.

Fong, D. C.-L., and M. A. Saunders. 2011. LSMR: An Iterative Algorithm for Sparse Least-Squares Problems. SIAM
J. Sci. Comput. 33:2950–2971.

Frassoldati, G., L. Zanni, and G. Zanghirati. 2008. New adaptive stepsize selections in gradient methods. J. Ind.
Manag. Optim. 4:299–312.

Gafni, E. M., and D. P. Bertsekas. 1984. Two-Metric Projection Methods for Constrained Optimization. SIAM J.
Control Optim. 22:936–964.

Golkar, M. A. 2013. Fast Iterative Reconstruction in X-ray Tomography Using Polar Coordinates. Master’s thesis,
École Polytechnique de Montréal.

Gould, N. I. M., M. E. Hribar, and J. Nocedal. 2001. On the Solution of Equality Constrained Quadratic Programming
Problems Arising in Optimization. SIAM J. Sci. Comput. 23:1376–1395.

Gould, N. I. M., D. Orban, and T. Rees. 2013. Projected Krylov methods for saddle-point systems. Cah. du GERAD
G-2013-23, GERAD, 1–26.

Goussard, Y., M. A. Golkar, A. Wagner, and M. Voorons. 2013. Cylindrical coordinate representation for statistical
3D CT reconstruction. 12th Int. Meet. Fully Three-Dimensional Image Reconstr. Radiol. Nucl. Med. pp. 138–141.

Hamelin, B. 2009. Accélération d’une approche régularisée de reconstruction en tomographie à rayons X avec réduction
des artéfacts métalliques. Ph.D. thesis, École Polytechnique de Montréal.

Herman, G. T., and S. W. Rowland. 1973. Three Methods for Reconstructing Objects From X-Rays: A Comparative
Study. Comput. Graph. Image Process. 2:151–178.

Hestenes, M. R., and E. Stiefel. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.
Stand. (1934). 49:409–436.

Lin, C.-J., and J. J. Moré. 1999. Newton’s method for large bound-constrained optimization problems. SIAM J.
Optim. 9:1100–1127.

Luenberger, D. G., and Y. Ye. 2008. Linear and Nonlinear Programming. Springer.

Paige, C. C., and M. A. Saunders. 1975. Solution of Sparse Indefinite Systems of Linear Equations. SIAM J. Numer.
Anal. 12:617–629.

Paige, C. C., and M. A. Saunders. 1982. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares.
ACM Trans. Math. Softw. 8:43–71.

Pan, X., E. Y. Sidky, and M. Vannier. 2009. Why Do Commercial CT Scanners still Employ Traditional, Filtered
Back-projection for Image Reconstruction? Inverse problems 25. URL http://stacks.iop.org/0266-5611/25/i=

12/a=123009. Ref.: 123009.

Petersen, K. B., and M. S. Pedersen. 2007. The Matrix Cookbook. Citeseer 16:1–66.

Sauer, K., and C. Bouman. 1993. A Local Update Strategy for Iterative Reconstruction from Projections. IEEE
Trans. Signal Process. 41:534–548.

Schmidt, M., D. Kim, and S. Sra. 2011. Projected Newton-type Methods in Machine Learning. In Optim. Mach.
Learn., 305–330. Cambridge, MA, USA: MIT Press.

Segars, W. P., M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui. 2008. Realistic CT simulation using the 4D
XCAT phantom. Med. Phys. 35:3800–3808.

Steihaug, T. 1983. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM J. Numer.
Anal. 20:626–637.

Thibaudeau, C., J.-D. Leroux, R. Fontaine, and R. Lecomte. 2013. Fully 3D iterative CT reconstruction using polar
coordinates. Med. Phys. 40:111904.

Wächter, A., and L. T. Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program. 106:25–57.

Wirgin, A. 2004. The inverse crime. arXiv.org 1–10.

Zhou, B., L. Gao, and Y.-H. Dai. 2006. Gradient Methods with Adaptive Step-Sizes. Comput. Optim. Appl. 35:69–86.

Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw. 23:550–560.

http://www.optimization-online.org/DB_HTML/2017/01/5832.html
http://www.optimization-online.org/DB_HTML/2017/01/5832.html
http://stacks.iop.org/0266-5611/25/i=12/a=123009
http://stacks.iop.org/0266-5611/25/i=12/a=123009

	Introduction
	Iterative reconstruction algorithm
	Stochastic Beer-Lambert law and discretization
	Maximum likelihood
	Maximum a posteriori and penalty function
	Scaled problem in cylindrical coordinates

	Primal active-set methods
	Projection into the polyhedral feasible set
	Projection into the active face of the polyhedral feasible set
	Projection into the ``mixed'' set

	Solving the reconstruction problem
	Non-monotone spectral projected-gradient method
	TRON for linear inequalities
	Computing the active-set and breakpoints for linear inequalities
	Solving the Trust-Region problem
	TRON algorithm


	Solving the projection subproblem
	Two-metric projection algorithm

	Numerical results
	Discussion
	Step length updates for Barzilai-Borwein methods
	TRON for bounded problems compared to IPOPT

