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Abstract: In this paper we solve the discrete time mean-variance hedging problem when asset returns follow
a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are
well established properties of financial time series and our model covers both. To illustrate the relevance of
our proposed methodology, we first compare the proposed model with the well-known hidden Markov model
via likelihood ratio tests and a novel goodness-of-fit test on the S&P 500 daily returns. Secondly, we present
out-of-sample hedging results on S&P 500 vanilla options as well as a trading strategy based on theoretical
prices, which we compare to simpler models including the classical Black-Scholes delta-hedging approach.

Keywords: Option Pricing, autoregressive, dynamic hedging, regime-wwitching, goodness-of-fit, Hidden
Markov models

Résumé : Dans cet article, nous résolvons le problème de réplication optimale en temps discret lorsque
les rendements d’actifs suivent un modèle auto-régressif multivarié à changement de régimes. La volatilité
dépendante du temps et la dépendance en série sont des propriétés bien établies des séries chronologiques
financières et notre modèle couvre les deux. Pour illustrer la pertinence de notre méthodologie, nous com-
parons d’abord le modèle proposé avec le modèle de Markov caché bien connu grâce à des tests de taux de
vraisemblance et un nouveau test d’ajustement sur les rendements journaliers du S&P 500. Deuxièmement,
nous présentons des résultats de couverture hors échantillon sur les options vanille S&P 500 ainsi qu’une
stratégie de négociation basée sur les prix théoriques, que nous comparons à des modèles plus simples, y
compris l’approche classique de couverture du delta Black-Scholes.

Mots clés : Tarification d’options, auto-régressif, réplication dynamique, changement de régimes, test
d’ajustement, modèles de Markov caché
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1 Introduction

The quest for the perfect option pricing model is clearly an important topic in the mathematical finance

literature. Cox and Ross (1976) provided the following observation: if a claim is priced by arbitrage in a

world with one asset and one bond, then its value can be found by first adapting the model so that the

asset earns the risk-free rate, and then computing the expected value of the claim. The idea of finding a

self-financing optimal investment strategy that replicates the terminal payoff of the claim is now known as

dynamic hedging.

One can model the underlying asset’s returns with the geometric Brownian motion and retrieve a tractable

and intuitive way of pricing and replicating options. This is precisely what Black and Scholes (1973) proposed.

Unfortunately, financial markets are far too complex for a model as simple as this one and this hedging

protocol can lead to large hedging errors, as it will be shown later in this paper. The main drawback of

this framework is the constant volatility’s assumption. Indeed, volatility seems to vary over time (Schwert,

1989), (Hamilton and Lin, 1996), mainly for macroeconomics reason. Furthermore, this model assumes serial

independence for the returns, which is also an hypothesis that is violated in general.

Optimal hedging was later introduced, which consists in minimizing the quadratic error of replication.

The solutions were derived in continuous time (Schweizer, 1992) and later in discrete time (Schweizer, 1995).

This methodology can be applied to geometric Brownian motion, or more interestingly to stochastic volatility

models.

Hidden Markov models Hamilton (1989), Hamilton (1990) were proven to be extremely useful for modeling

economic and financial time series. They are robust to time-varying volatility, serial correlation and higher-

order moments, which are all well-established stylized facts of asset returns. The premise for these models

is that identifiable events can quickly change the characteristics of an asset’s returns. This should be taken

into account when pricing a derivative. These events could be on a long horizon - fundamental changes

in monetary, fiscal or income policies - or on a shorter horizon - news related to the underlying stock or

changes in the target band for the Federal funds rate. However, the classical implementation of an HMM

can’t account for multiple horizons.

Elliot’s work on energy finance and interest rate modeling, where mean-reversion is a widely accepted

feature, addresses this problem. Wu and Elliott (2005) introduced a way to parameterize a regime-switching

mean-reverting model with jumps. They found the calibration of the model to be difficult because of the

small amounts of jumps in the time series exhibited. Elliott et al. (2011) later introduced a similar model

with no jumps, and where it is the volatility that is subject to mean-reverting regime-switches. His basis was

that volatility, being driven by macroeconomic forces, was not to be modeled by price movements. Hence

the need to model it by a hidden Markov chain. Finally, Elliott et al. (2013) investigates the valuation of

European and American options under another model where the volatility is subject to regime-switches, but

this time the Markov chain being observable. The paper suggest that it would be interesting to develop some

methods and their corresponding criteria to determine the optimal number of states for the hidden Markov

chain in their setting. This is precisely one of the contributions of our paper.

In light of all the above, we decided to generalize the work of Rémillard et al. (2017): we combine the

regime-switching model with an autoregressive parameter to account for trends and mean-reversions (Fama

and French, 1988) without having to change regime. Autoregressive hidden Markov models (ARHMM) have

been applied to financial engineering and have shown promising results (Shi and Weigend, 1997). Still, this

model has never been used in conjunction with optimal hedging. We derive the solution of the hedging

strategy and obtain derivatives prices under this class of models. It is also noteworthy to add that we will use

semi-exact techniques to compute expectations necessary for the optimal hedging, instead of Monte Carlo

techniques, which will greatly speed up computations. For parameterization, we will implement the EM

algorithm (Dempster et al., 1977) to the ARHMM. This method is widely used in unsupervised machine

learning in order to find hidden structures, in our case, regimes. In order to choose the optimal number of

regimes and to assess the suitability of the model, we propose a new goodness-of-fit test based on the work

of Genest et al. (2006) and Rémillard (2011b). It is based on the Rosenblatt transform and on parametric
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bootstrap. Compared to Elliot’s work, our model can exhibit mean-reversion, but is not restricted to it. It

could thus be more adequate for the modeling of a wider variety of financial assets.

In his famous study Fama (1965), Fama presented strong and voluminous evidence in favor of the random

walk hypothesis. He although suggests that other tests - statistical or profit generating strategies - could either

confirm or contradict his findings. In this paper, we will explore both avenues. We will statistically show that

the ARHMM is an adequate model for financial modelling using the goodness-of-fit test as well as likelihood

ratio tests, and we will show that it is possible to generate money by buying/selling options and replicating

them until maturity. To support our approach, we will compare the trading strategy’s returns with different

methodologies: Black-Scholes delta-hedging and optimal hedging when assets follow a geometric random

walk. We will also compare the hedging results with the delta-hedging using the market’s implicit volatility.

First, we present likelihood ratio test results confirming the ARHMM is a better fit than the classical

HMM on S&P daily returns, in particular, because our model has the capacity for mean-reversion. Secondly,

empirical pricing and hedging results suggest that our methodology is superior to its counterparts by achieving

the best mean-squared error in six out of eight cases, as well as being the most profitable strategy.

The rest of the paper is organized as follows. Section 2 describes the model and implements the EM

algorithm for parameter estimation. In addition, we will introduce the goodness-of-fit test and study its

suitability in the financial markets. Then, in Section 3, we will state the optimal dynamic discrete time

hedging model when assets follow a ARHMM. The results of the implementation of the dynamic hedging

strategies will be presented in Section 4. Section 5 concludes.

2 Regime-witching autoregressive models

The proposed models are quite intuitive. The regime process τ is a homogeneous Markov chain on {1, . . . , l},
with transition matrix Q. At period t − 1, if τt−1 = i, and the return Yt−1 has value yt−1, then at time t,

τt = j with probability Qij , and the return Yt has conditional distribution fj(yt; yt−1); here lower case letters

y1, . . . , yn are used to denote a realization of Y1, . . . , Yn. It follows from this construction that (Yt, τt) is a

Markov process.

For example, for j ∈ {1, . . . , l}, one could take a Gaussian AR(1) model meaning that given Yt−1 = yt−1

and τt = j, Yt = µj + Φj(yt−1 − µj) + εt, with εt ∼ N(0, Aj); more precisely, the conditional density of Yt at

yt ∈ Rd is

fj(yt|yt−1) =
e−

1
2{yt−µj−Φj(yt−1−µj)}>A−1

j {yt−µj−Φj(yt−1−µj)}

(2π)d/2|Aj |1/2
, (1)

where µj ∈ Rd, Φj is a d×d matrix such that Φnj → 0 as n→∞,1 and Aj is a d×d non degenerate covariance

matrix. The matrices Φ1, . . . ,Φl are mean-reversion parameters. Let Bd be the set of d× d matrices B such

Bn → 0 as n→∞ and let S+
d be the set of symmetric positive definite d× d matrices. Note that Bd is the

set of d × d matrices with spectral radius smaller than 1, meaning that the eigenvalues are all in the unit

complex ball of radius 1; in particular, I−B is invertible for any B ∈ Bd. Note that the the so-called Hidden

Markov Model is obtained by setting Φ1 = · · · = Φl = 0.

2.1 Regime prediction

Since the regimes are not observable, we have to find a way to predict them. This will be of utmost importance

for pricing and hedging derivatives.

In many applications, one has to predict an non-observable signal by using observations Y1, . . . , Yt linked

in a certain way to the signal. This is known as a filtering problem (Rémillard, 2013). In our case, we

need to find the most likely regime at time t, in other words ηt(i) = P (τt = i|Y1 = y1, . . . , Yt = yt). It is

1This condition ensures that for any j ∈ {1, . . . , l} the matrix Bj =
∑∞
k=0 ΦkjAj

(
Φkj

)>
is well defined and satisfies

Bj = ΦjBjΦ
>
j +Aj .
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remarkable that for the present model, one can compute exactly this conditional distribution, given a starting

distribution η0. For more details, see an extension of the Baum-Welch algorithm in Appendix A.

2.1.1 Filtering algorithm

Choose an a priori probability distribution η0 for the regimes. Equivalently, one can choose a positive vector

q0 and set η0(i) = q0(i)/Z0, where Z0 =
∑l
j=1 q0(j). The choice of q0 or η0 is not critical since its impact on

predictions decays in time and have virtually no impact on terminal regime probabilities for any reasonable

time series length. For simplicity, we assume a uniform distribution, i.e. q0 ≡ 1/l.

For t = 1, . . . , n, define qt(i) = E
[
1(τt = i)

∏t
k=1 fτk(yk|yk−1)

]
, i ∈ {1, . . . , l}, and Zt =

∑l
j=1 qt(j).

2

Hence, Zt is the joint density of Y1, . . . , Yt because

l∑
j=1

qt(j) = E

[
t∏

k=1

fτk(yk|yk−1)

]
= f1:t(y1, . . . , yt)

Then if q0 = η0, then for any i ∈ {1, . . . , l}, and any t ≥ 1,

qt(i) = E

[
1(τt = i)

t∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

E

[
1(τt = i)1(τt−1 = j)

t−1∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

QjiE

[
1(τt−1 = j)

t−1∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

Qjiqt−1(j). (2)

and

ηt(i) = P (τt = i|Y1, . . . , Yt) =
qt(i)

Zt
. (3)

Having computed the conditional probabilities, ηt(i), one can finally estimate τt by

τt = arg max
i
ηt(i), (4)

i.e. as the most probable regime.

In view of applications, it is preferable to rewrite (3) only in terms of η, i.e.,

ηt(i) =
fi(yt|yt−1)

Zt|t−1

l∑
j=1

ηt−1(j)Qji, (5)

where

Zt|t−1 =
Zt
Zt−1

=

l∑
j=1

l∑
i=1

fi(yt|yt−1)ηt−1(j)Qji.

As a result, Zt|t−1 is the conditional density of Yt given Y − 1, . . . , Yt−1, evaluated at y1, . . . , yt.

2The first observation of the sequence is burn-in in order to compute fτ1 (y1|y0)
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2.1.2 Conditional distribution

From the results of the previous section, the joint density f1:t of Y1, . . . , Yt is Zt. Also, for any t ≥ 2, the

conditional density ft|t−1 = Zt|t−1 of Yt given Y1, . . . , Yt−1, can be expressed as a mixture, viz.

ft|t−1(yt|y1, . . . , yt−1) =

l∑
i=1

fi(yt|yt−1)

l∑
j=1

ηt−1(j)Qji =

l∑
i=1

fi(yt|yt−1)Wt−1(i) (6)

where

Wt−1(i) =

l∑
j=1

ηt−1(j)Qji, i ∈ {1, . . . , l}. (7)

Note that for all t > 1, Wt−1(i) = P (τt = i|Yt−1 = yt−1, . . . , Y1 = y1). As a result, it follows that

P (τt+k = i|Yt = yt, . . . , Y1 = y1) =

l∑
j=1

(Qk)jiηt(j), i ∈ {1, . . . , l}, (8)

so the conditional law of Yt+1 given Y1, . . . , Yt has density

ft+1|t(yt+1|y1, . . . , yt) =

l∑
i=1

fi(yt+1|yt)Wt(i). (9)

Next, it is easy to check that the conditional law of Yt+1, . . . , Yt+m given Y1, . . . , Yt has density

ft+m|t(yt+1, . . . , yt+m|y1, . . . , yt) =

l∑
i0=1

l∑
i1=1

· · ·
l∑

im=1

ηt(i0) (10)

×
m∏
k=1

Qik−1ikfik(yt+k|yt+k−1).

2.1.3 Stationary distribution in the Gaussian case

Suppose that the model specified by (1) holds, ergo the innovations are Gaussian. If Yn converges in law to a

stationary distribution, for any given starting point y0, then this distribution must be Gaussian, with mean

µ and covariance matrix A. Suppose the Markov chain is ergodic with stationary distribution ν. Then with

probability νi, i ∈ {1, . . . , l}, Y1 = (I−Φi)µi+ΦiY0 + εi, where ε ∼ N(0, Ai) is independent of Y0 ∼ N(µ,A).

It then follows that

µ =

{
l∑
i=1

νi(I − Φi)

}−1{ l∑
i=1

νi{(I − Φi)µi

}
.

Similarly, A must satisfies A = T (A), where

T (A) = B +

l∑
i=1

νiΦiAΦ>i , (11)

with B = −µµ>+
∑l
i=1 νi

[
(I − Φi)µi + Φiµ}{(I − Φi)µi + Φiµ}> +Ai

]
. From the conditions on Φ1, . . . ,Φl,

there is a norm ‖·‖ on the space of matrices such that ‖Φi‖ < 1 for every i ∈ {1, . . . , l}.3 The operator T is then

a contraction since for any two matrices A0, A1, ‖T (A1)− T (A0)‖ ≤ ‖A1−A0‖
∑l
i=1 νi‖Φi‖2 ≤ c‖A1−A0‖,

with c = max1≤i≤l ‖Φi‖2 < 1. Also, since T (A) is a covariance matrix whenever A is one, and B is positive

definite, it follows that there is a unique fixed point A of T , meaning that A = T (A), and this unique fixed

point A is a positive definite covariance matrix. If fact, A is the limit of any sequence An = T (An−1), with

A0 a non-negative definite covariance matrix. For example, one could take even take A0 = 0. This provides

a way to approximate the limiting covariance A by setting A ≈ An for n large enough.

3Recall that all norms are equivalent.
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Table 1: P-values (in percentage) for the nonparametric change point test using the Kolmogorov-Smirnov statistic with N=10000
bootstrap samples.

Period P -value

2000’s recovery 39.8
2008-2009 Financial Crisis 0.4
2010’s recovery 9.7

2.2 Estimation of parameters

The EM algorithm (Dempster et al., 1977) is a quite efficient estimation procedure for incomplete datasets.

Under hidden Markov models, observations are partial since τ is unobservable. The algorithm proceeds iter-

atively to converge to the maximum likelihood estimation of parameters (Dempster et al., 1977). We derived

its implementation for ARHMM and the details are in Appendix C. It seems that starting the parameter’s

estimation of the ARHMM with the HMM parameters’ estimate (obtained by setting Φ1 = · · · = Φd = 0)

was slightly more stable. The optimal number of regimes must be known a priori, an issue we will discuss next.

2.3 Goodness-of-fit test and selection of the number of regimes

To select the optimal number or regimes, one must test the adequacy of fitted models with different number

of regimes. This is generally done by using a test based on likelihoods. However, goodness-of-fit tests based

on likelihoods are not recommended for regime-switching models (Cappé et al., 2005). We opt for a simpler

approach based on a parametric bootstrapping. It was shown to work on a large number of dynamic models,

including hidden Markov models. The test was built on the work of Genest and Rémillard (2008) and its

implementation is in Appendix D.

2.3.1 Selecting the number of regimes

Choosing the optimal number of regimes. The goodness-of-fit test methodology described in Appendix B

produces P-value from Cramér-von Mises type statistics, for a given number of regimes `. As suggested in

Papageorgiou et al. (2008), it make sense to choose the optimal number of regimes, `?, as the first ` for which

the P-value is larger than 5%. An illustration of the proposed methodology is given in Section 2.4.

2.4 Application to S&P 500 daily returns

To assess the relevance of our model on real data, we estimated the parameters on the close-to-close log-

returns of the daily price series of the S&P 500 Total Return. To find stationary estimation windows, we

used a nonparametric changepoint test for a univariate series using a Kolmogorov-Smirnov type statistic

(Rémillard, 2013). We focused on recent data, i.e. from early 2000 to today. We found two stationary

estimation window: from 05/01/2004 to 02/01/2008 and from 05/01/2010 to 20/01/2017. We can refer to

the former as the 2000’s recovery and 2010’s recovery for the latter. Results of the tests are presented is

Table 1. We will also study the interesting period in between, the 2008-2009 Financial Crisis, even though

the null hypothesis of stationarity has a P -value of 0.4%.

Next, we perform the goodness-of-fit test (GoF for short) described in Appendix D for the ARHMM

(AR(1)) as well as for the HMM (AR(0)), as a mean of comparison. The results are presented in Tables 2, 4
and 6. According to the selection methods described in Section 2.3.1, we optimally select a three-regime

model for the 2000’s recovery, since 3 is the smallest number of regimes for which the P -value is larger

than 5%. This is also true for the HMM model. Likewise, we choose a three-regime model for the 2008-2009

Financial Crisis, and a four-regime model for the 2010’s recovery. Note that in the case of the 2010’s Bull

markets, a four regime model for the HMM was not enough to get a P -value > 5%.

Furthermore, to measure the significance of ARHMM over HMM, we perform a likelihood ratio test. This

is possible because the HMM is a special case of the ARHMM corresponding to Φ1 = · · · = Φl = 0. The



6 G–2017–60 Les Cahiers du GERAD

corresponding statistic is computed as follow:

D = −2 log

(
L(θ̂0|x)

L(θ̂1|x)

)
= −2 log

(
f1:n(y1, . . . , yn|θ̂0)

f1:n(y1, . . . , yn|θ̂1)

)
where θ̂0 are the model’s parameters estimated under the null hypothesis, i.e. Φ1 = · · · = Φ` = 0, so

the returns follow a Gaussian hidden Markov model, and θ̂1 are the model’s parameters estimated under

the alternative, i.e. returns follow an autoregressive hidden Markov model. Under the null hypothesis, this

statistic is distributed as a chi-square distribution with the number of degrees of freedom equal to the number

of extra parameters in the alternative model. In our case, we have one extra parameter per regime, i.e. Φi,

so the number of degrees of freedom is `. Hence, under the null hypothesis, D ∼ χ2(`). The log-likelihoods

of both models, the statistical test D and the χ
2

critical value at a significance level of 5% are also presented

in Tables 2, 4 and 6. We clearly reject the null hypothesis for all models, proving we should favor ARHMM

over HMM for each dataset.

The estimated parameters for the three periods are presented in Tables 3, 5, and 7, where the mean

and standard deviation of each AR(1) and AR(0) Gaussian regime density fi are respectively denoted by µi
and σi, and are presented as annualized percentages values. The tables further contains the long-term, i.e.

stationary, regime probabilities ν, together with the estimated transition matrix, Q.

Regimes are ordered by increasing volatility σi, and incidentally by decreasing mean µi, which is in line

with what we typically observe on the markets.

Table 2: P-values (in percentage) for the proposed goodness-of-fit test using N=10000 bootstrap samples on the S&P 500 daily
returns for the 2000’s recovery, along with the log-likelihood of the models and the P-values (in percentage) of the likelihood
ratio test statistic D.

Number of regimes
1 2 3

GoF P -value (ARHMM) 0 0 26.51
GoF P -value (HMM) 0 0 25.12
Log-likelihood (ARHMM) 3479 3542 3559
Log-likelihood (HMM) 3475 3539 3552
P -value (D) 0.43 3.63 0.18

Table 3: Parameters estimation for the three-regime models on the S&P 500 Total Return daily returns for the 2000’s recovery.
µ and σ are presented as annualized percentage.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 1 2 3

µ 31.41 13.88 -17.23 34.89 6.99 -21.60
σ 2.18 10.09 18.02 3.34 11.03 18.95
Φ 0 0 0 -0.14 0.03 -0.19
ν 0.11 0.65 0.24 0.19 0.63 0.18

0 0.92 0.08 0 0.96 0.04
Q 0.17 0.83 0 0.32 0.68 0

0 0.03 0.97 0 0.04 0.96

In the case of the 2000’s recovery, Regime 1 is associated to bull markets, which are characterized by

strong positive premium and low risk (µ1 = 35.89 and σi = 3.34). It seems that this state is intermittent in

the sense that the Markov chain does not stay or has a very small probability of staying in regime 1 since

Q11 ≈ 0. However, this state is not due to outliers since the percentage of time the Markov chain is in this

state is 11% for the HMM and 19% for the ARHMM.

Regime 2 is an intermediate state. Lastly, Regime 3 is associated with bear markets or corrections, as

highlighted by the negative premium of -21.60 and the volatility of 18.95. The regimes are less distinct in

the HMM case. Also, the likelihood ratio test statistic D = 15.04 informs us that ARHMM is a much better
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Table 4: P-values (in percentage) for the proposed goodness-of-fit test using N=10000 bootstrap samples on the S&P 500 daily
returns for the 2008-2009 Financial Crisis, along with the log-likelihood of the models and the P-values (in percentage) of the
likelihood ratio test statistic D.

Number of regimes
1 2 3

GoF P -value (ARHMM) 0 0 59.59
GoF P -value (HMM) 0 0 72
Log-likelihood (ARHMM) 1,209 1,323 1,334
Log-likelihood (HMM) 1,214 1,318 1.329
P -value (D) 0.19 0.95 2.59

Table 5: Parameters estimation for the three-regime models on the S&P 500 Total Return daily returns for the 2008-2009 Financial
Crisis. µ and σ are presented as annualized percentage.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 1 2 3

µ 74.97 -5.28 -66.87 72.22 -0.42 -64.73
σ 5.52 23.17 57.80 5.12 22.56 55.68
Φ 0 0 0 -0.03 -0.16 -0.15
ν 0.15 0.58 0.27 0.14 0.58 0.28

0 0.97 0.03 0 0.98 0.02
Q 0.25 0.75 0 0.23 0.77 0

0 0.01 0.99 0 0.01 0.99

Table 6: P-values (in percentage) for the proposed goodness-of-fit test using N=10000 bootstrap samples on the S&P 500 daily
returns for the 2010’s recovery, along with the log-likelihood of the models and the the P-values (in percentage) of the likelihood
ratio test statistic D.

Number of regimes
1 2 3 4

GoF P -value (ARHMM) 0 0 0 1.56
GoF P -value (HMM) 0 0 0 5.83
Log-likelihood (ARHMM) 5,696 5,936 5,985 6,012
Log-likelihood (HMM) 5,694 5,931 5,981 6,006
P -value (D) 4.19 1.52 4.46 3.02

Table 7: Parameters estimation for the four-regime models on the S&P 500 Total Return daily returns for the 2010’s recovery. µ
and σ are presented as annualized percentage.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 4 1 2 3 4

µ 29.41 303.07 -68.77 -28.25 32.04 365.83 -68.82 -27.50
σ 6.70 8.13 13.50 29.05 6.73 7.56 13.39 28.50
Φ 0 0 0 0 -0.04 0.14 -0.09 -0.08
ν 0.44 0.09 0.33 0.14 0.45 0.09 0.32 0.14

0.91 0 0.09 0 0.90 0 0.10 0
Q 0.47 0.07 0.45 0 0.53 0.06 0.41 0

0 0.23 0.76 0.01 0 0.23 0.76 0.01
0 0.03 0 0.97 0 0.03 0 0.97

fit for this data. Indeed, we observe strong mean-reversion in regime 1 and 3 (Φ1 = −0.14 and Φ3 = −0.19).

This could explain why the HMM is blurring everything to together. Figure 1 displays the filtered most

probable regimes (see Section 2.1 for the filtering procedure) for the whole time series. The regimes are

depicted by different shades of grey, ranging from dark for the high volatility regime to white for the low

volatility regime. The probability of the regimes, i.e. ηt, are presented in Figure 2. Interestingly enough, the

crisis in the subprime mortgage market is adequately captured by the high risk regime.
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Figure 1: Most probable regimes for the three-regime AR(1) model fitted on the S&P 500 Total Return index from 05/01/2004
to 02/01/2008 together with the cumulative performance of the index. Darker areas represent higher volatility states.
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Figure 2: Probability of the regimes, i.e. ηt, for the three-regime AR(1) model fitted on the S&P 500 Total Return index from
05/01/2004 to 02/01/2008.

The second period studied is pretty interesting. For the 2008-2009 Financial Crisis, regimes are extremely

polarized, with expected returns ranging from 72.22 to -64.73. The bear markets regime, i.e. Regime 3, is

exceptionally persistent and volatile, as highlighted by Q3,3 = 0.99 and σ3 = 55.68. Once more, we find two

regimes exhibiting mean-reversion, i.e. Φ2 = −0.16 and Φ3 = −0.15.

Figure 3 and 4 are analogous to Figure 1 and 2 respectively. We can see that the Markov chain switched

to the high risk regime right after the collapse of the investment bank Lehman Brothers. Remarkably, it

stayed in that regime throughout almost all the Banking Crisis, even though we observe numerous small

upwards trends, meaning many thought we hit the bottom.

For the last period, we chose four-regimes models. As noted previously, the four-regime HMM did not

pass the goodness-of-fit test. We still present the estimated parameters in Table 7, as a mean of comparison.

The calibration for this period is less intuitive than the previous ones. The inverse correlation between risk
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and expected premium is not as strong. Also, both models have a non-persistent regime with huge expected

returns, (i.e. regime 2). Nevertheless, we still find modest mean-reversion for two regimes (i.e. regime 3

and 4), and the high-risk regime is highly persistent, as highlighted bu Q4,4 = 0.97, as it was in the two

previous cases. The most probable regimes are displayed in Figure 5, while the probability of the regimes

are presented in Figure 6. Interestingly enough, the crisis in the subprime mortgage market is adequately

captured by the high risk regime.. The final part of 2011 was marked by fear of the European sovereign debt

crisis spreading to Italy and Spain. Once again, the ARHMM isolated the stock markets fall quite accurately.

We also estimated the ARHMM on the returns from 01/04/1999 to 01/20/2017. This long period is far

from stationary, but it is still interesting to see how the model performs through recessions and recoveries.

We chose a four-regime model, as indicated by the goodness-of-fit tests. We can see on Figure 7 that the

2000’s bubble burst and the recent financial meltdown (2008-2009) are both correctly captured by the high

risk regimes.

Figure 3: Most probable regimes for the three-regime AR(1) model fitted on the S&P 500 Total Return index from 03/01/2008
to 04/01/2010, together with the cumulative performance of the index. Darker areas represent higher volatility states.
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Figure 4: Probability of the regimes, i.e. ηt, for the three-regime AR(1) model fitted on the S&P 500 Total Return index from
03/01/2008 to 04/01/2010.
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Figure 5: Most probable regimes for the four-regime AR(1) model fitted on the S&P 500 Total Return index from 05/01/2010
to 20/01/2017, together with the cumulative performance of the index. Darker areas represent higher volatility states.
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Figure 6: Probability of the regimes, i.e. ηt, for the four-regime AR(1) model fitted on the S&P 500 Total Return index from
05/01/2010 to 20/01/2017.

Figure 7: Most probable regimes for the four-regime AR(1) model fitted on the S&P 500 Total Return index from 01/04/1999
to 01/20/2017, together with the cumulative performance of the index. Darker areas represent higher volatility states.
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3 Optimal discrete time hedging

In what follows, we use the notations and results from Rémillard and Rubenthaler (2013).

Denote the price process by S, i.e., St is the value of d underlying assets at period t and let F =

{Ft, t = 0, . . . , n} a filtration under which S is adapted. Further assume S is square integrable. Set ∆t =

βtSt−βt−1St−1, where the discounting factors βt = e−rt are deterministic for t = 1, . . . , n. We are interested

in the optimal initial investment amount V0 and the optimal predictable investment strategy ~ϕ = (ϕt)
n
t=1

that minimizes the expected quadratic hedging error for a given payoff, C, at time n (e.g a call option).

Formally, the problem is stated as
min
{V0,~ϕ}

E[{G(V0, ~ϕ)}2], (12)

where

G = G(V0, ~ϕ) = βn(C − Vn)

and Vt is the current value of the replicating portfolio at time t. In other words, it is the current value of the

optimal predictable investment strategy, ~ϕ,

βtVt = V0 +

t∑
j=1

ϕ>j ∆j ,

for t = 0, . . . , n.

To solve (12), set Pn+1 = 1, and define

γt+1 = E(Pt+1|Ft),
at = E(∆t∆

>
t Pt+1|Ft−1) = E(∆t∆

>
t γt+1|Ft−1),

bt = E(∆tPt+1|Ft−1) = E(∆tγt+1|Ft−1),

ρt = a−1
t bt,

Pt =

n∏
j=t

(1− ρ>j ∆j),

for k = n, . . . , 1.

We can now state Theorem 1 of Rémillard and Rubenthaler (2013), which is a multivariate extension of

Schweizer (1995).

Theorem 1 Suppose that E(Pt|Ft−1) 6= 0 P-a.s., for 1,. . . ,n. This condition is always respected for regime-

switching models. Then, the solution (V0, ~ϕ) of the minimization problem (12) is V0 = E(βnCP1)/E(P1),

and

ϕt = αt − V̌t−1ρt, k = 1, . . . , n. (13)

where

αt = a−1
t E(βnC∆tPt+1|Ft−1). (14)

and Š and V̌ are the present values of S and V .

Remark 1 V0 is chosen such that the expected hedging error, G, is zero. Rémillard and Rubenthaler (2013)

also showed that Ct(St, τt) given by

βtCt =
E(βnCPt+1|Ft)
E(Pt+1|Ft)

(15)

is the optimal investment at period t so that the value of the portfolio at period n is as close as possible to C

in term of mean square error G, in particular, V0 = C0.
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Ct can be interpreted as the option price at period t. By increasing the number of hedging periods, Ct should

tend to a price under a risk-neutral measure; see, e.g., Rémillard and Rubenthaler (2016). For example, when

there is only one regime, the density is Gaussian and Φ1 fixed at 0, Ct tends to the usual Black-Scholes price.

The detailed optimal hedging implementation for ARHMM is described in Appendix E. It then follows that

Čt−1 = βt−1Ct−1γt = E{(1− ρ>t ∆t)Čt|Ft−1) (16)

αt = a−1
t E(Čt∆t|Ft−1). (17)

To derive the optimal hedging algorithm, we also need the following result, valid for a general ARHMM.

First, write St = D(St−1)eYt , where eYt is the vector with components e(Yt)j , and D(s) is the diagonal

matrix with diagonal elements (s)j , j ∈ {1, . . . , d}.

The proof of the following theorem is given in Appendix E.1.

Theorem 2 For any t ∈ {1, . . . , n}, at = D(Št−1)at(Yt−1, τt−1)D(Št−1), bt = D(Št−1)bt(Yt−1, τt−1), ρt =

D−1(Št−1)ht(Yt−1, τt−1), and γt = gt(Yt−1, τt−1), with ht = a−1
t bt, where at, bt, and gt are deterministic

functions given respectively by

at(y, i) = E
{
ζtζ
>
t gt+1(Yt, τt)|Yt−1 = y, τt−1 = i

}
, (18)

bt(y, i) = E {ζtgt+1(Yt, τt)|Yt−1 = y, τt−1 = i} , (19)

gt(y, i) = E {gt+1(Yt, τt)|Yt−1 = y, τt−1 = i} (20)

−b>t (Yt−1, τt−1)ht(Yt−1, τt−1),

with ζt = eYt−rt − 1, and gn+1 ≡ 1. If in addition βnC = Ψn(Šn), then Čt = Ψt(Št, Yt, τt), where

Ψt−1(s, y, i) = E
[
Ψt

{
D(s)eYt−rt , Yt, τt

}{
1− ht(y, i)>ζt

}
|Yt−1 = y, τt−1 = i

]
, (21)

and

αt = D−1(Št−1)a−1
t (Yt−1, τt−1)At(Št−1, Yt−1, τt−1), (22)

where

At(s, y, i) = E
[
Ψt

{
D(s)eYt−rt , Yt, τt

}
ζt|Yt−1 = y, τt−1 = i

]
. (23)

For example, for a call option with strike K, Ψn(s) = max(0, s− βnK).

3.1 Implementation issues

There are two main problems related to the implementation of the hedging strategy: at, bt, gt, Ψt and At
defined in expressions (18)–(23) must be approximated and regimes must be predicted.

We discretize at, bt gt functions of the underlying values y with a grid G. In a similar manner, we discretize

Ψt and At functions of the underlying values s and y. To solve the recursion given by (21)–(23), Rémillard

et al. (2017) interpolate and extrapolate linearly the simulated outcomes on G, using a stratified Monte Carlo

sampling procedure. Because the simulations are computationally expensive and introduce variability, we

propose a novel technique to approximate these integrals using semi-exact calculations, inspired by Rémillard

(2013) Chapter 3. The details for the semi-exact calculations are presented in Appendix E.3.

We also included the Monte Carlo sampling procedure as a mean of comparison. Interestingly, we found

that by simply rescaling the Monte Carlo samples to the desired mean and volatility, we achieved results as

accurate as the semi-exact calculations, as pointed out in Section 3.3.

As for defining the points on the grid, previous literature suggest choosing 103 equidistant points marginally

covering at least 3 standard deviations under the respective highest volatility regimes. Importantly, we found

that strategically choosing the points with respect to the percentiles of simulated processes significantly

reduces the number of points needed while keeping the accuracy at a reasonable level.
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Next, we need to predict τ1 based on (R1, R0 and τ0) and so on. The predicted regime is τ̂ is the one

having the largest probability given the information on prices up to time t, i.e. the most probable regime

given by (4). Note that this methodology introduces a bias. We also studied the less biased approach of

weighting the regimes proportionally to ηt, but since the results were comparable and did not lead to any

significant improvement, they are omitted from the analysis. For more details on regime predictions, see

section 2.1.

Then, according to (13) and (22), the optimal hedging weights ϕt for period [t−1, t) are approximated by

ϕ̂t = αt(Št−1, Yt−1, τ̂t−1)−D−1(Št−1)V̌t−1ht(Yt−1, τ̂t−1), t = 1, . . . , n. (24)

V0 is approximated by C0(S0, τ̂0, 0) while the remaining monies, V0 − ϕ̂ᵀ
1S0, are invested in the riskless

asset. Next, as S1 is observed, one firsts computes the actual portfolio value V1, then predicts the current

regime τ1 and finally approximates the optimal weights ϕ2. This process is iterated until expiration of

the option.

3.1.1 Using regime predictions

Here, we obtain option prices and strategies that depend on the unobservable regimes τ , since (St, τt) is

a Markov chain. However, François et al. (2014) proposed a very interesting approach: they showed that

(St, ηt) is Markov, so one can obtain prices and hedging strategies depending on (St, ηt) instead. This makes

sense financially. However, this new Markov chain lives in a l + d− 1-dimensional space, because the values

of ηt belong to the simplex Sl = {x1, . . . , xl; xi ≥ 0, x− 1 + · · ·+xd = 1}. François et al. (2014) considered

only 2 regimes and one asset, so the real dimension is 2. When l > 2, this becomes numerically intractable.

3.2 Global hedging

In practice, an expected hedging error characterized by Vt − Ct will emerge. In other words, the replicating

portfolio at period t will not be worth the optimal investment Ct. Under the Black-Scholes setting, such

error is unaccounted for since derivatives can be replicated perfectly (in continuous time). In contrast,

under the proposed optimal hedging protocol, the exposures ϕt depend on the replicating portfolio, Vt−1 (see

Equation 13), which in turn depends on the past strategy path.

Under extreme scenarios, the replication of a call option might lead to optimal exposures ϕ greater than

one share. Intuitively, this feature is optimal with respect to closing the gap between V and C.

3.3 Simulated hedging errors

To assess the proposed strategy’s accuracy, we simulated 10000 trajectories under ARHMM and hedge iden-

tical options under different hedging strategies. To be realistic, the parameters were taken from Table 3.

The hedging methodologies are the classical Black-Scholes delta-hedging (B&S) and optimal hedging un-

der ARHMM (OH-ARHMM), HMM (OH-HMM) and Gaussian (OH-B&S) returns (i.e., considering only 1

regime). We also compared semi-exact approximation to Monte-Carlo. The option in question is a call with

S0 and K equal to 100, risk-free rate r = 0.01, 3 month maturity (63 days) with daily hedging. The main

hedging error statistics are given in Table 8, while the estimated densities are displayed in Figure 8.

OH-ARHMM achieves a 33% reduction in RMSE compared to B&S and OH-B&S and a 26% to OH-HMM.

The latter is quite impressive, as it highlights how big of an impact the autoregressive dynamic has.

4 Out-of-sample vanilla pricing and hedging

4.1 Methodology

To exhibit the proposed hedging protocol, we buy and sell vanilla options on the S&P 500 depending on the

how the market prices compare with our theoretical prices. Then, we hedge the positions until expiration.
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Table 8: Statistics for the hedging errors in an autoregressive hidden Markov model, using 10000 simulated portfolios.

B&S OH-B&S HMM HMM MC ARHMM ARHMM MC

Average -0.105 -0.084 0.004 0.003 0.025 0.030
Median -0.236 -0.202 -0.085 -0.086 -0.019 -0.019
Volatility 0.611 0.626 0.559 0.559 0.411 0.412
Skewness 1.715 1.948 1.639 1.629 4.644 4.738
Kurtosis 7.737 9.558 9.464 9.356 71.834 78.219
Minimum -1.658 -1.658 -4.649 -4.633 -2.477 -2.413
VaR (1%) -1.110 -1.118 -1.087 -1.086 -0.749 -0.741
VaR (99%) 2.069 2.227 1.987 1.982 1.526 1.531
Maximum 4.886 6.725 6.538 6.520 12.958 14.266
RMSE 0.620 0.632 0.559 0.559 0.411 0.413
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Figure 8: Estimated densities for the hedging errors in an autoregressive hidden Markov model, using 50000 portfolios. Only the
semi-exact densities are shown, as they were indiscernible from the Monte Carlo ones.

We then assess the impact of model specification on the delta-hedging strategy by examining the statistical

properties of the hedging error and of the strategy’s returns. All hedging portfolios are re-balanced on a daily

basis, as is often assumed in the volatility timing literature; see e.g., Fleming et al. (2001).

The market price of an option is defined as the last (i.e. as 4:15 PM EST) midpoint between the bid

and the ask. The price of the underlying is its listed close value. For simplicity, we neglect issues related to

time-varying discount rates by assuming constant continually compounded daily rates. Risk-free rates, r, are

linearly interpolated for a given maturity, n, from the zero-coupon U.S. yield curve.

Remark 2 For the implementation, we chose to present only the results using the most probable regime for

the computation of the hedging strategy. These results are a little bit better than those obtained by weighting

the hedging strategy according to the probability of occurrence ηt(1), . . . , ηt(l) of the regimes at period t.

4.1.1 The underlying

We make the reasonable assumption the spot S&P 500 is investable and tradable at a minimal cost. The

forward rate is retrieved for the maturities of interest directly from the option data at hand, as proposed by

Buraschi and Jackwerth (2001). From put-call parity, the option implied forward value at n, Fn, is

Fn = (C̃(K̃, n)− P̃ (K̃, n))ernn + K̃,

where C(K̃, T ) and P (K̃, T ) are respectively the call and put market values expiring at T with strike K

and K̃ is the at-the-money strike value minimizing |C(K̃, T )−P (K̃, T ) for all strikes offered by the exchange.
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We use at-the-money options because they are the most liquid and are thus less likely to provide cash-and-

carry type arbitrage opportunities. We then compute the daily forward rate as fn =
1

n
log(Fn/S0) and the

associated daily discounting factor β = e−fn , which reflects the current risk-free return on capital net of the

implied continuous dividend yield.

4.1.2 Option dataset

Exchange-traded options on the S&P 500 are European, heavily traded and have a high number of strikes

and maturities.

To assess the accuracy of our model, we will analyze two periods with very different characteristics: the

2008 Financial Crisis, and a chunk of the recent recovery. Dates range from 09/24/2007 to 09/20/2009 and

from 09/23/2013 to 07/08/2015, respectively. This will help us discern the impact on hedging and pricing

when a dramatic regime change occurs, in the former, and when it does not, in the latter.

In order to minimize the effect of varying maturities, we will build the dataset of options having a maturity

of about 1 year, more precisely from 231 to 273 trading days till expiration. Also, because in-the-money and

out-of-the-money are less liquid, we will only include options where moneyness (strike value divided by the

underlying value), is between 0.9 and 1.1. This leaves us with a total of 180 options for the first period, and

478 for the second. Note that at a given date, more than one option can meet these criteria.

4.1.3 Backtesting

We apply the AR(1) regime-switching optimal hedging methodology with 3 regimes (ARHMM). We chose

3 regimes because it is the number of regimes that seemed the best given the time windows studied, which

we will describe in the next paragraph. We will compare it to the case with 1 regime and Φ fixed at 0,

corresponding to the optimal hedging under the Black-Scholes model (OH-B&S).

For each option in the dataset, we estimate the ARHMM parameters on the S&P 500 log-returns with

a 500 and 2000 day trailing window. We choose to backtest using 2 estimation windows in order to have a

more in depth understanding of model specification on pricing and hedging. The 2000 day trailing window

will always include the previous financial meltdown, i.e., dot-com bubble for our first analysis, and the 2008

financial crisis for the second one. The 500 day trailing window won’t. Similarly, we applied this methodology

to all the hedging protocols included in the analysis, which will be introduced below.

From Merton (1973), for a given moneyness, the value of an option is homogeneous of degree one with

respect to the underlying value. Thus, for each inception date, we normalize the option prices, the strike

values and the underlying path at an initial S&P 500 value of 100. Results can thus be aggregated through

time and interpreted as a percentage of S&P 500. Note that for each inception date, the hedging protocols

are applied out-of-sample until maturity.

To ensure comparability, OH-B&S assumes the stationary distribution of the ARHMM when the autore-

gressive parameter Φ = 0. The OH-B&S optimal hedging exposure is derived from an algorithm similar to

the one presented in Section 3. Optimal hedging under unconditional distributions is presented in Rémillard

(2013). Both strategies minimize the expected quadratic hedging error under their respective null hypoth-

esis, namely that the returns follow an autoregressive regime-switching model (ARHMM), and a Gaussian

model (OH-B&S).

OH-B&S methodology is not to be confused with the classical Black-Scholes delta hedging protocol.

Indeed, the terminology only reflects the fact that we hedge and price under the Black-Scholes framework hy-

pothesis, namely that assets follow geometric Brownian motions. Even though the OH-B&S prices converge

to the usual Black-Scholes prices as the number of hedging periods tends to infinity, the discrete time hedging

strategies will not necessarily be the same. For this reason, the classical Black-Scholes delta-hedging method-

ology (B&S) is also considered. Similarly to OH-B&S, the B&S volatility is calibrated to the stationary

volatility of ARHMM.

We will add a final benchmark to our analysis, one that reflects how well the market would have hedged

the same options, namely the delta-hedging methodology where the volatility is calibrated to the implied
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volatility at each hedging period (B&S-M). It will inform us how well the models compare to market’s

intuition. The effect of using the implied volatility was discussed in Carr (2002). However, his theoretical

analysis cannot be performed here.

To recap, we will buy and sell options depending on their market value compared to the theoretical prices,

and hedge the positions until maturity. We will analyse the P&L of the different methodologies, as well as the

hedging errors. Two periods will be studied: the 2008 Financial Crisis and a chunk of the following recovery

spanning from mid-2013 to mid-2015.

4.2 Empirical results

We define the hedging error as the present value of the liability βnC minus the present value of terminal

portfolio βnVn. The options’ maturity being set to one year, the annualized root-mean-squared hedging error

can be computed by

√
Ê(βnVn − βnC)2. This realized risk is the empirical counterpart of the quantity we

minimized and as such, is the most relevant metric for comparing the different models. Keep in mind that

there is a lot of overlap in our dataset, so the hedging error values are not independent, nor identically

distributed since the moneyness or other parameters are not constant. Despite these inconveniences, the

hedging errors are still useful to compare the models.

Concerning the trading strategy, if the market is overvalued with respect to the model, we sell the option

and hedge our position. Thus, the present value of the return is (C0 − V0) − (βnCn − βnVn). If the market

is undervalued, we buy the option and hedge our position. The return will be the negative of the former.

4.2.1 2008-2009 financial crisis

In this section, we will focus on options with inception dates from September 24th 2007 to September 20th

2009. This period is really interesting. In the first part, the market experienced a huge increase in volatility

and decrease in returns. In the second, the opposite.

We will first turn our attention to the 500 trailing estimation window case. Table 9 and Figure 9 present

the hedging error’s statistics and density approximation. Figure 10 presents the results of the trading strategy,

i.e., the cumulative value of a portfolio that traded the 90 options. The x axis is the cumulative number of

options traded in chronological order. In this case, ARHMM is by far the superior methodology. It achieved

the best hedging error considering all the metrics for both calls and puts. Further, it was the best trading

strategy for both type of options, even though the hedging errors are almost entirely negative in the calls

case. Note that the statistic “Bias” refers to the difference between the market price and the theoretical

price. Therefore, it is always 0 for the BS-M, since the implied volatility is used.

When volatility increases and returns turn negative, the puts’ value increase and one needs to be hedge

accordingly. B&S and B&S-M failed to do so, resulting in huge hedging errors and great losses portfolio wise.

Table 9: Hedging error statistics for the 90 calls and the 90 puts traded in the 2008-2009 Financial Crisis with 500 days trailing
estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 3.87 5.27 4.53 0.61 39.95 42.52 4.53 0.98
Bias 0 -4.52 -4.37 -5.35 0 -1.05 -0.91 -1.87
VaR 1% -7.64 -12.02 -12.47 -3.17 -28.39 -33.24 -12.47 -3.18
Median 2.9 3.82 2.68 -1.65e-04 30.78 29.77 2.68 0.01
VaR 99% 9.16 8.61 7.57 -1.97e-09 72.9 77.22 7.57 4.75

Similar results are presented in Table 10 and Figures 11 and 12, although the trailing estimation window,

previously set to 500 days, is now 2000 days. This estimation window includes another financial crisis, the

Dot-com Bubble. The same conclusion as the previous experience can be drawn.
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Figure 9: Hedging error density approximation for the 90 calls (a) and 90 puts (b) traded in the 2008-2009 Financial Crisis with
500 days trailing estimation window.
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Figure 10: Profit & Loss of trading strategy for the 90 calls (a) and 90 puts (b) traded in the 2008-2009 Financial Crisis with 500
days trailing estimation window.

Table 10: Hedging error statistics for the 90 calls and the 90 puts traded in the 2008-2009 Financial Crisis with 2000 days trailing
estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 3.87 4.26 3.15 0.33 39.95 40.87 3.15 1.25
Bias 0 -4.86 -4.69 -4.91 0 -1.4 -1.23 -1.44
VaR 1% -7.64 -4.76 -4.27 -1.43 -28.39 -28.68 -4.27 -1.4
Median 2.9 3.26 1.93 0.01 30.78 27.74 1.93 0.35
VaR 99% 9.16 8.93 7.62 0.33 72.9 74.76 7.62 4.83
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Figure 11: Hedging error density approximation for the 90 calls (a) and 90 puts (b) traded in the 2008-2009 Financial Crisis with
2000 days trailing estimation window.
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Figure 12: Profit & Loss of trading strategy for the 90 calls (a) and 90 puts (b) traded in the 2008-2009 Financial Crisis with
2000 days trailing estimation window.

4.2.2 2013-2015 Bull markets

Our second and last analysis focuses on a part of the recent recovery spanning from September 23th 2013 to

August 7th 2015. This period is quite the opposite of a financial crash. It is characterized by steady returns

and low volatility.

Again, we start with the small trailing estimation window. We present the results for calls and puts in

Table 11 and Figures 13 and 14. Considering the hedging errors, OH-B&S and ARHMM achieved the best

and pretty similar statistics for both put and calls. Similarly to the previous experience in Section 4.2.1,

B&S and B&S-M replicated poorly the put options.

Table 11: Hedging error statistics for the 239 calls and the 239 puts traded in the 2013-2015 Bull markets with 500 days trailing
estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 1.09 1.64 0.84 0.99 18.12 11.6 0.84 0.99
Bias 0 0.12 0.22 0.59 0 -4.08 -3.98 -3.62
VaR 1% -2.63 -2.53 -1.45 -2.47 -41.63 -26.59 -1.45 -2.46
Median -0.2 0.14 -0.02 -0.01 -12.12 -8.6 -0.02 -0.01
VaR 99% 1.39 4.42 3.7 3.54 9.42 6.78 3.7 3.53
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Figure 13: Hedging error density approximation for the 239 calls (a) and 239 puts (b) traded in the 2013-2015 Bull markets with
500 days trailing estimation window.
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Figure 14: Profit & Loss of trading strategy for the 239 calls (a) and 239 puts (b) traded in the 2013-2015 Bull markets with 500
days trailing estimation window.

Finally, the results for the longer estimation window case is presented in Table 12 and Figures 15 and 16.

This is probably the worst environment for the ARHMM, as the estimation window includes a financial crisis

(i.e. 2008-2009 Financial Crisis) and the out-of-sample returns are slow and steady. Because our trading

strategy takes into account the actual hedging error, according to (13), the simpler models should perform

better. In spite of that, ARHMM managed to perform better than B&S and B&-M for the hedging errors of

the puts.

The fact that pricing bias for the calls are strongly positive is noteworthy. In theory, the pricing bias

should be negative, to account for the risk premium. In this case, it seems that the market was pretty

confident about returns and volatility staying low. In insight, it was right.

Table 12: Hedging error statistics for the 239 calls and the 239 puts traded in the 2013-2015 Bull markets with 2000 days trailing
estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 1.09 5.32 4.84 8.57 18.12 14.75 4.84 8.6
Bias 0 4.71 4.54 4.18 0 0.52 0.34 -0.01
VaR 1% -2.63 -10 -8.93 -31.27 -41.63 -27.66 -8.93 -31.39
Median -0.2 -4.67 -4.09 -2.82 -12.12 -12.5 -4.09 -2.81
VaR 99% 1.39 -1.79 -1.76 -0.04 9.42 1.41 -1.76 -0.04
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Figure 15: Hedging error density approximation for the 239 calls (a) and 239 puts (b) traded in the 2013-2015 Bull markets with
2000 days trailing estimation window.

Lastly, we aggregated the P&L over all the experiences for B&S, OH-B&S and ARHMM in Table 13.

For a fair comparison, we normalized the number of traded options in each cases to 100. Remember that

the option prices, strike prices and underlying path are also normalized at an initial S&P 500 value of 100.

Impressively, ARHMM accomplished a 106% increase in P&L compared to the second best, OH-B&S, for

the 2-year trailing window, and is only 9% behind the first for the 8-year case, which is again OH-B&S.
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Figure 16: Profit & Loss of trading strategy for the 239 calls (a) and 239 puts (b) traded in the 2013-2015 Bull markets with
2000 days trailing estimation window.

Table 13: Total normalized P&L.

Trailing window (years) B&S OH-B&S ARHMM

2 -1286.78 685.32 1409.54
8 -1761.77 594.56 546.38

Overall, by achieving the best Root Mean Square Error (RMSE) two times out of four for both the 2-year

and 8-year window, and by being the most profitable strategy three times out of four for the 2-year window

and two times out of four for the 8-year window, the ARHMM is the superior hedging protocol.

However, the practitioners should keep in mind that if the ARHMM is estimated on a window including

a financial crisis, they should expect higher hedging errors than the simpler models if returns stay slow and

steady. From our results, we strongly suggest to use a 2-year trailing window as it consistently achieved

an RMSE lower than 1, i.e., the ARHMM can accurately hedge options in a financial crisis without ever

seeing one.

5 Conclusion

In this paper, we propose an autoregressive hidden Markov model to fit financial data, and we show how to

implement an optimal hedging strategy when the underlying asset returns follow an autoregressive regime-
switching random walk.

First, we present estimation and filtering procedures for the ARHMM. In order to determine the optimal

number of regimes, we propose a novel goodness-of-fit test for univariate and multivariate ARHMM based

on the work of Bai (2003), Genest and Rémillard (2008) and Rémillard et al. (2017).

To illustrate the proposed strategy, we model three daily return series of the S&P 500. Using likelihood

test, we show that the ARHMM is a much better fit than the classical HMM, particularly because it has the

capacity to model mean-reversion.

Moreover, we present the implementation of the discrete-time optimal hedging algorithm minimizing

the mean-squared hedging error. Because it further performs pricing, we implemented a trading strategy

consisting of selling overpriced and buying underpriced options and hedging the position till maturity. Out of

eight cases and compared to three other hedging protocols, our strategy achieves the best root-mean-squared

hedging error four times and is the most profitable strategy five times. Furthermore, it realized the best

total P&L.

Because of its ability to model regime switches as well as mean-reversion, it would be interesting to see

this model applied to multivariate time series. The hedging algorithm can also be applied to multivariate or

American options.
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Appendix A Extension of Baum-Welch algorithm

For i ∈ {1, . . . , l} and 1 ≤ t ≤ n, define

λt(i) = P (τt = i|Y1, . . . , Yn).

Also, for i, j ∈ {1, . . . , l} and 1 ≤ t ≤ n− 1, define

Λt(i, j) = P (τt = i, τt+1 = j|Y1, . . . , Yn),

and let η̄t(i) be the conditional density of (Yt+1, . . . , Yn), given Yt and τt = i. Further set η̄n ≡ 1. Note that

Λn(i, j) = λn(i)Qij , for any i, j ∈ {1, . . . , l}.

The proof of the following proposition is given in Appendix B.

Proposition 1 For all i, j ∈ {1, . . . , l},

ηt+1(i) =
fi(Yt+1|Yt)

∑l
β=1 ηt(β)Qβi∑l

α=1

∑l
β=1 fα(Yt+1|Yt)ηt(β)Qβα

, t = 0, . . . , n− 1, (25)

η̄t(i) =

l∑
β=1

Qiβ η̄t+1(β)fβ(Yt+1|Yt), t = 0, . . . , n− 1, (26)

λt(i) =
ηt(i)η̄t(i)∑l

α=1 ηt(α)η̄t(α)
, t = 0, . . . , n, (27)

Λt(i, j) =
ηt(i)Qij η̄t+1(j)fj(Yt+1|Yt)∑l

α=1 ηt(α)η̄t(α)
, t = 0, . . . , n− 1. (28)

In particular,
l∑

β=1

Λt(i, β) = λt(i), t = 0, . . . , n. (29)

Appendix B Proof of Proposition 1

Let i ∈ {1, . . . , l} and t ∈ {1, . . . , n} be given. Set X = (Y1, . . . , Yt−1), ζ = Yt and W = (Yt+1, . . . , Yn). Let

f denotes the density of X. If follows from the definition of conditional expectations that for any bounded

measurable functions F , G, and H,

E{F (X)G(ζ)ηt(i)} = E{F (X)G(ζ)1(τt = i)}

=

l∑
β=1

Qβi

∫
F (x)G(z)ηt−1(β)f(x)fi(z|x)dzdx.

As a by-product, one gets

E{F (X)G(ζ)ηt(i)} =

l∑
α=1

l∑
β=1

Qβα

∫
F (x)G(z)ηt(i)ηt−1(α)f(x)fα(z|x)dzdx.

Since the last equation holds for any F and G, it follows that (25) holds true.

Next,

E{G(ζ)H(W )|Yt = y, τt−1 = i} =

∫
G(z)H(w)η̄t(i)dzdw

=

l∑
β=1

Qiβ

∫
fβ(z|y)η̄t+1(β)G(z)H(w)dzdw,
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proving that (26) holds.

Next, let f̃(x, z) be the density of (X, ζ) = (Y1, . . . , Yt). Then

E{F (X)G(ζ)H(W )λt(i)} = E{F (X)G(ζ)H(W )1(τt = i)}

=

∫
F (x)G(z)H(w)ηt−1(i)Qij η̄t(j)f̃(x, z)dwdzdx.

As a by-product,

E{F (X)G(ζ)H(W )λt(i)} =

l∑
α=1

∫
F (x)G(z)H(w)λt(i)ηt(α)η̄t(α)f̃(x, z)dwdzdx,

proving (27). It is easy to extend the last argument to the case t = 0.

Finally,

E{F (X)G(ζ)H(W )Λt−1(i, j)} = E{F (X)G(ζ)H(W )1(τt−1 = i, τt = j)}

= Qij

∫
F (x)G(z)H(w)ηt(i)η̄t(j)

×f(x)fi(z|x)dwdzdx.

As a by-product, the latter can also be written as

l∑
α=1

l∑
β=1

∫
F (x)G(z)H(w)Λt−1(i, j)Qαβηt(α)η̄t(β)f(x)fβ(z|x)dwdzdx,

proving (28). It is easy to extend the last argument to the case t = 0. This completes the proof.

Appendix C Estimation of regime-switching models

To describe the EM algorithm for the estimation, suppose that at step k ≥ 0, one has the parameters Q, µi,

Φi, Ai, i ∈ {1, . . . , l}.

Let wt(i) = λt(i)
/∑n

k=1 λk(i), and set ȳi =
∑n
t=1 wt(i)yt and y

i
=
∑n
t=1 wt(i)yt−1, i ∈ {1, . . . , l}, where

λt and Λt are given in Proposition 1.

Then, at step k + 1, for i, j ∈ {1, . . . , l}, one has

Q
(k+1)
ij =

∑n
t=1 Λt−1(i, j)∑l

β=1

∑n
t=1 Λt−1(i, β)

=

∑n
t=1 Λt−1(i, j)∑n
t=1 λt−1(i)

, (30)

µ
(k+1)
i =

(
I − Φ

(k+1)
i

)−1 (
ȳi − Φ

(k+1)
i y

i

)
, (31)

Φ
(k+1)
i =

{
n∑
t=1

wt(i)
(
yt−1 − yi

)(
yt−1 − yi

)>}−1

(32)

×

{
n∑
t=1

wt(i) (yt − ȳi)
(
yt−1 − yi

)>}
,

A
(k+1)
i =

n∑
t=1

wt(i)etie
>
ti , (33)

where eti = yt − ȳi − Φ
(k+1)
i

(
yt−1 − yi

)
, t = 1, . . . , n.

The proof is given in the next section.
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C.1 Proof of the EM algorithm for the estimation

The EM algorithm for estimating parameters consists of two steps, expectation and maximization:

E-Step: Compute the conditional probabilities.

λt(i) = P (τt = i|Y1, . . . , Yn) and Λt(i, j) = P (τt = i, τt+1 = j|Y1, . . . , Yn),

for all 1 ≤ t ≤ n and i, j ∈ {1, . . . , l}.

M-Step: Let Q be the set of l× l transition matrices with positive entries. Suppose that Q ∈ Q, and θ ∈ Θ.

Then the log-likelihood is

L(Y1, . . . .Yn, τ1, . . . , τn, Q, θ) =

n∑
t=1

logQτt−1,τt +

n∑
t=1

log fτt(yt|yt−1, θ).

It then follows that

L(Q̃, θ̃;Q, θ) = EQ,θ

{
L
(
Y1, . . . , Yn, τ1, . . . , τn, Q̃, θ̃

)
|Y1 = y1, . . . , Yn = yn

}
=

n∑
t=1

l∑
i=1

l∑
j=1

Λt−1(i, j) log Q̃ij +

n∑
t=1

l∑
i=1

λt(i) log fi(yt|yt−1, θ̃).

If Q, θ are the parameters at step k, then the parameters Q(k+1), θ(k+1) at step k + 1 are(
Q(k+1), θ(k+1)

)
= arg max

Q̃∈Q,θ̃∈Θ
L(Q̃, θ̃;Q, θ).

It is easy to check that

Q(k+1) = arg max
Q̃∈Q

n∑
t=1

l∑
i=1

l∑
j=1

Λt−1(i, j) log Q̃ij

satisfies

Q
(k+1)
ij =

∑n
t=1 Λt−1(i, j)∑l

β=1

∑n
t=1 Λt−1(i, β)

=

∑n
t=1 Λt−1(i, j)∑n
t=1 λt−1(i)

, i, j ∈ {1, . . . , l},

proving (30). Also,

θ(k+1) = arg max
θ̃∈Θ

n∑
t=1

l∑
i=1

λt(i) log fi(yt|yt−1, θ̃).

C.1.1 Estimation for Gaussian AR(1) regime-switching models (M-Step)

For the estimation procedure, we assume the densities f1, . . . , fl are given by (1), so

θ = (µ1, . . . , µl,Φ1, . . . ,Φl, A1, . . . , Al) ∈ Θ = Rp⊗l × B⊗ld × S
⊗l
d .

In this case, the function L(θ̃) = −
∑n
t=1

∑l
i=1 λt(i) log fi(yt|yt−1, θ̃) to minimize is given by

L(θ̃) =
1

2

n∑
t=1

l∑
i=1

λt(i)
{
yt − µ̃i − Φ̃i(yt−1 − µ̃i)

}>
Ã−1
i

{
yt − µ̃i − Φ̃i(yt−1 − µ̃i)

}
+
nd

2
log 2π +

1

2

n∑
t=1

l∑
i=1

λt(i) log |Ãi|.

Let wt(i) = λt(i)
/∑n

k=1 λk(i). It then follows that for any i ∈ {1, . . . , l},

n∑
t=1

wt(i)
{
yt − µ(k+1)

i − Φ
(k+1)
i

(
yt−1 − µ(k+1)

i

)}
= 0, (34)
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n∑
t=1

wt(i)
{
yt − µ(k+1)

i − Φ
(k+1)
i

(
yt−1 − µ(k+1)

i

)}(
yt−1 − µ(k+1)

i

)>
= 0, (35)

and

A
(k+1)
i =

n∑
t=1

wt(i)ztiz
>
ti , (36)

where zti = yt − µ(k+1)
i − Φ

(k+1)
i

(
yt−1 − µ(k+1)

i

)
, t = 1, . . . , n, since

n∑
t=1

l∑
i=1

λt(i)z
>
ti Ã
−1
i zti = nν

(k+1)
i Tr

(
Ã−1
i A

(k+1)
i

)
,

where ν̄
(k+1)
i =

∑n
t=1 λt(i)/n, and for any non singular d× d matrix B,

Tr(B)− log |B| ≥ d.

The latter is true because f(x) = x− log(x) ≥ f(1) = 1 for any x > 0.

Next, set ȳi =
∑n
t=1 wt(i)yt and y

i
=
∑n
t=1 wt(i)yt−1. Then it follows from (34) that

µ
(k+1)
i =

(
I − Φ

(k+1)
i

)−1 (
ȳi − Φ

(k+1)
i y

i

)
, i ∈ {1, . . . , l},

proving (31). Now, for i ∈ {1, . . . , l},

n∑
t=1

wt(i)
(
yt − µ(k+1)

i

)(
yt−1 − µ(k+1)

i

)>
=

n∑
t=1

wt(i) (yt − ȳi)
(
yt−1 − yi

)>
+
(
µ

(k+1)
i − ȳi

)(
µ

(k+1)
i − y

i

)>
=

n∑
t=1

wt(i) (yt − ȳi)
(
yt−1 − yi

)>
+Φ

(k+1)
i

(
µ

(k+1)
i − y

i

)(
µ

(k+1)
i − y

i

)>
,

using (31), and

n∑
t=1

wt(i)
(
yt−1 − µ(k+1)

i

)(
yt−1 − µ(k+1)

i

)>
=

n∑
t=1

wt(i)
(
yt−1 − yi

)(
yt−1 − yi

)>
+
(
µ

(k+1)
i − y

i

)(
µ

(k+1)
i − y

i

)>
.

As a result, for i ∈ {1, . . . , l},

Φ
(k+1)
i =

{
n∑
t=1

wt(i)
(
yt−1 − yi

)(
yt−1 − yi

)>}−1{ n∑
t=1

wt(i) (yt − ȳi)
(
yt−1 − yi

)>}
,

proving (32)

It also follows from (31) that (36) can be written as

A
(k+1)
i =

n∑
t=1

wt(i)etie
>
ti , i ∈ {1, . . . , l}, (37)

where

eti = yt − ȳi − Φ
(k+1)
i

(
yt−1 − yi

)
, i ∈ {1, . . . , l}, t = 1, . . . , n.
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Appendix D Goodness-of-fit test for autoregressive hidden Markov model

In this appendix, we state the goodness-of-fit test, which can be performed to asses the suitability of a

Gaussian AR(1) regime-switching models as well as to select the optimal number of regimes, l∗. The proposed

test, based on the work of Diebold et al. (1998), Genest and Rémillard (2008) and Rémillard (2011a), uses the

Rosenblatt’s transform. For conciseness, we detail the implementation for two dimensional Gaussian AR(1)

regime-switching models, but the approach can be easily generalized.

D.1 Conditional distribution functions and the Rosenblatt’s transform.

Let i ∈ {1, . . . , l} be fixed an Ri be a random vector with density fi. For any q ∈ {1, . . . , d}, denote by

fi,1:q the density of (R
(1)
i , . . . , R

(q)
i ), and by fi,q the density of R

(q)
i given (R

(1)
i , . . . , R

(q−1)
i ). Further denote

by Fi,q the distribution function associated with density fi,q. By convention, fi,1 denotes the unconditional

density of R
(1)
i . Then, the Rosenblatt’s transform

x 7→ Ti(x) =
(
Fi,1(x(1)), Fi,2(x(1), x(2)), . . . , Fi,d(x

(1), . . . , x(d))
)ᵀ

is such that Ti(Ri) is uniformly distributed in [0, 1]d.

For example, if fi is the density of a bivariate Gaussian distribution with mean ui and covariance matrix

Σi =

 v
(1)
i ρi

√
v

(1)
i v

(2)
i

ρi

√
v

(1)
i v

(2)
i v

(2)
i

 ,

fi,2 is the density of a Gaussian distribution with mean µ
(2)
i + βi(y

(1)
i − µ

(1)
i ) and variance v

(2)
i (1 − ρ2

i ),

with βi = ρi

√
v

(2)
i /v

(1)
i . These results can easily be extended to the Gaussian AR(1) distribution.

However, for regime-switching random walks models, past returns must also be included in the condition-

ing information set. For any x(1), . . . , x(d) ∈ R, the (d-dimensional) Rosenblatt’s transform Ψt corresponding

to the density (6) conditional on x1, . . . , xt−1 ∈ Rd is given by

Ψ
(1)
t (x

(1)
t ) = Ψ

(1)
t (x1, . . . , xt−1, x

(1)
t ) =

l∑
i=1

Wt−1(i)Fi,1(x
(1)
t )

and
Ψ

(q)
t (x

(1)
1 , . . . , x

(q)
t ) = Ψ

(q)
t (x1, . . . , xt−1, x

(1)
t , . . . , x

(q)
t )

=

∑
i = 1lWt−1(i)fi,1:q−1(x

(1)
t , . . . , x

(q−1)
t )Fi,q(x

(q)
t )∑l

i=1Wt−1(i)fi,1:q−1(x
(1)
t , . . . , x

(q−1)
t )

for q ∈ {2, . . . , d}.

Suppose R1, . . . , Rn is a size n sample of d-dimensional vectors drawn from a joint (continuous) distri-

bution P . Also, let P be the parametric family of Gaussian AR(1) regime-switching models with l regimes.

Formally, the hypothesis to be tested is

H0 : P ∈ P = {Pθ; θ ∈ Θ} vs H1 : P /∈ P

Under the null, it follows that
(
U1 = Ψ1(R1, θ), U2 = Ψ2(R1, R2, θ), . . . , Un = Ψ(R1, . . . , Rn, θ)

)
are inde-

pendent and uniformly distributed over [0, 1]d, where Ψ1(·, θ), . . . ,Ψn(·, θ) are the Rosenblatt’s transforms

conditional on the set of parameters θ ∈ Θ.

Since θ is unknown, it must be estimated by some θn. Then, the pseudo-observations,
(
Û1 = Ψ1(R1, θn),

. . . , Ûn = Ψn(R1, . . . , Rn, θn)
)

are approximately uniformly distributed over [0, 1]d and approximately inde-

pendent. We next propose a test statistic based on these pseudo observations.
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D.2 Test statistic

The test statistic builds from the following empirical process:

Dn(u) =
1

n

n∑
t=1

d∏
q=1

I
(
Û

(q)
t ≤ u(q)

)
, u ≡ (u(1), . . . , u(d)) ∈ [0, 1]d.

To test H0 against H1 we propose a Cramér-von Mises type statistic:

Sn ≡ Bn(Û1, . . . , Ûn) = n

∫
[0,1]d

{
Dn(u)−

d∏
q=1

u(q)

}2

du

=
1

n

n∑
t=1

n∑
k=1

d∏
q=1

{
1−max Û

(q)
t , Û

(q)
k

}
− 1

2d−1

n∑
t=1

d∏
q=1

(1− Û (q)2) +
n

3d

Since Ûi is almost uniformly distributed on [0, 1]d under the null hypothesis, large values of Sn should lead

to rejection of the null hypothesis. Unfortunately, the limiting distribution of the test statistic will depend

on the unknown parameter set, θ. Since it is impossible to construct tables, we use a different methodology,

namely parametric bootstrap, to compute P -values. The validity of the parametric bootstrap approach has

been shown for a wide range of assumptions in Genest and Rémillard (2008). These results were recently

extended to dynamic models (Rémillard, 2011b), including regime-switching random walks. In this paper,

we generalized the procedure to AR(1) Gaussian regime-switching model by conditioning the Rosenblatt’s

transform on the previous return.

D.3 Parametric bootstrap algorithm

a) For a given number of regimes, estimate parameters with θn computed from the EM algorithm applied

to (R1, . . . , Rn)

b) Compute the test statistic,

Sn = Bn(Û , . . . , Ûn),

from the estimated pseudo observations, Ûi = Ψi(R1, . . . , Ri, θn), for i ∈ {1, . . . , n}.
c) For some large integer N (say 1000), repeat the following steps for every k ∈ 1, . . . , N :

i) Generate a random sample {Rk1 , . . . , Rkn, θkn} from distribution Pθn

ii) Compute θkn by applying the EM algorithm to the simulated sample, Rk1 , . . . , R
k
n.

iii) Let Ûki = Ψi(R
k
1 , . . . , R

k
i , θ

k
n) for i ∈ 1, . . . , n, and finally compute

Skn = Bn

(
Ûk1 , . . . , Û

k
n

)
.

Then, the approximate P -value for the test based on the Cramér von Mises statistic Sn is given by

1

N

N∑
k=1

I
(
Skn > Sn

)
.

Appendix E Optimal hedging

E.1 Proof of Theorem 2

Proof. First, we show this is true for the off-line random sequences a, b, γ, ρ and P . The result is clearly true

for Pn+1 = 1. Now,

an = E
(
∆n∆>n |Fn−1

)
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= D(Šn−1)E
{(
eYn−rn − 1

) (
eYn−rn − 1

)> |Fn−1

}
D(Šn−1)

= D(Šn−1)an(Yn−1, τn−1)D(Šn−1),

since (Y, τ) is a Markov process. For the same reason,

bn = E (∆n|Fn−1)

= D(Šn−1)E
{(
eYn−rn − 1

)
|Fn−1

}
= D(Šn−1)bn(Yn−1, τn−1).

As a result, ρn = D−1(Šn−1)a−1
n (Yn−1, τn−1)bn((Yn−1, τn−1), so

ρ>n∆n = bn((Yn−1, τn−1)>a−1
n (Yn−1, τn−1)

(
eYn−rn − 1

)
.

Therefore, γn = gn(Yn−1, τn−1). The rest of the proof is done by induction. Assume this is true for t + 1,

then we have to prove this is true for t. Now

at = E
(
∆t∆

>
t γt+1|Ft−1

)
= D(Št−1)E

{(
eYt−rt − 1

) (
eYt−rt − 1

)>
gt+1(Yt, τt)|Ft−1

}
D(Št−1)

= D(Št−1)at(Yt−1, τt−1)D(Št−1),

since (Y, τ) is a Markov process. Similarly,

bt = E (∆tγt+1|Ft−1)

= D(Št−1)E
{(
eYt−rt − 1

)
gt+1(Yt, τt)|Ft−1

}
= D(Št−1)bt(Yt−1, τt−1).

Hence, ρt = D−1(Št−1)a−1
t (Yt−1, τt−1)bt(Yt−1, τt−1), so

ρ>t ∆t = bt((Yt−1, τt−1)>a−1
t (Yt−1, τt−1)

(
eYt−rt − 1

)
.

Therefore,

γt = E
{

(1− ρ>t ∆t)γt+1|Ft−1

}
= E {gt+1(Yt, τt)|Ft−1}

−bt(Yt−1, τt−1)>a−1
t (Yt−1, τt−1)E

{(
eYt−rt − 1

)
gt+1(Yt, τt)|Ft−1

}
= E {gt+1(Yt, τt)|Ft−1} − bt(Yt−1, τt−1)>a−1

t (Yt−1, τt−1)bt(Yt−1, τt−1)

= gt(Yt−1, τt−1).

This proves that (18)–(20) hold true for any t ∈ {1, . . . , n}.

Suppose now that βnCn = Ψn(Šn). Using induction together with (16), one gets

Čt−1 = βt−1Ct−1γt = E[(1− ρ>t ∆t)Čt|Ft−1]

= E[{1− ht(Yt−1, τt−1)>
(
eYt−rt − 1

)
}Ψt(Št, Yt, τt)|Ft−1]

= Ψt−1(Št−1, Yt−1, τt−1).

Finally, it follows from (14) and (16) that

αt = a−1
t E(βnC∆tPt+1|Ft−1) = a−1

t E(βtCt∆tγt+1|Ft−1) = a−1
t E(Čt∆t|Ft−1).

As a result, using (18)–(21), one gets

αt = D−1(Št−1)a−1
t (Yt−1, τt−1)At(Št−1, Yt−1, τt−1),

where

At(s, y, i) = E
[
Ψt

{
D(s)eYt−rt , Yt, τt

} (
eYt−rt − 1

)
|Yt−1 = y, τt−1 = i

]
.
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E.2 Optimal hedging algorithm

We now need to evaluate the (18)–(23). First,

at(y, i) = E
{(
eYt−rt − 1

) (
eYt−rt − 1

)>
gt+1(Yt, τt)|Yt−1 = y, τt−1 = i

}
=

l∑
j=1

Qij

∫ (
ez−rt − 1

) (
ez−rt − 1

)>
gt+1(z, j)fj(z|y)dz,

bt(y, i) = E
{(
eYt−rt − 1

)
gt+1(Yt, τt)|Yt−1 = y, τt−1 = i

}
=

l∑
j=1

Qij

∫ (
ez−rt − 1

)
gt+1(z, j)fj(z|y)dz,

gt(y, i) = E {gt+1(Yt, τt)|Yt−1 = y, τt−1 = i} − b>t (y, i)ht(y, i)

=

l∑
j=1

Qij

∫
gt+1(z, j)fj(z|y)dz − b>t (y, i)ht(y, i),

Ψt−1(s, y, i) = E
[
Ψt

{
D(s)eYt−rt , Yt, τt

}{
1− ht(y, i)>

(
eYt−rt − 1

)}
|Yt−1 = y, τt−1 = i

]
=

l∑
j=1

Qij

∫
Ψt

{
D(s)ez−rt , z, j

}{
1− ht(y, i)>

(
ez−rt − 1

)}
fj(z|y)dz

At(s, y, i) = E
{

Ψt

{
D(s)eYt−rt , Yt, τt

} (
eYt−rt − 1

)
|Yt−1 = y, τt−1 = i

}
=

l∑
j=1

Qij

∫
Ψt

{
D(s)ez−rt , z, j

} (
ez−rt − 1

)
fj(z|y)dz.

Since these variables are weighted expectations they can be approximated by using Monte Carlo simula-

tions, coupled with interpolations. This method was proposed in Papageorgiou et al. (2008). Because the

simulations are computationally expensive and introduce variance, we propose a novel technique to approxi-

mate these expectations using semi-exact calculations, based on Rémillard (2013).

E.3 Semi-exact calculations.

By defining a grid, i.e. x0 < x1 < ... < xm < xm+1, one can approximate a function F by the continuous
piecewise linear function

f̂(x) =

m∑
q=0

1(xq ≤ x < xq+1)
{
Af (q) + xBf (q)

}
), (38)

where

Bf (q) =
f(xq+1)− f(xq)

xq+1 − xq
, (39)

Af (q) = f(xq)− xqBf (q). (40)

Now, for simplicity, take d = 1. Using (38)–(40), we can approximate gt the following way

ĝt(y, i) =

k∑
v=0

1(yv ≤ y < yv+1)(Agt (v, i) + yBgt (v, i))

where

Bgt (v, i) =
ĝt(yv+1, i)− ĝt(yv, i)

yv+1 − yv
Agt (v, i) = ĝt(yv, i)− yvBt(v, i).
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Remember that gn+1 = 1. The formula for gt is shown later.

Now, letN (x) be the cumulative distribution function of the standard normal distribution and letN ′(z) =
e−z2/2
√

2π
be the associated density. Also, N ′′(z) = −zN ′(z). If X ∼ N(µ, σ2), and if a < b are given, then for

any θ ∈ R, one has

M(θ) = E
[
eθX1(a < X < b)

]
= eθµ+θ2σ2/2

[
N{κ(b)} − N{κ(a)}

]
,

M ′(θ) = E
[
XeθX1(a < X < b)

]
= (µ+ θσ2)M(θ)− σeθµ+θ2σ2/2

[
N ′{κ(b)} − N ′{κ(a)}

]
,

and

M ′′(θ) = E
[
X2eθX1(a < X < b)

]
= σ2M(θ) + (µ+ θσ2)M ′(θ)

+σeθµ+θ2σ2/2

{
σ
[
N ′′{κ(b)} − N ′′{κ(a)}

]
−(µ+ θσ2)

[
N ′{κ(b)} − N ′{κ(a)}

]}
,

where for any x ∈ R,

κ(x) =
x− θσ2 − µ

σ
.

In particular,

M ′(0) = E [X1(a < X < b)]

= µ

[
N
{
b− µ
σ

}
−N

{
a− µ
σ

}]
− σ

[
N ′
{
b− µ
σ

}
−N ′

{
a− µ
σ

}]
.

This way, we can approximate a, b and g as follows.

For any u ∈ {1, . . . , k} and any i ∈ {1 . . . , l}, set

ât(yu, i) =

l∑
j=1

Qij

k∑
v=0

∫ yv+1

yv

(
ez−rt − 1

) (
ez−rt − 1

)
×(Agt+1(v, j) + zBgt+1(v, j))fj(z|yu)dz

=

l∑
j=1

Qij

k∑
v=0

∫ yv+1

yv

{
Agt+1(v, j) + zBgt+1(v, j)− 2e−rtezAgt+1(v, j)

−2e−rtzezBgt+1(v, j) + e−2rte2zAgt+1(v, j) + e−2rtze2zBgt+1(v, j)

}
fj(z|yu)dz,

b̂t(yu, i) =

l∑
j=1

Qij

k∑
v=0

∫ yv+1

yv

(
ez−rt − 1

)
(Agt+1(v, j) + zBgt+1(v, j))fj(z|yu)dz

=

l∑
j=1

Qij

k∑
v=0

∫ yv+1

yv

{
−Agt+1(v, j)− zBgt+1(v, j) + e−rtezAgt+1(v, j)

+e−rtzezBgt+1(v, j)

}
fj(z|yu)dz.
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and

ĝt(yu, i) =

l∑
j=1

Qij

k∑
v=0

∫ yv+1

yv

{Agt (v, j) + zBgt (v, j)} fj(z|yu)dz − b̂t(yu, i)ĥt(yu, i),

where ĥt(yu, i) = â−1
t (yu, i)b̂t(yu, i). For values of y not on the grid, we can also interpolate â, b̂, and ĝ

using (38)–(40).

To approximate Ψ and α, we need to define a second grid, defined by 0 = s0 < s1 < ... < sm < sm+1 =∞.

Ψt can be also be approximated by a product of continuous piecewise linear functions viz.

Ψ̂t(s, y, i) =

m∑
q=0

k∑
v=0

1(sq ≤ s < sq+1)1(yv ≤ y < yv+1)

×
{
AΨ
t (q, v, i) + sB1,Ψ

t (q, v, i) + yB2,Ψ
t (q, v, i) + syB3,Ψ

t (q, v, i)
}
,

where

B3,Ψ
t (q, v, i) =

Ψ(sq+1, yv+1, i)−Ψ(sq+1, yv, i)−Ψ(sq, yv+1, i) + Ψ(sq, yv, i)

(sq+1 − sq)(yv+1 − yv)
,

B2,Ψ
t (q, v, i) =

Ψ(sq, yv+1, i)−Ψ(sq, yv, i)

yv+1 − yv
−B3,Ψ

t (q, v, i)sq,

B1,Ψ
t (q, v, i) =

Ψ(sq+1, yv, i)−Ψ(sq, yv, i)

sq+1 − sq
−B3,Ψ

t (q, v, i)yv,

AΨ
t (q, v, i) = Ψ(sq, yv, i)−

Ψ(sq+1, yv, i)−Ψ(sq, yv, i)

sq+1 − sq
sq

−Ψ(sq, yv+1, i)−Ψ(sq, yv, i)

yv+1 − yv
yv +B3,Ψ

t (q, v, i)sqyv,

using the results in Appendix E.4.

As a result, for q ∈ {1, . . . ,m} and for v ∈ {1, . . . , k},

Ψ̂t−1(sq, yv, i) =

l∑
j=1

Qij

∫
Ψ̂t

(
sqe

z−rt , z, j
)

×
{

1− ht(yv, i)
(
ez−rt − 1

)}
fj(z|yv)dz

=

l∑
j=1

Qij

m∑
q′=1

k∑
v′=1

∫ yv′+1

yv′

1(sq′ ≤ sqez−rt < sq′+1)

×
{
{AΨ

t (q′, v′, j) + sqe
z−rtB1,Ψ

t (q′, v′, j)

+zB2,Ψ
t (q′, v′, j) + zsqe

z−rtB3,Ψ
t (q′, v′, j)

}
×
{

1− ht(yv, i)
(
ez−rt − 1

)}
fj(z|yv)dz

=

l∑
j=1

Qij

m∑
q′=1

k∑
v′=1

∫ min{yv′+1,log(sq′+1/sq)}

max{yv′ ,log(sq′/sq)}

×
{
AΨ
t (q′, v′, j) + sqe

z−rtB1,Ψ
t (q′, v′, j)

+zB2,Ψ
t (q′, v′, j) + zsqe

z−rtB3,Ψ
t (q′, v′, j)

}
×
{

1− ht(yv, i)
(
ez−rt − 1

)}
fj(z|yv)dz,

with the convention that the integral is 0 if

max{yv′ , log(sq′/sq)} ≥ min{yv′+1, log(sq′+1/sq)}.
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There is a similar expression for Ât(sq, yv, i), namely

Ât(sq, yv, i) =

l∑
j=1

Qij

∫
Ψ̂t (sqe

z, z, j)
(
ez−rt − 1

)
fj(z|yv)dz

=

l∑
j=1

Qij

m∑
q′=1

k∑
v′=1

∫ yv′+1

yv′

1(sq′ ≤ sqez−rt < sq′+1)

×
{
AΨ
t (q′, v′, j) + sqe

z−rtB1,Ψ
t (q′, v′, j)

+zB2,Ψ
t (q′, v′, j) + zsqe

z−rtB3,Ψ
t (q′, v′, j)

}
×
(
ez−rt − 1

)
fj(z|yv)dz

=

l∑
j=1

Qij

m∑
q′=1

k∑
v′=1

∫ min{yv′+1,log(sq′+1/sq)}

max{yv′ ,log(sq′/sq)}

×
{
AΨ
t (q′, v′, j) + sqe

z−rtB1,Ψ
t (q′, v′, j)

+zB2,Ψ
t (q′, v′, j) + zsqe

z−rtB3,Ψ
t (q′, v′, j)

}
×
(
ez−rt − 1

)
fj(z|yv)dz.

Note that Ψt−1(0, y, i) = Ψn(0, y, i) and At(0, y, i) = ht(y, i)Ψn(0, y, i) for all t = 1, . . . , n. For example,

Ψt(0, y, i) ≡ 0 for all t, while for a put option with strike K, Ψt(0, y, i) = βnK, for all t ∈ {0, . . . , n}.

E.4 Bi-linear interpolation

One wants to interpolate f by f̂ over [x0, x1]× [y0, y1]. Set fi,j = f(xi, yj), i, j ∈ {0, 1}.

Then f̂(x, y) = (x−x0)
(x1−x0)

(y−y0)
(y1−y0)B11 + (x−x0)

(x1−x0)B10 + (y−y0)
(y1−y0)B01 +B00, where

B00 = f00,

B10 = f10 − f00,

B01 = f01 − f00,

B11 = f11 − f10 − f01 + f00.

E.5 Simulation of Gaussian ARHMM(1)

If (Yt, τt) = (y, i), then with τt+1 = j with probability Qij and then Yt+1 = µj + Φj(y − µj) + Bjε, where

B>j Bj = Σj and ε ∼ N(0, I).

Also, when d = 1, a random sample of size N from fj(·|y) is given by zij = µi + Φj(y − µj) + σjεi, with

εi ∼ N(0, 1). So the sequence of innovations ε are independent of j.

In this case, every integral Ij(h) =
∫
h(z)fj(z|y)dz is approximated by

Îj(h) =
1

N

N∑
i=1

h(zij).

In particular, this means that for any j1, j2 ∈ {1, . . . , l},

Îj1(h1) =
1

N

N∑
i=1

h1(zij1), Îj2(h2) =
1

N

N∑
i=1

h2(zij2).
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