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libre accès aux publications des organismes subventionnaires canadiens
et québécois.
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– Library and Archives Canada, 2017

GERAD HEC Montréal
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Abstract: In this paper, we first present a review of statistical tools that can be used in asset management
either to track financial indexes or to create synthetic ones. More precisely, we look at two important
replication methods: the strong replication, where a portfolio of very liquid assets is created and the goal is
to track an actual index with the portfolio, and weak replication, where a portfolio of very liquid assets is
created and used to either replicate the statistical properties of an existing index, or to replicate the statistical
properties of a custom asset. In addition, for weak replication, the target is not an index but a payoff, and
the replication amounts to hedge the portfolio so it is as close as possible to the payoff at the end of each
month. For strong replication, the main tools are predictive tools, so filtering techniques and regression
play an important role. For weak replication, which is the main topic of this paper, in order to determine
the target payoff, the investor has to find or choose the distribution function of the target index or custom
index, as well as its dependence with other assets, and use a hedging technique. Therefore, the main tools
for weak replication are modeling (estimation and goodness-of-fit) and optimal hedging. For example, an
investor could wish to obtain Gaussian returns that are independent of some ETFs replicating the Nasdaq
and S&P 500 indexes. In order to determine the dependence of the target and a given number of indexes,
we introduce a new class of easily constructed models of conditional distributions called B-vines. We also
propose to use a flexible model to fit the distribution of the assets composing the portfolio and then hedge
the portfolio in an optimal way. Examples are given to illustrate all the important steps required for the
implementation of this new asset management methodology.

Keywords: ETF, hedge funds, replication, smart beta, copulas, B-vines, HMM, hedging

Résumé : Dans cet article, nous présentons d’abord une analyse des outils statistiques qui peuvent être
utilisés dans la gestion des actifs soit pour reproduire des indices financiers, soit pour créer des actifs
synthétiques. Plus précisément, nous examinons deux méthodes de réplication importantes: la réplication
forte, où un portefeuille d’actifs très liquides est créé et l’objectif est de reproduire un index réel avec le
portefeuille, et la réplication faible, où un portefeuille d’actifs très liquides est créé, et utilisé pour reproduire
les propriétés statistiques d’un index existant ou indice personalisé. En outre, pour la réplication faible, la
cible n’est pas un indice, mais une valeur intrinsèque comme dans une option, et la réplication équivaut à se
couvrir contre cette option à chaque échéance mensuelle. Pour la réplication forte, les outils principaux sont
des outils prédictifs, comme les techniques de filtrage et la régression. Pour la réplication faible, qui est le
sujet principal de cet article, afin de déterminer le rendement cible, l’investisseur doit trouver ou choisir la
fonction de distribution de l’indice cible ou de l’indice personnalisé, ainsi que sa dépendance avec d’autres
actifs et utiliser une stratégie de couverture. Par conséquent, les principaux outils pour l’impantation de
la réplication faible sont la modélisation (estimation et tests d’ajustement) et des techniques de couverture
optimale. Par exemple, un investisseur pourrait souhaiter obtenir des rendements gaussiens indépendants de
certains fonds indiciels reproduisant les indices Nasdaq et S&P 500. Afin de déterminer la dépendance de la
cible et un nombre donné d’indices, nous introduisons une nouvelle classe de modèles de distributions condi-
tionnelles faciles à construire appelés B-vignes. Nous proposons également d’utiliser un modèle flexible qui
s’ajuste à la distribution des actifs composant le portefeuille et ensuite couvrir le portefeuille d’une manière
optimale. Des exemples sont donnés pour illustrer toutes les étapes requises à la mise en oeuvre de cette
nouvelle méthodologie de gestion d’actifs.

Mots clés : FNB, fonds de courverture, réplication, copules, B-vignes, HMM, couverture
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1 Introduction

Historically, hedge funds have been an important class of alternative investment assets for diversifying port-

folios.

Mainly based on the work on Fung and Hsieh (2001, 2004) and Hasanhodzic and Lo (2007), major investors

like financial institutions looked for more efficient and affordable methods to generate the same kind of returns.

This was mainly done by strong replication, i.e., by constructing portfolios of very liquid assets tracking a

hedge fund index. Nowadays, smart beta methods, a new brand name for replication techniques, offer even

more flexibility to small investors as well, through ETFs. For example, Horizons HFF (hhf.to) is an ETF

targeting the Morningstar Broad Hedge Fund Index SM, while State Street SPDR ETF (spy) tracks S&P

500 index.

In addition to strong replication, weak replication, based of the payoff distribution model of Dybvig

(1988), was proposed by Amin and Kat (2003) and extended by Kat and Palaro (2005). This innovative

approach consists in constructing a dynamic strategy to track a payoff, in order to reproduce the statistical

properties of hedge fund returns together with their dependence with a selected investor portfolio. It can

also be used to construct synthetic indexes with tailor-made properties, which is an advantage over strong

replication since the latter can only replicate an existing index.

In Section 2, we review the main statistical techniques that can be use to replicate indexes, including a

new “Smart Beta” approach that can be used to diversify investors portfolios. In order to implement the

proposed methodology, a new family of conditional distribution called B-vines are introduced in Section 3.

The essential steps of modeling and hedging are discussed in Section 4. Examples of applications are then

given in Section 5.

2 Replication methods

There are basically two replication approaches: strong replication, where the target is the index (naive or

imitative method, and factor-based method), and weak replication, where the target is a payoff determined

by the distribution of an existing index or a custom index, also called synthetic index. In both cases, the

idea is to construct a portfolio of liquid assets with end of the month values as close as possible to the target.

Strong replication is divided in two sub-groups. On one hand, there is the “naive replication”, where

the investor try to imitate the hedge fund manager investment strategy or the index composition. This is
kind of easy for indexes when their composition is known, but it is far from obvious when the strategy or

composition is unknown. For example, for a Merger Arbitrage Fund index, the idea is to long (potential)

sellers and short (potential) buyers.

On the other hand, the factorial approach attempts to reproduce hedge fund returns or indexes by

investing in a portfolio of assets that provide similar end of month returns.

Alternative beta funds based on the factorial approach have been launched by several institutions including

Goldman Sachs, JP Morgan, Deutsche Bank, and Innocap, to name a few. According to Wallerstein et al.

(2010), the short version Verso of Innocap, based on filtering methods, performed best in the turbulent

period 2008–2009. Note also that Laroche and Rémillard (2008) showed that factor-based replicators produce

independent returns over time, which might be interesting from an investor’s perspective. Furthermore, an

investor can easily track the performance of a given replicator. However, in a recent study, Towsey (2013)

found very high correlations between factor-based replicators and indexes like S&P 500. This undesirable

dependence show that these replicators cannot really be used for diversification purposes, contrary to synthetic

indexes that can be built with weak replication techniques. An illustration of this powerful technique is given

in Section 5.4.

Before presenting the mathematical framework defining strong and weak replication, we summarize in

Table 1 the main differences between the two approaches. Tracking is possible for weak replication if the

value of the payoff is posted at the end of the month. In this case, the analog of the tracking error is the
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RMSE (root mean square error) of the hedging error. This important value appears in our examples of

implementation in Section 5. For synthetic indexes, it is possible to control the dependence.

Table 1: Main differences between strong replication and weak replication.

Method Target Tracking Synthetic index Controlled dependence

Strong Index Yes No No
Weak Payoff Possible Possible Possible

2.1 Factorial approach for strong replication

To implement the factorial approach, one needs the returns1 R?t of the target fund S? and one needs to select

appropriate liquid assets (factors) S =
(
S(1), . . . , S(p)

)
composing the replication portfolio. The returns of S

are denoted by Rt =
(
R

(1)
t , . . . , R

(p)
t

)
, and the associated weights are denoted by βt = (βt,1, . . . , βt,p). The

model is written in the linear form

R?t = β>t Rt + εt, (1)

where the εt’s are non-observable tracking error terms.

The unknown weights βt are then evaluated from a predictive method using relation (1), e.g., by using a

rolling-window regression over the last 24 months, or by using filtering methods. Note that for filtering, one

must also define the (Markovian) dynamics of the weights βt; see, e.g., Roncalli and Tëıletche (2007).

To measure the performance of a replicating method, one use the tracking error (TE), defined in the

in-sample case by

TEin =

{
1

n

n∑
t=1

(
R?t − β̂>t Rt

)2
}1/2

,

while for the out-of-sample, it is defined by

TEout =

{
1

n

n∑
t=1

(
R?t − β̂>t−1Rt

)2
}1/2

,

where β̂t is the vector of predicted weights using returns (R?t ,Rt), (R?t−1, Rt−1), . . .. The out-of-sample

tracking error is a more realistic measure of performance, since the error R?t − β̂>t−1Rt is the one monitored

by investors. As seen in the example below, filtering usually yields better results than regression in terms of

tracking error.

Example 1 Rémillard (2013, Chapter 10). The target is HFRI Fund Weighted Composite Index, and the

factors are S&P500 Index TR, Russel 2000 Index TR, Russell 1000 Index TR, Eurostoxx Index, Topix, US 10-

year Index, 1-month LIBOR.2 Here, two methods were used to compute the dynamic weights β: a regression

with a 24-month window, and a Kalman filter, where the dynamics of the β’s is a random walk, meaning that

βt = βt−1 + ηt, where the innovations ηt are assumed to be independent and identically distributed.

This is a very basic and unrealistic model, but the model can be improved, e.g., by adding dependence in the

increments or adding constraints of the portfolio compositions. In this case, the Kalman filter assumptions are

no longer met, and one should use for example a particles filter (Rémillard, 2013, Chapter 9). However, even

with a simple model and the Kalman filter, the results are surprisingly good, better than the rolling-window

regression. In-sample and out-of-sample statistics for our example are displayed in Table 2.

In general, the βt are much less variable in the Kalman filter case, leading to less expensive transactions,

in addition to being a better tracking method. See, e.g., Rémillard (2013, Chapter 10).

1Typically monthly returns, especially in the case of hedge fund indexes.
2Data, from April 1997 to October 2008, were provided by Innocap.
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Table 2: In-sample and out-of-sample statistics.

TE Corr Mean Std Skew Excess kurt

Portfolio In-sample statistics

Target - 1.00 8.12 7.72 -0.59 2.45
Regression 10.58 0.93 8.79 8.32 -0.69 2.22
Kalman 8.54 0.95 9.68 7.75 -0.59 2.53

Portfolio Out-of-sample statistics

Target - 1.00 8.12 7.72 -0.59 2.45
Regression 19.27 0.83 9.30 9.86 -0.11 3.34
Kalman 14.71 0.86 9.97 8.20 -0.40 2.63

NOTE: Tracking error, mean and volatility are expressed in annual percentage. Recall
that the excess kurtosis of the Gaussian distribution is 0.

Before ending this section, it is worth noting that one could also use machine learning methods for tracking

purposes. It would be interesting to compare the performance of machine learning vs filtering. This will be

done in a forthcoming work.

2.2 Weak replication

Weak replication is an alternative replication method proposed by Amin and Kat (2003) and later extended

by Kat and Palaro (2005) based on the payoff distribution model of Dybvig (1988). The aim was to replicate

hedge fund returns or hedge fund indexes not by identifying the return generating betas as in the factor-based

approach, but by building a trading strategy that can be used to generate the (statistical) distribution of the

hedge fund returns or indexes. The implementation proposed in Kat and Palaro (2005) is subject to several

shortcomings and inconsistencies. Improvements of the Kat-Palaro method were proposed in Papageorgiou

et al. (2008) for a start.

In view of applications to asset management, and mainly for diversification purposes, it is desirable to

generalize the Kat-Palaro approach (limited to only one reference asset). To this end, it was suggested

in Ben-Abdellatif (2010) to consider a multivariate asset S of p = d + 1 components, where S(1), . . . , S(d)

represent the value of reference portfolios of the investor, and the so-called reserve asset S(d+1) 3. As before,

S? is the index one seeks to replicate. The aim is not to reproduce the monthly values of S?, which might

not even exists, but rather reproduce its statistical properties.

The steps required to implement the proposed weak replication method are given next.

2.2.1 Implementation steps

1. Determine the joint distribution of the (daily) returns Rk of Sk.

2. Find a compatible distribution for the monthly returns R0,T . In particular, find the marginal distri-

butions F1, . . . , Fd of R
(ref)
0,T =

(
R

(1)
0,T , . . . , R

(d)
0,T

)
, find the copula of R

(ref)
0,T , and find the conditional

distribution F(·,x) of R
(res)
0,T given R

(ref)
0,T =

(
R

(1)
0,T , . . . , R

(d)
0,T

)
= x.

This can be done by simulation from daily returns, as suggested in Section 4.2. Again, we suggest to

use a Gaussian HMM. We strongly advise against using real monthly returns to complete this step since

in general the sample size for estimation purposes is not long enough, and in addition, there is a lack

of compatibility between the distribution of the daily and monthly returns, thus creating a bias.

3. Find or choose the distribution function F? of the return R?0,T of the target index S?.

4. Find or choose the conditional distribution function H(·,x) of R?0,T given R
(ref)
0,T = x, which can be

expressed as

H(y,x) = C{G(y),F(x)},
3E.g., equal weighted portfolio of highly liquid futures contracts
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where F(x) = (F1(x1), . . . , Fd(xd)), and C(·,v) is the conditional distribution of U = F?(R
?
0,T ) given

V = F
(
R

(ref)
0,T

)
= v.

5. Compute the return function g given by

g(x, y) = Q{F(y,x),x} , (2)

where Q(·,x) is the conditional quantile function (Rémillard et al., 2017), defined as the inverse of

H(·,x). The function g can also be expressed as

g(x, y) = F−1
?

[
C−1 {F(y,x),F(x))}

]
. (3)

6. Compute the payoff function G defined by

G (ST ) = 100 exp {g (R0,T )} .

7. Construct a dynamic portfolio {Vk(V0,ϕ)}nk=0 of the assets S, traded daily, in order to generate the

payoff G (ST ) at the end of the month. More precisely, letting βk = e−rkT/n be the discounting factors,

the discounted value of the portfolio at the end of the month is

βnVn = V0 +

n∑
k=1

ϕ>k (βkSk − βk−1Sk−1),

where ϕ
(j)
k is number of shares of asset S(j) invested during ((k − 1)T/n, kT/n], and ϕk may depend

only on S0, . . . ,Sk−1. Initially, the portfolio initial value is V0.

This hedging problem is typical in financial engineering, where V0 can be interpreted as the value of

an option on S having payoff G at maturity T , and one wants to replicate the payoff. Usually, we are

more interested in the price of the option, while here the emphasis is on the hedging portfolio, which is

the object of the investment.

For hedging, we suggest to use the discrete time hedging method defined in Section 4.3. This strategy,

adapted for a continuous time model, is optimal with respect to minimizing the square hedging error.

2.2.2 K-P measure

If the goal is attained, i.e., Vn = G (ST ), then the return of the portfolio is

log(Vn/V0) = log(100/V0) + g (R0,T ) ,

which has the same distribution as α+S?, where α = log(V0/100) can be used to estimate manager’s alpha or

the feasibility of the replication. Kat and Palaro (2005), in the context of replicating hedge funds, suggested

that the initial amount V0 to be invested in the portfolio be viewed as a measure of performance of the hedge

fund manager. Here we prefer to use α which we call the K-P measure. It can be interpreted as follows:

• If α = 0, i.e., V0 = 100, the strategy generates the same returns as S? (in distribution);

• If α < 0, i.e., V0 < 100, it is worth replicating, generating superior returns (in distribution), while if

α > 0, i.e., V0 > 100, it may be not worth replicating.

Note that centered moments like standard deviation, skewness, kurtosis, are not affected by the value of the

K-P measure α. However, the expected value of the portfolio is α+ E(S?).

Example 2 A simple example in risk management is an investor interested in creating a portfolio S? with a

specific distribution function F?, which would be independent of several reference indexes, so that the return

of the hedging portfolio will not be affected by extreme behavior of the reference indexes. In this case, g is

given by

g(x, y) = F−1
? {F(y,x)} . (4)

An example of implementation of this model is given in Section 5.4.
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Remark 1 It makes sense that α > 0, especially if the target distribution of S? is not realistic. For exam-

ple, one could wish to generate Gaussian returns with annual mean of 30% and a volatility of 1% that is

independent of S(1), but the real distribution would be Gaussian with mean .3 − 12α. In fact, if the joint

distribution of the monthly returns is Gaussian, with annual means µ1, µ2, µ3, annual volatilities σ1, σ2, σ3

and correlations ρ12, ρ13, then, according to Equation (2),

g(x, y) =
1

12

{
µ3 − r + σ3

(
x− µ1

σ1

)(
ρ13 − ρ12

√
1− ρ2

13

1− ρ2
12

)

+ σ3

(
y − µ2

σ2

)√
1− ρ2

13

1− ρ2
12

}
,

so using the Black-Scholes setting with associated risk neutral measure Q,

V0 = 100e−r/12EQ
{
e
g
(
R

(1)

0,1/12
,R

(2)

0,1/12

)}
= 100eα,

with

α =
µ3

12
− r

12
− 1

12

{
µ1
σ3

σ1
+ µ2

σ3

σ2

√
1− ρ2

13

1− ρ2
12

− σ2
3

2

}

+
1

12

{
σ3

σ1

(
r − σ2

1

2

)(
ρ13 − ρ12

√
1− ρ2

13

1− ρ2
12

)

+
σ3

σ2

(
r − σ2

2

2

)√
1− ρ2

13

1− ρ2
12

}
.

As a result, the genuine mean of the target is independent of µ3! For example, if r = 1%, µ1 = 8%, µ2 = 6%,

σ1 = 10%, σ2 = 8%, σ3 = 1%, ρ12 = 0.25 and ρ13 = 0, then α = µ3

12 −
.02499

12 , and we would get a Gaussian

distribution with an annual mean of 2.499% and an annual volatility of 1% that is independent of S(1). It is

interesting to look at the real annual mean of the portfolio (assuming perfect hedging) as a function of ρ13.

This is illustrated in Figure 1. Note that the maximum value 2.501% is attained for ρ13 = −0.072.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Figure 1: Real annual mean in percent of the Gaussian distribution of the monthly return R? as a function of the correlation ρ13
with monthly return R(1).
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2.2.3 Choice of C

First, note that C is a function of the copula C of (U,V) viz.

C(u,v) =
∂v1 · · · ∂vdC(u, v1, . . . , vd)

cV(1, v1, . . . , vd)
, (u,v) ∈ (0, 1)1+d, (5)

where cV is the density of the copula CV(·) = C(1, ·). When d = 1, we can take C(u, v) = ∂vC(u, v) for any

copula C. However, if d ≥ 2, then the copula of V matters. One cannot just take any d + 1-dimensional

copula C. To solve this intricate problem, we propose to use a construction similar to the one used for vine

copulas. This new construction is described in Section 3, after we discuss why the choice of C matters.

To this end, let C̃ be an arbitrary conditional distribution function of U given a d-dimensional random

vector Ṽ associated with the copula C̃ of (U, Ṽ), and define

g̃(x, y) = F−1
?

[
C̃−1 {F(y,x),F(x))}

]
.

Setting Z = F
(
R

(res)
0,T ,R

(ref)
0,T

)
, one gets

P
[
g̃(R0,T ) ≤ y,R(ref)

0,T ≤ x
]

= P
[
Z ≤ C̃

{
F?(y),F

(
R

(ref)
0,T

)}
,R

(ref)
0,T ≤ x

]
= E

[
C̃ {F?(y),V} I (V ≤ F(x))

]
=

∫
(0,F(x)]

C̃ {F?(y),v} cV(v)dv,

since Z is uniformly distributed and is independent of R
(ref)
0,T , according to Rosenblatt (1952). So, in general,

F̃?(y) = E
[
C̃ {F?(y),V}

]
is not the target distribution function F?. However, F̃? = F? if C̃(1,v) = CV(v).

One then must be careful with the choice of C in order to have compatibility.

3 B-vines models

The aim of this section is to find a flexible way to construct a conditional distribution of a random variable

Y given a d-dimensional random vector X. Using the representation of conditional distributions in terms of

copulas, this problem amounts to constructing the conditional distribution C of a uniform random variable

U given a random vector V (with uniform margins) that is coherent with the distribution function CV of V.

As noted before, when d = 1, the compatibility condition is not a constraint at all since CV (v) = v,

v ∈ [0, 1], and the solution is simply to take C(u, v) = ∂vC(u, v), for a copula C that is smooth enough.

Next, in the case d = 2, if D1 and D2 are bivariate copulas, with conditional distributions Dj(u, t) =

∂tDj(u, t), j ∈ {1, 2}, and CV is the copula of V = (V1, V2), then

C(u,v) = D2 {D1(u, v1), ∂v1CV(v1, v2)} , v = (v1, v2) ∈ (0, 1)2, (6)

defines a conditional distribution for U given V = v, compatible with the law of V. This construction is a

particular case of a D-vine copula (Joe, 1996; Aas et al., 2009).

Guided by formula (6), let Dj , j ∈ {1, . . . , d} be bivariate copulas and let Dj(u, t) = ∂tDj(u, t) be the

associated conditional distributions. For j ∈ {1, . . . , d}, further let Rj−1(v1, . . . , vj) be the conditional dis-

tribution of Vj given V1 = v1, . . . , Vj−1 = vj−1, withR0(v1) = v1, and for (u,v) ∈ (0, 1)d+1, set C0(u) = u, and

Cj(u, v1, . . . , vj) = Dj {Cj−1(u, v1, . . . , vj−1),Rj−1(v1, . . . , vj)} . (7)

Note that E{Cj(u, v1, . . . , vj−1, Vj)|V1 = v1, . . . , Vj−1 = v,j − 1} is given by
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∫ 1

0

Cj{u, v1, . . . ,Rj−1(v1, . . . , vj)}dRj−1(v1, . . . , vj) =

∫ 1

0

Dj{Cj−1(u, v1, . . . , vj−1), t}dt

= Dj{Cj−1(u, v1, . . . , vj−1), 1}
= Cj−1(u, v1, . . . , vj−1).

It follows that Cj is the conditional distribution of U given V1, . . . , Vj . The conditional quantile of U given

V1, . . . , Vj is also easy to compute, satisfying a recurrence relation similar to (7). In fact, if the conditional

quantile of Cj is denoted by Γj , then for any j ∈ {1, . . . , d}, and for any u, v1, . . . vd ∈ (0, 1),

Γj(u, v1, . . . , vj) = Γj−1

[
D−1
j {u,Rj−1(v1, . . . , vj)} , v1, . . . , vj−1

]
. (8)

In general, this construction does not lead to a proper vine copula since all copulas involved are not

bivariate copulas, the copula of V being given. In fact, it is more general than the pair-copula construction

method used in vines models. Nevertheless, this type of model will be called B-vines and its construction

is illustrated below, where the underlined variables (in red) mean that their distributions R0, . . . ,Rd−1 are

known,4 and the conditional copulas D1, . . . ,Dd have to be chosen, in order to determine C1, . . . , Cd.

Level 1:

D1

C0
U |

R0

V1 =⇒ C1

Level 2:

D2

C1
U |V1 |

R1

V2|V1 =⇒ C2
... · · ·

. . .

Level j:

Dj
Cj−1

U |V1, . . . , Vj−1 |
Rj−1

Vj |V1, . . . , Vj−1 =⇒ Cj
... · · ·

. . .

Level d:

Dd
Cd−1

U |V1, . . . , Vd−1 |
Rd−1

Vj |V1, . . . , Vd−1, Vd =⇒ Cd

Note that B-vines can be particularly useful in conditional mean regression (OLS, GAM, GLM, etc,) and

conditional quantile settings, where the distribution of the covariates is often given; see, e.g., Rémillard et al.

(2017). It can also be used in our replication context when the target S? exists; in this case, we could look

at B-vines constructed from popular bivariate families like Clayton, Gumbel, Frank, Gaussian and Student,

and find the ones that fit best the data, in the same spirit as the choice of vines for copula models in the R

packages CDVine or VineCopula. In a future work we will propose goodness-of-fit tests for these models.

4 Modeling and hedging

In what follows, building on Papageorgiou et al. (2008), we propose a model to fit the data and deal with

numerical problems arising from using a larger number of assets for hedging.

To implement successfully the proposed replication approach, one needs to model the distribution of the

returns Rt and R0,T . Once this is done, we will have as a by-product the conditional distribution F and the

Rosenblatt’s transforms R0, . . . ,Rd−1 used for computing the conditional distribution C, as in Section 3. For

replicating an existing asset S?, one further needs the joint distribution of
(
R?0,T ,R

(ref)
0,T

)
. To do this, we

propose to use Gaussian Hidden Markov Models (HMM) as defined in Rémillard et al. (2017). This model

is described next in Section 4.1. Next, one needs to find a distribution of the month returns compatible

with the distribution of the daily returns. A solution to this problem is proposed in Section 4.2. Finally, a

replication method is proposed in Section 4.3.

4R0, . . . ,Rd−1 are called the Rosenblatt’s transforms and are particularly important in simulating copulas or for testing
goodness-of-fit. See, e.g., Rémillard (2013).
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4.1 Gaussian HMM

Regime-switching models are quite intuitive. First, the regimes {1, . . . , l} are not observable and are modeled

by a finite Markov chain with transition matrix Q. At period t, given that the previous regime τt−1 has

value i, the regime τt = j is chosen with probability Qij , and given τt = j, the log-returns Rt has a Gaussian

distribution with mean µj and covariance matrix Bj .

The law of most financial time series can be modeled adequately by a Gaussian HMM, provided the number

of regimes is large enough. Indeed, the serial dependence in regimes propagates to returns and captures the

observed autocorrelation in financial time series. Also, the conditional distribution is time-varying, leading

to conditional volatility, as well as conditional asymmetry and kurtosis. Finally, the Black-Scholes framework

is a particular case of this model when the number of regimes is 1. Parameters are quite easy to estimate

and there is also an easy way to choose the number of regimes, depending on the results of goodness-of-fit

tests; see, e.g., Rémillard et al. (2017) for more details.

In the next section, we introduce the continuous time limit of a Gaussian HMM, the main reason being

that for this limiting process, one can show that there exists an equivalent martingale measure that is optimal

in the sense of Schweizer (1992) and can be used for pricing and hedging; see, e.g., Rémillard and Rubenthaler

(2016).

4.1.1 Continuous time limiting process

Under weak conditions, the continuous time limit of a Gaussian HMM is a regime-switching geometric Brow-

nian motion (RSGBM). Using the same notations as in Rémillard and Rubenthaler (2016), let T be a continu-

ous time Markov chain on {1, . . . , l}, with infinitesimal generator Λ. In particular,

P (Tt = j|T0 = i) = Pij(t), where the transition matrix P can be written as P(t) = etΛ, t ≥ 0. Then,

the (continuous) price process X modeled as a RSGBM satisfies the stochastic differential equation

dXt = D(Xt)υ(Tt)dt+D(Xt)σ(Tt−)dWt, (9)

where D(s) is the diagonal matrix with diagonal elements (sj)
d
j=1 and W is a d-dimensional Brownian motion,

independent of T . Note that the time scale is in years, and we assume that a(j) = σ(j)σ(j)> is invertible

for any j ∈ {1, . . . , l}.

4.1.2 Relationship between discrete time and continuous time parameters

The relationship between the continuous-time parameters (υ,a,Λ) of the limiting RSGBM and the param-

eters of the Gaussian HMM is the following: if the parameters µh,Bh,Qh of the discrete time model are

obtained from data sampled 1/h times a year, then υ(j) ≈
[
µh(j) + 1

2diag{Bh(j)}
]
/h, where diag(B) is the

vector of the diagonal elements of a matrix B, a(j) ≈ Bh(j)/h, and Λ ≈ (Qh − I)/h. For example, for daily

data, one usually takes h = 1/252.

Note that if we define Xh,t = Sbt/hc and Th,t = τbt/hc, where bac stands for the integer part of a ∈ R, then

the processes (Xh,t, Th,t) converge in law to (X, T ). Note also that the optimal hedging strategy converges

as well (Rémillard and Rubenthaler, 2009).

4.2 Monthly returns compatibility

Compatibility means that the distribution of the monthly returns R0,T is the same as the distribution of

the sum of typically n = 21 consecutive daily returns. Since the hedging will be done under a continuous

time RSGBM, there is no compatibility problem. However, since we need the distribution of log(XT ) to

construct the payoff, and the latter is not known explicitly, we propose to simulate a large number of monthly

returns log(XT ), say 10000, which is impossible to get in practice, and then fit a Gaussian HMM to these

simulated data.

The joint distribution of the monthly return is then approximated by a mixture of (multivariate) Gaussian

distributions, and the conditional distribution function F is also a (univariate) Gaussian mixture. See, e.g.,

Rémillard et al. (2017) for more details.
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4.3 Discrete time hedging

Since we fitted a Gaussian HMM to the daily returns, an obvious solution of the hedging problem would be to

use the results of Rémillard and Rubenthaler (2013) for optimal hedging in discrete time; see also Rémillard

(2013). However, implementing this methodology requires interpolating functions on a (d + 1)-dimensional

grid. Since we are aiming for applications with d ≥ 2, this approach leads to too much imprecision. For

example, a (too) small grid of 100 points for each asset would require computing and storing 102(d+1) points,

while a relatively precise grid of 1000 points for each asset requires 103(d+1) points. Even with d = 2, this

means storing 109 points, which is too much.

This is why we consider a continuous-time approximation, which does not require any interpolation or

grid construction and works in any dimension. It is easy to show, see, e.g., Rémillard and Rubenthaler (2009)

that many interesting discrete time models can be approximated by continuous time models. In particular,

this is true for the Gaussian HMM whose continuous time limit is the RSGBM. Option pricing and optimal

quadratic hedging have been studied recently for this process (Rémillard and Rubenthaler, 2016), and it

turns out that the optimal hedging strategy and option price can be deduced from an equivalent martingale

measure. Under this equivalent martingale measure, assets still follow a RSGBM, with the additional feature

that the distribution of the regimes is now an inhomogeneous continuous time Markov time. Nevertheless,

this model is quite easy to simulate and does not require any calibration to option prices.

4.3.1 Continuous time approximation

Because we have possibly more than 2 risky assets, and based on the results in Rémillard and Rubenthaler

(2009, 2016), we approximate ϕk by φ k−1
n T , where φ is the optimal hedging strategy of the RSGBM obtained

from Rémillard and Rubenthaler (2016, Lemma 4.1).

To get nearly optimal hedging strategies in discrete time, we first use Monte Carlo methods by simulating

the process X under the optimal martingale measure, as given by Equation (17), to obtain the values

CkT/n(s, i) and ∇sCkT/n(s, i) given by formulas (18) and (19). Then we simply discretize the continuous

time optimal hedging values (20)–(21) to get, for k ∈ {1, . . . , n},

ϕk = ∇sC(k−1)T/n(Sk−1, τ̂k−1) +Gk−1D
−1(Sk−1)ρ(τ̂k−1)/βk−1, (10)

Ṽk = Ṽk−1 +ϕ>k (βkSk − βk−1Sk−1) , (11)

Gk = βkCkT/n(Sk, τ̂k)− Ṽk, (12)

where Ṽ0 = V0 = C0(S0, τ̂0), G0 = 0, and Ṽk = βkVk are the discounted portfolio values. In particular,

ϕ1 = ∇sC0(S0, τ̂0).

Remark 2 One could replace CkT/n(Sk, τ̂k) by the weighted average

l∑
j=1

CkT/n(Sk, j)ηk(j), where ηk(j) is the

predicted probability of τk = j, given the past observations.

We now have the necessary tools to tackle the implementation problem. Two examples of application are

presented next.

5 Examples of application

In this section, we provide some empirical evidence regarding the ability of the model to replicate a synthetic

index. In the implementation of the replication model, we consider a 3-dimensional problem.

5.1 Assets

The first step is to select the two reference portfolios P (1) and P (2) and the reserve asset P (3). These 3

portfolios are dynamically traded on a daily basis, so we choose very liquid instruments with low transaction
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costs. We therefore restrict the components of the portfolios to be Futures contracts. The cash rate is the

BBA Libor 1-month rate. Log-returns on futures are calculated from the reinvestment of a rolling strategy in

the front contract. the front contract is the nearest to maturity, on the March/June/September/December

schedule and is rolled on the first business day of the maturity month at previous close prices. Each future

contract is fully collateralized, so that, the total return is the sum of the rolling strategy returns and the

cash rate.

The first investor portfolio is related to equities while the second is related to bonds. The reserve asset

is a diversified portfolio. The composition of these portfolios is detailed in Table 3. As in Ben-Abdellatif

(2010), we use daily returns from 01/10/1999 to 30/04/2009 (115 months). Table 4 presents some descriptive

statistics of the daily returns R(1), R(2), R(3).

Table 3: Portfolios’ composition.

P (1) 60% S&P/TSE 60 IX future
40% S&P500 EMINI future

P (2) 100% CAN 10YR BOND future

P (3) 10% E-mini NASDAQ-100 futures
20% Russell 2000 TR
20% MSCI Emerging Markets TR
10% GOLD 100 OZ future
10% WTI CRUDE future
30% US 2YR NOTE (CBT)

Table 4: Summary statistics for the three portfolios on an annual basis.

Statistics R(1) R(2) R(3)

Daily returns

Mean 0.0198 0.0209 0.0363
Volatility 0.1327 0.0592 0.1238
Skewness -0.6447 -0.3261 -0.4418
Excess kurtosis 8.5478 2.0583 5.1415

5.2 Modeling

As discussed in Section 4.1, we use a Gaussian HMM to model the joint distribution of the returns of the 3

portfolios. The choice of the number of regimes is done as suggested in Rémillard et al. (2017): we choose

the lowest number of regimes m so that the goodness-of-fit test for m regimes has a P -value larger than

5%. This leads to a selection of 6 regimes for the daily returns. The large number of regimes for the daily

returns is due to the fact that the sample period contains the last financial crisis. Usually, for non-turbulent

periods, 4 regimes are sufficient for fitting daily returns. The estimated parameters are given in Table 5. The

associated transition matrix for daily returns of the Gaussian HMM is

Qdaily =


0.9608 0.0000 0.0181 0.0000 0.0000 0.0211
0.0160 0.1494 0.3384 0.0000 0.4962 0.0000
0.0000 0.0579 0.6746 0.0108 0.2567 0.0000
0.0000 0.0000 0.0000 0.9823 0.0177 0.0000
0.0176 0.0993 0.2753 0.0175 0.5882 0.0021
0.0599 0.0000 0.0000 0.0000 0.0071 0.9330

 ,

and the infinitesimal generator associated with the limiting RSGBM is

Λdaily =


−9.8765 0.0000 4.5658 0.0000 0.0000 5.3107

4.0402 −214.3435 85.2680 0.0000 125.0353 0.0000
0.0000 14.5863 −81.9990 2.7205 64.6922 0.0000
0.0000 0.0052 0.0004 −4.4624 4.4569 0.0000
4.4414 25.0201 69.3636 4.4157 −103.7633 0.5226

15.0866 0.0000 0.0000 0.0000 1.7858 −16.8724

 .
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Table 5: Estimated parameters for the Gaussian HMM fitted on daily returns.

Daily returns
Regime µj Bj

-0.0182 0.0250 -0.0026 0.0157
1 0.0409 -0.0026 0.0028 -0.0021

-0.1706 0.0157 -0.0021 0.0200

0.1709 0.0131 -0.0000 0.0114
2 -1.6439 -0.0000 0.0040 0.0009

0.1790 0.0114 0.0009 0.0170

0.6694 0.0050 0.0002 0.0018
3 0.0619 0.0002 0.0036 -0.0006

0.9667 0.0018 -0.0006 0.0040

0.1486 0.0042 -0.0002 0.0028
4 0.0286 -0.0002 0.0018 0.0000

0.2178 0.0028 0.0000 0.0047

-0.6934 0.0084 -0.0013 0.0049
5 0.2548 -0.0013 0.0023 -0.0009

-0.9222 0.0049 -0.0009 0.0067

-0.4565 0.1169 -0.0115 0.0788
6 0.0749 -0.0115 0.0099 -0.0110

-0.4082 0.0788 -0.0110 0.0889

NOTE: The values are expressed on an annual basis.

Finally, for the last observation, corresponding to the beginning of the hedging, the estimated probability

of occurrence of each regime is

ηdaily = (0.9433, 0.0003, 0.0246, 0.0000, 0.0006, 0.0312).

Therefore, we will take for granted that at time t = 0, we are in regime 1.

5.2.1 Monthly returns

As suggested in Section 4.2, we simulated 10 000 values of monthly returns under the estimated RSGBM.

We fitted a Gaussian HMM and found that 3 regimes were necessary, which is larger than usual, but we have

to remember that we are fitting 10 000 values.

The estimated parameters are given in Table 6, and the associated transition matrix is

Qmonthly =

 0.1209 0.6788 0.2003
0.1719 0.6184 0.2097
0.1926 0.5846 0.2229

 .

Finally, for the last observation, corresponding to the beginning of the hedging, the estimated probability of

occurrence of each regime is ηmonthly = (0.1796, 0.7635, 0.0569). In particular, it means that the probability

πmonthly of being in each regime next month is

πnext = ηmonthlyQmonthly = (0.1639, 0.6273, 0.2088). (13)

It then follows that the conditional distribution F(·,x) is mixture of 3 Gaussian distributions, with mean

αj + β>j x and standard deviation σj , j ∈ {1, 2, 3}, and weights given by (13), where the values of the

parameters are given in Table 7. More precisely,

F(y,x) =

3∑
j=1

πnext(k)Φ

(
y − αj − β>j x

σj

)
, (y,x) ∈ R3, (14)

where Φ is the distribution function of the standard Gaussian.
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Table 6: Estimated parameters for the Gaussian HMM fitted on 10 000 simulated monthly returns under RSGBM.

Regime µj Bj

0.0728 0.0085 -0.0006 0.0067
1 0.0320 -0.0006 0.0027 -0.0004

0.1081 0.0067 -0.0004 0.0096

-0.4201 0.0726 -0.0117 0.0396
2 0.0050 -0.0117 0.0067 -0.0067

-0.2813 0.0396 -0.0067 0.0421

-0.4201 0.0726 -0.0117 0.0396
3 0.0050 -0.0117 0.0067 -0.0067

-0.2813 0.0396 -0.0067 0.0421

NOTE: The values are expressed on an annual basis.

Table 7: Parameters of the conditional distribution of R
(3)
0,T given

(
R

(1)
0,T , R

(2)
0,T

)
.

Regime αj βj σj πj

1 0.0037 ( 0.6343 , -0.3353 ) 0.0463 0.1639
2 -0.0014 ( 0.6090 , -0.1828 ) 0.0296 0.6273
3 -0.0063 ( 0.6876 , 0.1661 ) 0.0231 0.2088

5.3 Target distribution function

For this example, the target distribution F? is a truncated Gaussian distribution at −a, with (annual)

parameters µ? and σ?, meaning that

F?(y) =


0, y ≤ −a;

Φ
(
y−µ?/12
σ?/
√

12

)
−Φ

(
−a−µ?/12
σ?/
√

12

)
Φ
(
a+µ?/12

σ?/
√

12

) , y ≥ −a.
(15)

Setting z = a+µ?/12

σ?/
√

12
and κ = Φ′ (z)

/
Φ (z), the mean of this distribution is µ

12 + σ√
12
h, while the standard

deviation is σ?√
12

√
1− h2 − 2hz. With a = 0.02, µ? = 0.08 and σ? = 0.05, one gets an annual mean of 0.0842,

and an annual volatility of 0.0477. Note that F?(0) = 1 − Φ
(

µ?√
12σ?

)
/Φ(z) = 0.3. The density is displayed

in Figure 2.
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Figure 2: Target density for the monthly returns.

In the remaining of the section, we try to replicate the monthly returns of a synthetic hedge fund having

distribution F? given by (15). We will rebalance the portfolio once a day, so n = 21. For simplicity, we
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take S0 = (1, 1, 1) and r = 0.01. We will consider two models: the first one is the independence model,

meaning that C(u, v1, v2) = u, so that the return function g is given by (4). This model is studied in

Section 5.4. We consider another model, called the Clayton model, define using the B-vines representation

by D1(u, t) =
[
max

{
0, u−θ + t−θ − 1

}]−1/θ
, which is the so-called Clayton copula of parameter θ ∈ (−1, 1),

with Kendall’s τ = θ
θ+2 , and D2(u, t) = ut, the independence copula. For this case, we take θ = −2/3,

leading to a Kendall’s tau of −0.5. This means that we require a negative dependence with asset P (1).

Finally, for each model, we simulated 1 000 replication portfolios.

5.4 Synthetic index independent of the reference portfolios

The results of this first experiment are quite interesting, as can be seen from the results displayed in Table 8,

especially the tracking error given by the RMSE. Note also that the mean of the hedging error is significantly

smaller that 0, meaning that the portfolio is doing better on average than the target payoff, even if the K-P

measure α = 0.0078 is positive. The target distribution is also quite well replicated. The distribution of the

hedging errors is also quite good, as can be seen from the estimated density displayed in Figure 3. Finally,

letting τ (1) and τ (2) represent the estimated Kendall’s tau between the variable and the returns of portfolio

P (1) and P (2) respectively, one can see from that the returns of the hedged portfolio are independent of the

returns of the reference portfolios, as measured by Kendall’s tau, meaning that the synthetic asset has the

desired properties.

Table 8: Descriptive statistics for the hedging error HE = G(S21)−V21, target payoff G(S21), portfolio V21, target return g(R21)
and portfolio return log(V21/V0) in the independence model, based on 1000 replications.

Statistics HE G(S21) V21 g(R21) log(V21/V0) Target

Average -0.012 100.770 100.782 0.0076 -0.0001 0.0078
Median -0.012 100.741 100.760 0.0074 -0.0003 0.0073
Volatility 0.035 1.299 1.290 0.013 0.013 0.013
Skewness 0.431 0.201 0.192 0.172 0.162 0.267
Kurtosis 7.939 2.581 2.614 2.559 2.593 2.760
Minimum -0.145 98.083 98.013 -0.019 -0.028 -0.02
Maximum 0.241 104.987 104.926 0.049 0.040
RMSE 0.037

τ (1) 0.023 0.024 0

τ (2) -0.061 -0.060 0

NOTE: Here V0 = 100.786 and α = logV0/100 = 0.0078. The statistics for the target distri-
bution are also displayed for sake of comparison. Note also that ϕ1 = (−26.464, 5.630, 42.050),
showing that we are short of the first asset at the beginning.
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Figure 3: Estimated density of the hedging error G(S21) − V21 for the independence model based on 1000 replications. Here
V0 = 100.7864 and α = logV0/100 = 0.007833.
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5.5 Synthetic index with Clayton dependence level-1 dependence

The results of this second experiment are also quite interesting, but for different reasons. As can be seen from

the results displayed in Table 9, our goal of replicating the distribution is not achieved. The tracking error

given by the RMSE is too large, the average gain of the portfolio is negative and its volatility is too large to

be interesting for an investor, even if the K-P measure α = 0.0064 is smaller than in the independence model.

This might be due to the fact that initially, the weight of the assets in the portfolio are quite large, since

ϕ1 = (−724.845, 84.394, 648.811). Furthermore, The distribution of the hedging errors is not good at all, as

can be seen from the estimated density displayed in Figure 4. The conclusion is that the target distribution

is not quite well replicated, and one should not invest in this strategy. The only positive point is that the

dependence between the returns of the payoff and portfolio seems to match the theoretical one, as measured

by Kendall’s tau.

Table 9: Descriptive statistics for the hedging error HE = G(S21)−V21, target payoff G(S21), portfolio V21, target return g(R21)
and portfolio return log(V21/V0) in the Clayton model with τ = −0.5 based on 1000 replications.

Statistics HE G(S21) V21 g(R21) log(V21/V0) Target

Average -1.152 100.689 101.842 0.00680 -0.0271 0.0078
Median 3.399 100.608 97.071 0.0061 -0.0362 0.0073
Volatility 27.739 1.235 28.917 0.0122 0.2784 0.0133
Skewness -0.772 0.268 0.753 0.240 0.077 0.267
Kurtosis 3.697 2.610 3.616 2.586 2.525 2.760
Minimum -140.008 98.126 48.336 -0.019 -0.733 -0.02
Maximum 50.675 104.836 244.844 0.047 0.889
RMSE 27.763

τ (1) -0.443 -0.461 -0.5

τ (2) 0.093 0.111

NOTE: Here V0 = 100.645 and α = logV0/100 = 0.0064. The statistics for the target distribution
are also displayed for sake of comparison.
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Figure 4: Estimated density of the hedging error G(S21)− V21 for the Clayton model with τ = −0.5 based on 1000 replications.

To conclude this section, we computed the K-P measure for Clayton models as a function of Kendall’s τ .

This is illustrated in Figure 5 and it is coherent with the fact that the conditional distribution D1,τ , with

τ = θ
θ+2 , are ordered according to Lehmann’s order. It then follows from (3) that the payoff are ordered as

well, so the value of the option increases with τ .

5.6 Discussion

Before deciding to replicate an asset S?, we should always perform a Monte Carlo experiment as we did

in Sections 5.4–5.5. Using simulations, we can decide in advance if an asset S? is worth replicating. For

example, for our data, it is worth using the independence model, but it is not worth using the Clayton model.

Simulation scan also be useful in tracking a more realistic P&L since transactions costs can be included in
the simulations.
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Figure 5: Graph of the K-P measure α = log(V0/100) as a function of Kendall’s τ for the Clayton model.

We notice that in all cases, the initial investment is more than 100, meaning that the K-P measure is

positive. This can be attributed to the choice of the reserve asset. Indeed, Papageorgiou et al. (2008) showed

that the choice of the reserve asset can affect the replication results especially the mean return, which depends

linearly on the K-P measure. Nevertheless, at least in the case of the independence, we were able to achieve

our goal.

It is also worth mentioning that due to (3), if two dependence models C1 and C2 are ordered according to

Lehmann’s order, i.e., for any v ∈ (0, 1)d, C1(u,v) ≤ C1(u,v), for all u ∈ [0, 1], then the K-P measures are

also ordered.

6 Conclusion

We looked at two important methods of replication of indexes: strong and weak replication. For strong

replication, the aim is to construct a portfolio of liquid assets that is as close as possible to an existing

index, so statistical methods related to prediction like regression and filtering play an important role. For

weak replication, the aim is to construct a portfolio of liquid assets that is as close as possible to a payoff

constructed in such a way that the portfolio returns have predetermined distributional properties, such as

the marginal distribution and the conditional distribution relative to some reference assets entering in the

construction of the portfolio.

We also introduced a new family of conditional distribution models called B-vines that can be useful in

many fields, not just weak replication of indexes.

We showed hot to implement weak replication in general framework, and we showed that it is possible to

construct efficiently a synthetic asset that is independent of prescribed asset classes, with a predetermined

distribution. Using simulations, we can decide in advance if an asset S? is worth replicating. For example,

for our data, it is worth using the independence model, but it is not worth using the Clayton model.

For future work, we plan to investigate the performance of machine learning methods compared to filtering

methods for strong replication purposes. We will also propose goodness-of-fit tests for the B-vines models

introduced in Section 3.
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Appendix

A Optimal hedging in continuous time

For j ∈ {1, . . . , l}, let m(j) = (υ(j) − r1), where 1 is the vector with all components equalled to 1, ρ(j) =

a(j)−1m(j), and set `j = ρ(j)>m(j) = ρ(j)>a(j)ρ(j) ≥ 0. Further set γ(t) = e(T−t){Λ−D(`)}1. Next, define

(Λ̃t)ij = Λijγj(t)/γi(t), i 6= j, (Λ̃t)ii = −
∑
j 6=i

(Λ̃t)ij . (16)

Then Λ̃t, t ∈ [0, T ], is the infinitesimal generator of a time inhomogeneous Markov chain.

In Rémillard and Rubenthaler (2016), it is shown that the optimal hedging problem is related to an equiv-

alent martingale measure Q, in the sense that under the risk neutral measure Q, if the price process X satisfies

dXt = rD(Xt)dt+D(Xt)σ(Tt−)dWt, (17)

and T is a time inhomogeneous Markov chain with generator Λ̃t, then the value of an option with payoff Φ

at maturity T is given by

Ct(s, i) = e−r(T−t)EQ [Φ(XT )|Xt = s, Tt = i] . (18)

If the payoff is smooth enough so that it is differentiable almost everywhere, then

∇sCt(s, i) = e−r(T−t)D−1(s)EQ [Φ′(XT )XT |Xt = s, Tt = i] , i ∈ {1, . . . , l}. (19)

Since Ct and∇sCt are related to expectations, one can use Monte Carlo methods to obtain unbiased estimates

of these values.

Next, setting αt(s, i) = ∇sCt(s, i) +Ct(s, i)D
−1(s)ρ(i), and Gt = e−rtCt(Xt, Tt)−Vt, with G0 = 0, where

Vt is the discounted value of the (continuous time) hedging portfolio at time t, then the optimal hedging

strategy is

φt = αt(Xt, Tt−)− ertVt−D−1(Xt)ρ(Tt−) (20)

= ∇sCt(Xt, Tt−) + ertGt−D−1(Xt)ρ(Tt−). (21)
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