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Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
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Abstract: Unlike delta-hedging or similar methods based on Greeks, global hedging is an approach opti-
mizing some terminal criterion that depends on the difference between the value of a derivative security and
that of its hedging portfolio at maturity or exercise. Global hedging methods in discrete time can be imple-
mented using dynamic programming. They provide optimal strategies at all rebalancing dates for all possible
states of the world, and can easily accommodate transaction fees and other frictions. However, considering
transaction fees in the dynamic programming model requires the inclusion of an additional state variable,
which translates into a significant increase of the computational burden. In this short note, we show how
a decomposition technique based on the concept of post-decision state variables can be used to reduce the
complexity of the computations to the level of a problem without transaction fees.

Keywords: Hedging, transaction costs, dynamic programming, risk management, post-decision
state variable

Résumé : À la différence des méthodes de couverture de type delta-neutre, la couverture globale vise à
optimiser un critère terminal relié à la différence entre la valeur, à l’échéance ou à la date d’exercice, d’un
instrument dérivé et celle du portefeuille de couverture qui lui est associé. Les méthodes de couverture globale
en temps discret peuvent être caractérisées par la programmation dynamique. Ces méthodes déterminent
des stratégies optimales pour toutes les dates de rééquilibrage et pour tous les états du monde, et peuvent
facilement tenir compte de frais de transactions ou d’autres frictions. Toutefois, l’inclusion de frais de
transaction dans le modèle de programmation dynamique requiert une variable d’état additionnelle, ce qui
se traduit par une augmentation significative du temps de calcul. Dans cette courte note, nous montrons
comment une technique de décomposition basée sur le concept de variable d’état post-décision peut être
utilisée pour réduire la complexité des calculs au niveau d’un problème sans frais de transaction.

Mots clés : Couverture, coûts de transaction, programmation dynamique, gestion des risques, variable
d’état post-décision
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1 Introduction

In general, hedging designates a variety of trading strategies designed to reduce the risk related to the price

movements of certain assets. Hedging strategies often involve trading securities that are closely related; in

particular, derivative securities are predominantly used as hedges against their underlying assets.

In this note, we specifically consider the risk related to writing an option contract. It is interesting to

recall that one of the basic models for the evaluation of option contracts is based on an hedging argument:

in a complete market, the value of an option is equal to the capital required to set up a portfolio providing

a perfect hedge, meaning one that produces the same payoff for all possible realizations of the price of the

underlying asset. This is the rationale behind the so-called delta-neutral option hedging strategy. Assuming

that trading can be done in continuous time and that there are no transaction costs, under the delta-neutral

hedging strategy, the value of the hedging portfolio is equal to the value of the option at all times.

In practice, it is not possible to adjust hedging positions continuously. Under many market models where

the number of traded securities is finite and the number of possible asset price transitions is infinite, it

is not possible to eliminate risk completely, that is, to replicate the derivatives’ payoff exactly, by using a

discrete-time hedging strategy. The cost associated with a complete removal of risk through super-replication

is often prohibitive (see [13]). Finally, when trading involves transaction costs, continuous-time hedging

strategies may result in infinite costs. It then becomes necessary to design discrete-time hedging strategies

that incorporate transaction costs. There are multiple papers studying the impact of transaction costs in

hedging schemes, including the following: [8], [1], [7], [14], [3], [9], [15], and [16].

In the context of an incomplete market, global hedging approaches aim at finding hedging strategies

that optimize a criterion based on the terminal payoff at maturity. In other words, instead of trying to

track the option value at all times, global hedging approaches consider only the end result of successive

trades. Global hedging approaches are particularly interesting when risk cannot be completely eliminated

or when transaction costs are present. The criterion considered may be a combination of risk and return

considerations. For instance, assuming that the option is exercised at date T , and denoting the option payoff

and the value of the hedging porfolio at T by CT and VT , respectively, the following criteria, among others,

have been proposed in the literature (see for instance [12], [4], [5], [8] and [10]):

• Expected shortfall: E
[
(CT − VT )

+
]
,

• Quadratic risk: E
[
(CT − VT )

2
]
,

• Semi-quadratic risk: E

[(
(CT − VT )

+
)2
]
,

• Risk-return utility: E
[
CT − VT + λ (CT − VT )

2
]
, λ ≥ 0,

• Exponential utility: E
[
−eλ(CT−VT )

]
], λ ≥ 0.

2 Discrete-time global hedging model

Consider a set T := {0, . . . , T} of discrete dates and a probability space (Ω,FT ,P) endowed with a filtration

F = {Ft}t∈T satisfying the usual conditions. Two assets are traded in an arbitrage-free market. Asset B

is risk-free and its deterministic price at date t is denoted by Bt. Asset S is risky; its price process {St} is

F-adapted and has the Markov property with respect to F . An agent is hedging a short position on a simple

contingent claim CT = C(ST ) with a self-financing portfolio.

In a hedging context, T is the set of rebalancing dates. For t ∈ T , let θt := (xt, yt) represent the number

of shares of assets B and S, respectively, within the portfolio at date t, before the rebalancing decision. A

trading strategy θ = {θt}t∈T is an F-predictable process.1 The portfolio value at date t associated with the

trading strategy θ is defined as

V θt := Btxt + Styt.

1θ being F-predictable means that θ0 is F0-measurable and that for all t ∈ {1, . . . , T}, θt is Ft−1-measurable.
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When there are no transaction costs, a trading strategy is said to be self-financing if, for all t ∈ {0, 1, . . . , T−1},

Btxt + Styt = Btxt+1 + Styt+1.

The global hedging problem that is solved by the agent is then

min
θ∈Θ

E
[
g
(
CT − V θT

)]
(1)

where g : R→ R is called the penalty function and Θ is the set of admissible self-financing trading strategies.

Under mild conditions on functions C and g and on the process {St}, it can be shown that Problem (1) has

a solution.

At date t ∈ T , define the value function:

wt(s, v): expected minimal global hedging penalty at date t if the current price of the underlying asset is s

and the current portfolio value is v.

The global hedging problem can then be characterized by the following discrete-time dynamic program.

wT (s, v) = g (C(s)− v) (2)

wt(s, v) = min
d∈Dt(s,v)

Et
[
wt+1

(
St+1, Bt+1

(v − sd)

Bt
+ St+1d

)]
, t = 0, ..., T − 1 (3)

δt(s, v) ∈ arg min
d∈Dt(s,v)

Et
[
wt+1

(
St+1, Bt+1

(v − sd)

Bt
+ St+1d

)]
, t = 0, ..., T − 1 (4)

where, at each date t < T , a rebalancing decision yt+1 = d is taken; Et [•] represents the expectation,

conditional to (St, Vt) = (s, v), which is information available at t; and Dt(s, v) contains any constraint

or limitation on the number of shares of asset S that can be held at t after the rebalancing, given that

(St, Vt) = (s, v) .

The portfolio value at t+ 1 reflects the self-financing constraint

v = Btxt+1 + sd

so that

Vt+1 = Bt+1xt+1 + St+1d

= Bt+1
(v − sd)

Bt
+ St+1d.

Given any initial portfolio θ0 = (x0, y0), setting

θt+1 =

(
Vt − Stδt (St, Vt)

Bt
, δt (St, Vt)

)
for t = 0, ..., T − 1 yields a hedging strategy solving Problem (1).

Notice that the solution of the dynamic program (2)–(4) characterizes the optimal hedging strategy at

all rebalancing dates, for all possible instances of the underlying asset price and portfolio value. The method

is general and can be applied to any derivative characterized by a payoff function that depends on the price

of the underlying asset at maturity or exercise,2 to any penalty function g, and to any market model, in all

cases provided that the conditional expectation in (3) can be computed or approximated.

Since in many market models asset prices are continuous and possibly unbounded, some form of approx-

imation is needed for the computation of the value function (see for instance [2]). Assume that M discrete

2The adaptation of the recursion for Bermudan instruments where early exercise is allowed at discrete dates is straightforward.
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possible values are considered for each of the three variables s, v and d. The complexity of the recursion (2)–(4)

is O(M4) for each time-step iteration of the dynamic program since it involves looping over all discretized

values for state variables s and v, all decisions d and all transitions St+1, at each rebalancing date. Typically,

finding the optimal hedging strategy for 12 time steps using a cubic splines interpolation scheme with 100

discretized values for each variable requires around one minute of computing time on a standard personal

workstation.

3 Transaction fees and post-decision variables

Under most market specifications, uncertainty about asset prices decreases with the frequency of observation

dates. As a result, when there are no transaction costs, the expected hedging penalty can often be reduced

by increasing the number of rebalancing dates. For instance, when trading is continuous, one can obtain a

perfect hedge in the geometrical Brownian motion model by applying the delta-hedging strategy at an infinite

number of rebalancing dates. This observation raises the issue of transaction costs, which should normally

be considered when setting up a hedging strategy.

Where there are transaction costs, the self-financing constraint becomes, for all t ∈ {0, 1, . . . , T − 1},

Btxt + Styt = Btxt+1 + Styt+1 +Kt

where Kt = κ(St, yt, yt+1) are transaction costs. Various types of costs can be considered, for instance,

Kt =


cI{yt+1 6=yt} fixed

c |yt+1 − yt| proportional to traded number of shares

c |yt+1 − yt|St proportional to traded market value

for some constant c. The inclusion of transaction costs in the DP model requires an additional state variable

because the composition of the portfolio is needed to compute the costs associated to a rebalancing decision.

At date t ∈ T , define the value function:

ωt(s, x, y): expected minimal global hedging penalty at date t if the current price of the underlying asset

is s and the current portfolio composition is (x, y).

The global hedging problem can then be characterized by the dynamic program

ωT (s, x, y) = g (C(s)− (xBT + ys)) (5)

ωt(s, x, y) = min
d∈Dt(s,x,y)

Et
[
ωt+1

(
St+1,

Btx+ s (y−d)−κ(s, y, d)

Bt
, d

)]
, t = 0, ..., T−1 (6)

and the optimal hedging strategy by a function δt(s, x, y) achieving the minimum in (6). This approach to

solving the global hedging problem is followed for instance in [6]. Note that when the length of time steps

is small, the DP model endogenously decides the optimal rebalancing frequency, as it would choose not to

rebalance when it is not optimal to do so.

Assuming again that M discrete possible values are considered for each of the variables s, x, y and d, the

complexity of the recursion becomes O(M5) because of the additional state variable. Finding the optimal

hedging strategy for 12 time steps using a cubic splines interpolation scheme with 100 discretized values

for each variable, using the recursion (5)–(6), would now require roughly one hour of computing time on a

standard personal workstation.

It is however possible to reduce the complexity of the algorithm to solve (1) to O(M4), using a decompo-

sition technique relying on the concept of post-decision state variables, as discussed in [11].

For t = 0, . . . , T − 1, define an auxiliary post-decision value function through

ϕt(s, q, d) := Et [ωt+1 (St+1, q, d)] (7)
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and set

ht(s, x, y, d) =
Btx+ s (y − d)− κ(s, y, d)

Bt
.

The dynamic program becomes

ωT (s, x, y) = g (C(s)− (xBT + ys)) (8)

ϕt(s, q, d) = Et [ωt+1 (St+1, q, d)] , t = 0, ..., T − 1 (9)

ωt(s, x, y) = min
d∈Dt(s,x,y)

ϕt (s, h(s, x, y, d), d) , t = 0, ..., T − 1. (10)

Equation (9) considers all possible transitions from the tri-dimensional state variable, while Equation (10)

considers all possible rebalancing decisions at each state, so that the complexity is reduced to O(M4) by

performing the computations (9)–(10) sequentially instead of simultaneously.

The reason why using post-decision state variables makes it possible to reduce the complexity of the

dynamic programming algorithm in the current framework is that the evolution of the asset price does not

depend on the hedging decisions, and the post-decision state variable (the portfolio composition) does not

depend on the transition of the exogenous asset price variable. Therefore, the dimension of the post-decision

state variable is no greater than that of the state variable. This decomposition technique would work for

any dynamic program where the evolution of endogenous and exogenous variable values at a given time step

are independent. This is not the case for the global hedging problem without transaction fees presented in

Section 2, where the endogenous state variable (the value of the portfolio) depends on the evolution of the

underlying asset price.

4 Conclusion

An efficient method for obtaining the solution of a global hedging problem in the presence of transaction costs

is presented. The method relies on a modification of the usual dynamic programming algorithm in order to

incorporate post-decision state variables. This makes it possible to reduce the computational complexity from

O(M5) to O(M4). This technique is shown to be applicable in the presented framework since endogenous

variable transitions are not impacted by exogenous variable movements.

In finance, the ability to perform computations quickly is crucial for the timely execution of trades.

Therefore, obtaining the hedging policy in less than a minute through the method presented in this paper,

rather than in roughly an hour with the usual method, represents an appreciable improvement.
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