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libre accès aux publications des organismes subventionnaires canadiens
et québécois.
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Abstract: Tropical algebra is the algebra constructed over the tropical semifield IRmax = (IR∪{−∞},max,+).
We show here that every m-dimensional tropical module M over IRmax, given by a m × p matrix A can be
embedded into IRn

max, iff n of its rows are independent. This result yields a significant improvement to the
Whitney embedding for tropical torsion modules published earlier.

Keywords: Idempotent semiring module, tropical module, embedding

Résumé : L’algèbre tropicale est construite sur le semi-corps IRmax = (IR ∪ {−∞},max,+). On démontre
ici que tout module tropical M de dimension m sur IRmax, donné par une matrice A de taille n× p peut être
plongé dans IRn

max ssi n lignes de la matrice A sont indépendantes. Ce résultat présente une amélioration
significative du théorème de plongement de Whithney pour les modules de torsion publié précédemment.

Mots clés : Module sur un anneau idempotent, plongement d’un module tropical
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1 Introduction

Idempotent and tropical mathematics arose from applications. Basically, from the modelling and analysis

of man-made systems, and from mathematical physics, in particular – as far as man-made systems are

concerned – computers, and production systems.

After the cerebrated paper by Kleene [7], idempotent semigroups have been used in language theory [13],

as well as idempotent semirings in network routing problems [3]. From the mathematical point of view, these

idempotent structures have been widely investigated by Cuninghame-Green [5]. Applications to control and

optimization of production systems have been developed (e.g. [1], [4], to mention only a few).

In mathematical physics, the dequantization point of view on idempotent mathematics was founded in the

1980’s by V.P. Maslov and his school. This approach consists in an asymptotic view of traditional mathematics

over the numerical fields making the Planck constant ~ tend to zero, taking imaginary values (cf [9]).

Independently, O. Viro [15], constructed a piecewise linear geometry of a special kind of polyhedra in

finite dimensional Euclidean space.

Subsequently, the tropical approach arouse an increased interest in the algebraic geometry community ([6],

[10], [12], [14]). A more complete list of references can be found in [8].

The aim of the paper is to investigate for tropical systems (max-plus or min-plus linear algebra) the

equivalent of what is known as the Whitney embedding theorem for differentiable manifolds. After exhibiting

the cerebrated example of an infinite dimensional tropical module embedded in the 3-dimensional tropical

module IR3
max) [17], showing that any two-dimensional tropical module defined in IRn

max) can be embedded

in IR2
max) [20], and provide an upper bound for the embedding of torsion tropical modules [19], we answer

here the following question:

What is the minimal dimension n required for the embedding of an m-dimensional dimensional tropical

module in IRn
max) ? More precisely, we show that a tropical module generated by the independent columns

of a matrix A with entries in the tropical semifield IRmax can be embedded in IRn
max iff n rows of A are

independent.

The paper is organised as follows. In Section 2 below, we recall the basic properties of tropical modules.

In Section 3, we revisit the classification of two-dimensional tropical modules state and prove the classification

theorem for general tropical modules. This section is enriched by an example showing that the necessary

invariants defned by torsion are not sufficient to characterize the isomorphy class of a tropical module. Two

examples are then provided in Section 4.

2 Idempotent semirings and semiring modules

The tropical semifield S = IRmax = (IR,∨, ·,0,1l) is defined as follows:

• IR = IR ∪ {−∞}, with (IR,∨,0) a commutative monoid, where ∨ stands for the max operator, with

neutral 0 = {−∞}.
• · stands for usual addition, with 1l as neutral (the real number 0)

• · distributes over ∨, and 0 is also absorbing for ·, i.e.

• ∀σ ∈ IR, 0 · σ = σ · 0 = 0 (−∞ is absorbing for addition)

• Since (IR, ·,1l) = (IR,+, 0) is a group, this makes IRmax a semifield.

(Note that S is endowed with an order relation defined by a ≤ b ⇐⇒ a∨ b = b. Since 0 is the neutral

element of ∨, it follows that 0 is the bottom element of S, i.e ∀a ∈ S , 0 ≤ a.

2.1 Notation

In the literature on semirings and semiring modules, the notation + or ⊕ is often used for either max

or min composition laws. However, since idempotent semirings are at the intersection of linear algebra and
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ordered structures, we use the lattice and ordered structures notation (i.e. ∨ for max and ∧ for min [whenever

appropriate]). Note also that, unless necessary, the notation · (for the usual addition) will usually be omitted.

Matrix multiplication : Let A,B be two matrices of appropriate sizes with entries (A)ik – written aik – (resp

(B)kj –written bkj–) in S.

Define (A ·B)ij =
∨
k

aikbkj , and (A ? B)ij =
∧
k

aikbkj .

Also, we write At for the transpose of A , A− for the matrix with entries a−1
ij , and A−t for (At)− = (A−)t,

where a−1 is the multiplicative inverse of a ∈ S \ {0}.

2.2 Semimodules over an idempotent semiring

Left (right) ∨-semimodule over a semiring is defined similarly as module over a ring:

1. (M,∨) is a monoid with neutral 0

2. There is a map S ×M →M , called exterior multiplication, satisfying :

(σ , x) 7→ σx.

i) (σ ∨ µ, x) = (σ x ∨ µx),

ii) (σ , x ∨ y) = (σ x ∨ σ y)

iii) (0, x) = (σ , 0) = 0.

If the semiring (semifield) is idempotent, then so is the semimodule, since x∨ x = 1lx∨ 1lx = (1l∨ 1l) x =

1l x = x.

The first composition law ∨ in S extend to vector and matrices in a natural way. Also exterior multipli-

cation by a scalar λ ∈ S is defined componentwise (resp. entrywise) for vectors (matrices). This makes Sn

and the set of matrices with entries in S, left (or right) ∨-semimodules over S.

2.3 Independence

Let M be a S semimodule, and X = (xi)i∈I ⊂ M . We say that MX = {
∨
i∈I

λixi|xi ∈ X , λi ∈ S , λi = 0

except for a finite number of them} is the semimodule generated by X, and that X is the set of genera-

tors of M .

In [16], (see also [20]) we considered the following concepts of independence for X ⊂ Sn.

1. ∀Y,Z ⊂ X MY

⋂
MZ = MY ∩Z (strong independence)

2. ∀Y,Z ⊂ X , Y
⋂
Z = Ø⇒MY

⋂
MZ = {0} (Gondran-Minoux independence)

3. ∀x ∈ X , x /∈MX\{x} (independene).

Note that 1⇒ 2⇒ 3, while the converse does not hold, although they are equivalent in vector spaces.

In [16] (see also [11]), the proof that every finitely generated semimodule has generating set satisfy-

ing 3 (called weak independence there), and that this set is unique up to a homothetic transformation

xi 7→ λixi , xi ∈ X , λi ∈ S is given.

Let A ∈ Hom(Sm,Sp), i.e. A is a rectangular matrix of size p×m with entries in S. Clearly, the columns

of A generate a finite dimensional semimodule over S. We write MA for this subsemimodule of Sp. Also, if the

columns of A are independent in the sense of 3 above, then dimMA = m. From the existence and uniqueness

theorem mentioned above, it follows that for any diagonal and permutation matrices of appropriate sizes

D1, D2, P1, P2, the matrices A and B = D1P1AP2D2 generate isomorphic semimodules. We write in this

case A ∼ B.

The problem we address here is to find the minimal n such that MA is isomorphic to a subsemimodule of

Sn ? In [19], we addressed this problem for semimodules over S = IRmax with finite entries (i.e. 6= 0) only.
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3 The embedding theorem

3.1 The 2-dimensional case revisited

In [18], using the order relation in M , we showed that 2-dimensional semimodules can be classified by a 1-

parameter family. More precisely, the order in M induces an order on the set of generators

X = {x1, x2} of M . Thus X is either an antichain, a chain, or else, we have x1 ≤ x2 ≤ λx1 for some

λ(> 1l) ∈ M . It follows that, representing each generator as a column vector in S2, we necessarily have

X ∈
{[

1l 0

0 1l

]
,
[
1l 1l
0 1l

]
,
[
1l 1l
1l λ

]}
, where λ ∈ Rmax (which yields a 1-parameter family).

As an introduction to our classification result below, we revisit the two generators case. Assuming each

generator to be given by a column vector of a n× 2 matrix A, with n ≥ 2, we will show that only two of the

rows of A generate all the other rows.

Let X = {x, y}, with xi, yi ∈ Sn . We consider the following cases:

1. ∃ i 6= j s.t. xi = yj = 0 (the case i = j is omitted, since then x, y ∈ Sn−1).

2. ∃ i s.t. xi = 0, while ∀j , yj > 0.

3. ∀i , j , xi , yj > 0.

The generators will be represented as the columns of a n× 2 matrix A.

Case 1

A =

[ x1 y1
x2 y2
... ...
xn yn

]
. Up to a permutation of the rows of A we may assume that x2 = 0 , y1 = 0.

Let D1 = diag

[
x−1

1

n∨
i=1

xi y
−1
2

n∨
i=1

yi 1l . . . 1l

]
, D2 = diag

[
(
n∨
i=1

xi)
−1 (

n∨
i=1

yi)
−1

]
.

We have D1AD2 =


1l 0

0 1l

x3(
n∨

i=1
xi)

−1 y3(
n∨

i=1
yi)

−1

... ...

xn(
n∨

i=1
xi)

−1 yn(
n∨

i=1
yi)

−1

 ∼ A, which we may rewrite as B = [ a b ] =

 1l 0

0 1l
a3 b3
... ...
an bn

, with

ai, bi ≤ 1l , i = 3, . . . , n.

Now for any row rk = [ ak bk ] (2 < k ≤ n), we have rk = akr1 ∨ bkr2. Hence, the projection P : Sn →
S2 , a 7→

[
1l
0

]
b 7→

[
0
1l
]

restricted to MB is an isomorphism.

Case 2

A =

[ x1 y1
x2 y2
... ...
xn yn

]
, with yi 6= 0 , 1 ≤ i ≤ n. We may assume that x1 = 0.

Let D = diag(y−1
1 y−1

2 . . . y−1
n ), then D1A = [ c d ] =

[
0 1l

x2y
−1
2 1l

... ...
xny

−1
n 1l

]

Up to a permutation of the rows, we may assume that xiy
−1
i ≤ xi+1y

−1
i+1 , i = 2 . . . , n− 1.

Then, for i = 2, . . . , n− 1, we have ri = r1 ∨ xiy−1
i x−1

n ynrn.

We conclude as in case 1 above.

Case 3

We first consider the case n = 2. Let A = [ x1 y1
x2 y2 ] , D = diag(x−1

1 x−1
2 ). Then DA =

[
1l x−1

1 y1

1l x−1
2 y2

]
. Muliplying

column 2 by x1y
−1
1 , we get the equivalent matrix B =

[
1l 1l
1l x1y2(x2y1)−1

]
=
[
1l 1l
1l τ

]
, with τ = x1y2(x2y1)−1.
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Note that if τ < 1l, then multiplying row 2 of B by τ−1, followed by the pemutation of the two columns

of B yields an equivalent matrix with τ−1 > 1l.

Another point of view is that of torsion (cf [17], [19]), which can be defined as follows. Let λ12 =
∧
{ξ ∈

S|xi ≤ ξiyi , i = 1, 2}, and λ21 =
∧
{ξ ∈ S|yi ≤ ξixi , i = 1, 2}. Note that the matrix

ΛA = At · A− =
[
1l λ12

λ21 1l

]
, has the property λ12λ21 = τ , which we call the torsion of MA. This is an

intrincic invariant of MA.

Note also that τ = x1y2(y1x2)−1 shows some similarities with the determinant of A, hence, we may call

it the semi-determinant of A. In addition, for (say) τ > 1l, we have x1y2 > y1x2, hence x1y2 ∨ y1x2 = x1y2.

For n > 2, let A =

[ x1 y1
x2 y2
... ...
xn yn

]
, with ∀i , xi , yi > 0. We get ΛA = [ x1 x2 ... xn

y1 y2 ... yn ]

[
x−1
1 y−1

1

x−1
2 y−1

2
... ...
x−1
n y−1

n

]
= 1l

n∨
i=1

xiy
−1
i

n∨
i=1

x−1
i yi 1l

 =
[
1l λ12

λ21 1l

]
.

Note that τ = λ12λ21 =
∨

1≤i,j≤n
xiyj(xjyi)

−1 corresponds to the maximum of the semi-determinants of

the n(n− 1) square submatrices of size two of A.

Right multiplication of A by the diagonal matrix (x−1
1 . . . x−1

n ), yields the equivalent matrix

 1l x−1
1 y1

1l x−1
2 y2

... ...
1l x−1

n yn

.

As above, up to a permutation of the rows of this matrix, we may assume that x−1
i yi ≤ x−1

i+1yi+1 , i = 1 . . . n−1.

Right multiplication of this matrix by diag(1l x1y
−1
1 ) yields B =

[
1l 1l
1l z2
... ...
1l τ

]
∼ A, (for some z [1l ≤ zi ≤ τ ]).

As above, it is easy to show that for k = 2, . . . , n − 1 we have rk = r1 ∨ zkτ−1rn, and conclude that

MA ∼MC , with C =
[
1l 1l
1l τ

]
.

3.2 The Whitney embedding theorem for tropical modules

In [19] we prove an upper bound for the embedding of a torsion tropical module. Recall that an embedding is

an injective map. The following statement both improves and geneneralizes this result to arbitrary tropical

modules.

Theorem 1 Let X = {c1 , c2 , . . . , cm} be set of (independent) generators of a tropical module, where

cj =

[ a1j
a2j
...
apj

]
∈ Sp. Then M can be embedded in Sn iff n ≤ p is the maximum number of independent

rows of the matrix A =

[ a11 a12 ... a1m
a21 a22 ... a2m
... ... ... ...
ap1 ap2 ... apm

]
.

Proof. Assume that there is an embedding Ψ: MA → Sn. The m generators of ImΨ may be written in

matrix form as B =

[
b11 ... b1m
b21 ... b2m
... ... ...
bn1 ... bn

]
. Clearly, the rows of B are independent, for if not MA could be embedded

in Sq, with q < n. Since Ψ is an embedding, MA is isomorphic to MB = ImΨ, and p is the maximum number

of independent rows of A.

Conversely, let n ≤ p be the maximum number of independent rows of A. For n = p, there si nothing to

prove. Hence we may assume n < p. Up to a permutation of the rows of A, we may assume that its first n

rows ri (1 ≤ ı ≤ n) are independent. Then for any k , n+ 1 ≤ k ≤ p , we have rk =
n∨
i=1

λikri ∈ Sn.

Clearly, whenever λik > 0, one of the rows ri and λikri can be removed. It follows that (always choosing

the removal of λikri), for n+ 1 ≤ k ≤ p , rk can be dropped.
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Hence, we get a matrix B as above. Clearly MB ⊂ Sn. The map Ψ: Sp → Sn sending every generator

of MA to the corresponding generator of MB is an isomorphism, and MA is isomorphic to MB .

3.3 Examples

Example 1 Let A =


1l 1 6
1l 2 3
1l 4 5
1l 4 6
1l 7 1
1l 7 5

. The columns of A are independent. Its rows are not.

Indeed, we have r4 = r1 ∨ r3, and r6 = r3 ∨ r5. Hence MA = MB, with B =

[
1l 1 6
1l 2 3
1l 4 5
1l 7 1

]
. It is easy to see

that the rows of B are independent, thus MA can be embedded in S4.

Example 2 (4.3 of [20]) Let A =


1l 1l 5
1l 1 4
1l 2 14
1l a a
1l 8 15
1l 9 11

, with 5 < a < 8. We write Ma (or MA) for the tropical module

generated by A. It is not difficult to see that the rows of A are independent, while its columns A are strongly

independent.

The torsion coefficients (cf [19]) of MA are easily computed from the matrix ΛA = AtA− =

[
1l 1l 4−1

9 1l 1l
15 12 1l

]
,

which yields τ12 = 9 , τ13 = 11 , τ23 = 12. Thus the torsion coefficients are independent of a.

We may also ask how the isomorphy class of MA depends of a. In order to see this, let b 6= a.

Are the two tropical modules Ma ,Mb isomorphic ?

For such an isomorphism, we must have :

Aa = diagP1BAbP2diagC, where P1 , P2 are permutation matrices. However it is easy to see that row i

of Ab must correspond to row i of Aa , i = 1, . . . 6. Hence P1 = P2 = I6 (the identity matrix). Therefore we

must have :
u1 0 0 0 0 0
0 u2 0 0 0 0
0 0 u3 0 0 0
0 0 0 u4 0 0
0 0 0 0 u5 0
0 0 0 0 0 u6



1l 1l 5
1l 1 4
1l 2 14
1l b b
1l 8 15
1l 9 11

[ x1 0 0
0 x2 0
0 0 x3

]
=


1l 1l 5
1l 1 4
1l 2 14
1l a a
1l 8 15
1l 9 11

, which has no solution for a 6= b.

Indeed, from the first column, we must have ui = x−1
1 , i = 1, . . . , 6. From the 1st row, we get x1 = x2 = x3.

Hence, from the fourth row we must have bx1x
−1
2 = a, i.e. b = a.

Remark 1 Example 2 shows the following.

1. The torsion coefficients of a tropical module M , although intrinsic invariants of the isomorphy class of

M do not characterize this class.

2. Although the torsion coefficients are independent of a, this parameters also plays an important role in

the characterization the isomorphy class of MA.

3. Note also that ΓA = Λ−A =
∨
{X|AX ≤ A}, and the torsion oefficients of MΓA , and MΛA

, are the same

as those of MA.
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