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Abstract: Many biological datasets such as microarrays, metabolomics, and proteomics involve observations
(or subjects) in rows, and attributes (or genes, metabolites, proteins) in columns. Often simultaneous group-
ing of rows and columns, i.e. biclustering, is desired. Each bicluster consists of a group of observations highly
correlated in a group of attributes. Despite great efforts on developing biclustering algorithms, a proper
visualization seems to be lacking in the literature. A visualization tool helps practitioners to understand
how biclusters evolve. Here we provide this tool using forestogram. Forestogram combines rows or columns
iteratively towards constructing a forest over a collection of dendrograms with a common root. We develop
a simple strategy for extracting natural biclusters by cutting the forest using a simple information criterion.
The effectiveness of our technique is tested on simulated data, and on real data.

Keywords: Biclustering, dendrogram, hierarchical clustering, linkage
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1 Introduction

Clustering, or data grouping is a challenging problem. Clustering in NP-hard, i.e. the number of different

ways to group data grows exponentially with the sample size. Clustering algorithms can be categorized

into two categories: hierarchical, and partitional. Hierarchical methods find the nested clusters recursively,

while partitional approaches provide only a single grouping. Partitional algorithms require the number of

clusters to be set a priori. Hierarchical approaches, on the contrary, starts from each item as a singleton

and builds clusters until all data fall in a single cluster. A clustering algorithm that assumes a statistical

model for clustering data, called model-based clustering (McLachlan et al., 2004). Practitioners often prefer

hierarchical clustering, because of the visual guide produced through dendrogram. Clustering linkage, also

known as dissimilarity, plays a central role in building the dendrogram.

Biclustering, also known as coclustering, and joint clustering is a general class of methods that aims to

partition a data matrix. Unlike clustering that groups observations, or attributes, biclustering searches a

grouping on observations and attributes at the same time. The advent of high-dimensional data calls for

devising new algorithms to exploit the clusters more effectively.

Biclustering attracted researchers from various fields because of its modern applications (Zhang, 2010).

Biclustering is used to cluster documents and words in text mining (Orzechowski and Boryczko, 2016), genes

and experimental conditions in bioinformatics (Eren et al., 2013), tokens and contexts in natural language

processing (Tu and Honavar, 2008), users and movies in recommender systems (Xu et al., 2012), etc. The

first joint clustering method appeared in statistics literature in Hartigan (1972), but implemented after few

decades (Cheng and Church, 2000). Like clustering, biclustering involves two clutures: i) statistical approach

that assumes a probabilitic distribution (Sheng et al., 2003; Gan et al., 2008; van Uitert et al., 2008; Lazzeroni

and Owen, 2002; Sheng et al., 2003; Gan et al., 2008); and (ii) the algorithmic approach that minimizes a

dissimilarity (Hartigan, 1972; Hochreiter et al., 2010; Martella et al., 2008), for a comprehensive review see

Busygin et al. (2008).

Most of the biclustering techniques are partitional and the number of blocks is the input of the algorithm.

However, in a number of applications hierarchical approach is very common, because of two main advantages:

i) having little assumption on data and number of groups ii) providing a visualization diagram through

the dendrogram.

A simple hierarchical biclustering method is known as heatmap, and produces two independent dendro-

grams, one on rows and another on columns. This representation is loose due to the independent construction

of row and column groupings. However, an interesting visualization tool for biclustering is proposed using

convex reformulation of the biclustering problem in Chen et al. (2015), but it lacks the conventional dendro-

gram representation that practitioners are used to see. An agglomerative method using a complex Bayesian

model is suggested in Fowler and Heard (2012). Smith et al. (2008) argues that complex models may lead to

junk clusters if agglomerative method is used.

We propose i) a natural extension of biclustering method using common linkages, ii) produce forestogram,

a conventional graphical tool that extends dendrogram, iii) benefit a simple hierarchical model to develop

a criterion as a reference for cutting forestogram. It turns out that our criterion is the natural biclustering

extension of the well-known information criteria, such as the AIC (Akaike, 1973) and BIC (Schwarz, 1978).

The paper is structured as follows. Section 2 describes our proposed methodology and forestogram. Sec-

tion 3 studies the computational complexity of the forestogram construction. Section 4 compares forestogram

with some common biclustering methods, and Section 5 shows the application of forestogram on the yeast

galactose data.

2 Hierarchical biclustering

Hierarchical biclustering is a natural extension of hierarchical clustering for grid matrices. Section 2.1 general-

izes common linkages for biclustering. Section 2.2 explains how to build the forestogram using the generalized
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linkage. Section 2.3 develops an information criterion to provide a statistically meaningful suggestion for the

forestogram cut, and Section 2.4 explores the relationship between biclustering and forestogram.

2.1 Bilinkage

Hierarchical biclustering algorithms require a dissimilarity measure to merge block of clusters and build

nested groups. The dissimilarity measure is a positive semi-definite symmetric mapping of pair of groups,

onto real numbers. Dissimilarity, however, may not satisfy the triangle inequality unlike the distance. The

common linkages include single linkage or nearest neighbors, complete linkage or farthest neighbors, average

linkage, centroid linkage, median linkage, and Ward’s linkage, see (Sørensen, 1948; Sokal, 1958; Eisen et al.,

1998; Murtagh and Legendre, 2014) for more details.

The linkage is defined using a distance, often the Euclidean distance, but may be defined on metrics such

as Manhattan, Chebyshev, or Mahalanobis distance.

We suppose grid biclusters, and use I to index row clusters, and J to index column clusters. The first step

in build the hierarchical biclustering is to generalize the linkage to a bilinkage to measure the dissimilarity

between matrix blocks. Any marge, however, cannot be visualized by a nested tree. Therefore, a convenient

bilinkage must be defined over a pair of biclusters, using row and column directions. Suppose C1 and C2 are

disjoint rectangular biclusters

Bilinkage(C1, C2) = min
I 6=I′,J 6=J′

{
D(Crow

I1 , Crow
I′2 ), D(Ccol

1J , Ccol
2J′)

}
(1)

where Crow
I1 is the Ith row-cluster of bicluster C1, Ccol

1J is the Jth column-cluster of bicluster C1, and D is a

clustering linkage. Table 1 gives the definition of the commonly used linkages. The minimum in (1) is taken

once over a pair of row-clusters, and once over a pair of column-clusters. This minimum defines the direction

of the merge, a row marge, or a column merge. We suppose that data are standardized, so that row and

column blocks are comparable.

Table 1: A list of common linkages for hierarchical clustering, defined using the Euclidean distance, where ȳ denotes the mean ỹ
denotes the median.

Linkage Definition

Single min
yi∈C1,yj∈C2

‖yi − yj‖

Complete max
yi∈C1,yj∈C2

‖yi − yj‖

Average 1
|C1||C2|

∑
yi∈C1

∑
yj∈C2

‖yi − yj‖

Ward
|C1||C2|
|C1|+|C2|

‖ȳ(C1)− ȳ(C2)‖

Centroid ‖ȳ(C1)− ȳ(C2)‖

Median ‖ỹ(C1)− ỹ(C2)‖

2.2 Forestogram

Forestogram is a collection of binary trees that consists of multiple hierarchical dendrograms. Construction

of the forestogram is bottom-up, such that a pair of row-wise or column-wise clusters is combined together

at each level by starting from singleton clusters.

Forestogram merges a block of rows or a block of columns in each step, depending on the direction that

minimizes the bilinkage (1). After each merge, the dissimilarity measure is recomputed to identify the next

merge direction. This approach, gives a new block of data on the forestogram. A grouping is extracted if the

forestogram is cut at a certain height, see Figure 1.

Forestogram has a number of interesting advantages to interpret the block-clusters of data as follows.

Each cluster reflects the order of rows and columns that shares a similar pattern. The merge path gives a
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visual guide on the evolution of the biclusters. Forestogram gives a visual guide on the interaction between

row and column groupings. A row dendrogram and a column dendrgoram can be extracted by projecting the

forest over rows and columns, see Figure 2. The last property is attractive for practitioners who are used to

heatmap graphics.

Figure 1: Forestogram building steps on a hypothetical 3× 3 matrix. Left to right: the data matrix, merging a pair of columns,
merging a pair of rows, and the completed forestogram.

Figure 2: A hypothetical 9 × 9 matrix clustered into three row blocks and 3 column blocks after cutting the forestogram by a
plane. Forestogram projection on rows and on columns provides two marginal dendrograms. Forestogram side view (left panel),
above view (middle panel), projection of the forestogram on rows and columns resembeling a heamap graphics (right panel); the
dotted horizontal and vertical lines is the projection of the cutting plane.

2.3 Number of biclusters

Estimating the number of biclusters through cutting the forestogram at a certain height, is equivalent to

finding a tangible gap on the height of the forestogram for a natural grouping. We propose to cut the forest
when biclusters have the tendency of concentration about a center.

Assume a grid bicluster C = Crow × Ccol and therefore Yn×p | C is clustered into several row and column

clusters. Obviously, the total number of bicluster is |C| = |Crow||Ccol|. Index biclusters using YIJ = [yIiJj ],

where the I denotes the row cluster and J denotes the column cluster, I =, 1 . . . , |Crow|, J = 1, . . . , |Ccol|,
and i and j index the rows and columns of YIJ , i = 1, . . . , nI , and j = 1, . . . , pJ , respectively. Note that nI
is the number of rows in cluster I, and pJ is the number of columns if cluster J , of course

n =

|Crow|∑
I=1

nI , p =

|Ccol|∑
J=1

pJ .

In hierarchical clustering using a linkage, closer data have the tendency to merge. So, it is reasonable to cut

the agglomerative tree using some concentration measure. Assume the average of data is subtracted so the

data are centered around zero . The following statistical model looks meaningful to express the concentration

of bicluster IJ around a center

yIiJj | θIJ ∼ N (θIJ , σ
2), (2)

θIJ ∼ N (0, φσ2),
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where σ2 is the common within variance, and φ is the between-variance to within-variance ratio. We propose

to cut the forestogram where this Gaussian model fits appropriately. It turns out that (2) yields a simple

and interesting cutting strategy.

Define the within cluster variance

s2
IJ =

1

nIpJ

nI∑
i=1

pJ∑
j=1

(yIiJj − ȳIJ)2.

and the pooled variance

s2 =
1

np

|Crow|∑
I=1

|Ccol|∑
J=1

nIpJs
2
IJ .

The optimal number of clusters using (2) is found by minimizing the forest information criterion (FORIC).

FORIC is a sort of penalized variance

np(1 + log 2πs2) +

|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (3)

We suggest to fix φ = 1 and estimate the pooled variance s2 in each level of the forestogram tree. The

following theorem shows how FORIC is derived.

Theorem 1 if biclusters are generated from (2)

− 2 log f(Y) =
1

σ2

|Crow|∑
I=1

|Ccol|∑
J=1

nIpJs
2
IJ +

|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (4)

Note that (4) is exact, but AIC and BIC are asymptotic approximations. Using the asymptotic argument

similar to BIC, one may derive an extended version of FORIC,

− 2 log f(Y) ≈ −2 log f(Y | θ̂) +

|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (5)

FORIC is the adaptation of the AIC (Akaike, 1973) and BIC (Schwarz, 1978) for biclustering. Suppose

biclusters are balanced and each bicluster contains nI = n0 rows, pJ = p0 columns. The extended version (5)

coincides with the AIC if φ = e2−1
n0p0

and coincides with the BIC if φ = n0p0−1
n0p0

.

2.4 Separable biclusters

Hierarchical clustering algorithms are prone to converge to a sub-optimal grouping, due to their intrinsic

greedy behavior. Here we show that a separable bicluster will appear always on the forestogram tree. This

property holds for all linkages. Before defining a separable bicluster, we need to define the diameter and the

margin concepts.

Take the submatrix Y̌ ⊂ Yn×p. Denote the row extension and column extension of Y̌ using Y̌row and

Y̌col respectively, such that Y̌row ∩ Y̌col = Y̌, see Figure 3. Let yi be the ith row of Y and yj be the jth

column of Y. Likewise, let y̌row
i is the ith row of Y̌row and y̌col

j is the jth column of Y̌col. The row margin

of Y̌ measures the pessimistic row-wise distance of Y̌row from Y, similarly the column margin measures the

column-wise distance of Y̌col from Y

Mrow = min
i6=i′
‖y̌row

i − yi′‖2,

Mcol = min
j 6=j′
‖y̌col

j − yj′‖2.
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Y̌col︷ ︸︸ ︷
Y̌row

{
Y̌

Figure 3: Visual illustration of submatrix Y̌ ⊂ Y, extended on rows Y̌row, and on columns Y̌col.

Definition 1 : margin of bicluster Y̌ is the minimum of row and column margins

M(Y̌) = min
{
Mrow,Mcol

}
.

Define the diameter of Y̌ using row diameter and column diameter

Drow = max
i 6=i′
‖y̌row

i − y̌row
i′ ‖2,

Dcol = max
j 6=j′
‖y̌col

j − y̌col
j′ ‖2,

Definition 2 : diameter of bicluster Y̌ is the maximum of row and column diameters

D = max
{
Drow,Dcol

}
.

Sparability of a bicluster is defined by putting a condition on its margin and diameter.

Definition 3 : bicluster Y̌ is separable if M > D.

In the following theorem we study the relationship between separability and forestogram.

Theorem 2 separable submatrix Y̌ always appear on the forestogram, regardless of the chosen linkage.

See Appendix for the proof. Theorem 2 states that separable biclusters are kept intact during the hierarchical

agglomeration. Such biclusters are recovered by cutting the forestogram at a specific level.

3 Computational complexity

A brute-force implementation of forestogram is of time complexity order O(n3 + p3). This price is expensive

for moderate matrices, and restricts the algorithm applicability on omics data. We provide computational

tricks to improve the complexity of the algorithm.

Hierarchical clustering algorithms use a dissimilarity matrix to store the result of computation in an n×n
matrix where n is the number of rows. The algorithm takes advantage of avoiding process of the pairwise

dissimilarities repeatedly, by augmenting the stored data. One may prefer to compute the dissimilarities on

fly to avoid storing the dissimilarity matrix. However, on-fly computation save the storage, with the price of

increasing the computation. In the following we adapt the Lance-Williams technique (Lance and Williams,

1966) to hierarchical biclustering to accelerate the computations.

3.1 Lance-Williams speed-up

For each merge at each level of hierarchical clustering, a dissimilarity matrix for each pair of clusters is

required. After each merge, the dissimilarity for newly merged clusters must be updated. Lance and Williams

(1966) developed a concise formula to use the previous distance information, to update the dissimilarity
matrix.
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Suppose the merging cluster is denoted by C1 ∪ C2, and C denotes another disjoint cluster in the same

level of hierarchy

D(C1 ∪ C2, C) = δ1D(C1, C) + δ2D(C2, C) + δ3D(C1, C2) + δ4|D(C1, C)−D(C2, C)|.

Table 2 gives more details about the coefficients δi, i = 1, . . . , 4.

Table 2: Lance-Williams coefficient merge updates for different linkages, if the Euclidean distance defines the linkage.

Linkage δ1 δ2 δ3 δ4

Single 1
2

1
2

0 − 1
2

Complete 1
2

1
2

0 1
2

Average 1
2

1
2

0 0

Centroid
||C1||

||C1||+||C2||
||C2||

||C1||+||C2||
− ||C1|| ||C2||

(||C1||+||C2||)2
0

Ward
||C1||+||C1∪C2||

||C1||+||C2||+||C1∪C2||
||C2||+||C1∪C2||

||C1||+||C2||+||C1∪C2||
− ||C1∪C2||

||C1||+||C2||+||C1∪C2||
0

Median 1
2

1
2

− 1
4

0

3.2 Time complexity

The implementation of hierarchical biclustering requires identifying the closest two clusters. The search

algorithm looks up n times on the row dissimilarity matrix and p times on the column dissimilarity matrix.

However, the dissimilarity matrix is shrunken after each merge, thus the overall computational complexity is∑n
i=1 i

2 +
∑p

j=1 j
2 which is of order O(n3 + p3). A proper implementation of the Lance-Williams technique

speeds up the algorithm to O(n2 + p2).

3.3 Space complexity

Memory required to run the algorithm is important. If the data matrix n× p fits in the computer memory,

the algorithm must reserve extra space for computation and storing the dissimilarity matrices. Hierarchical

biclustering uses two dissimilarity matrices, and stores all pairwise dissimilarities for rows and columns.

Therefore, early steps of the algorithm, all pairwise distances are computed and initiated in two different

matrices, an n×n matrix for row dissimilarity and a p× p matrix for column dissimilarity. Using the Lance-

William property, only a row group and a column group will be altered at each iteration of the algorithm.

This implies O(n2 + p2) for the space.

In the following, we investigate our efficient implementation on a synthetic matrix of data by fixing the

number of columns to 10, and varying the number of rows. In a similar setting rows are fixed to 10 and the

number of columns is varied. Figure 4 confirms the quadratic complexity in term of rows and columns.
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Figure 4: Time required to build the forestogram as the number of rows n increase (top panels), and as the number of columns p
increase (bottom panels). The top right panel confirms that the algorithm is quadratic in n, the bottom right panel confirms that
the algorithm is quadratic in p; the solid line is y = β0 + 2x.

4 Simulation

In order to compare hierarchical method with other common biclustering techniques we generate a square

matrix 30 × 30 a rectangular 150 × 30 matrix, divided in three clusters on rows and 3 clusters on columns.

Both simulations include 10 columns in their column clusters.

In the square setup, each row cluster includes 10 rows see Figure 5, but in the rectangular simulation each

row cluster simulation includes 50 rows. Each of the three biclusters is generated from uniform distribution

of range 1 and varying mean (−∆, 0,∆). The parameter ∆ ∈ {0.5, 1.0} reflects the separability of biclusters.

The larger the ∆ is, the more separable biclusters are.

10︷︸︸︷ 10︷︸︸︷ 10︷︸︸︷
−∆ 0 ∆ }10
∆ −∆ 0 }10
0 ∆ −∆ }10

Figure 5: Symmetric simulation data consist of a matrix of size 30× 30 with 9 biclusters. Each bicluster contains 100 data from
uniform distribution with 10 rows in row cluster and 10 columns in column clusters. The parameter ∆ controls the separability
of biclusters.

The joint clustering of Lazzeroni and Owen (2002) and Cheng and Church (2000) are often used as

standard biclustering methods. We found Cheng and Church (2000) performed poorly, so we report the plaid

model of Lazzeroni and Owen (2002) only. The codes for Lazzeroni and Owen (2002) and Cheng and Church

(2000) are available in the R package biclust R package (Kaiser et al., 2013). Our results are based on the

the implementation of Lazzeroni and Owen (2002) developed by Turner et al. (2005).

There are few methods that combine biclustering with a visual guide. Practitioners often use the heatmap

to produce a visualization of joint clusters. The heatmap produces a visualzation using independent row and

column dendrograms. Convex biclustering (Chen et al., 2015) implmented in the R package cvxclustr is
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a new technique with a visualization similar to dendrogram, produced by shrinking the mean of biclusters

towards a common mean. Our method will be released as an R package in the near future.

We created three version of forestogram by varying the linkages. All linkages are defined using the

Euclidean distance. The linkages include single, average, and Ward. Other linakges behavior was similar to

the average linkage, and therefore not reported. A fully automatic version of forestogram is produced by

cutting the forestogram by minimizing FORIC. The number of biclusters for all methods is set to 9. Note

that, even after fixing the number of clusters the grouping may be different. Default parameters in the R

package is used for the competing methods.

Table 3 summarizes the performance of all techniques using the adjusted Rand index of Hubert and

Arabie (1985) implemented in the R package mclust (Fraley and Raftery, 1999). The adjusted Rand index

is bounded from below by 0, and from above by 1. It gets the upper bound if the estimated biclustering

matches the true clustering. We generated 100 replications of randomly generated data sets, and run different

biclustering techniques. The average of the adjusted Rand index is reported. The maximum standard error

is 0.1, so all reported digits are significant.

Table 3 confirms if separation parameter ∆ increases the performance of all methods improve. Changing

the matrix from square to rectangle increases the number of rows from 10 to 50. This change in data size,

improves the clustering performance over column clusters, for all methods except for convex, and for heatmap

single linkage.

It turns out the single linkage in heatmap implementation is an inefficient method, but the performance

improves significantly after being implemented as a bilinkage. The automatic cut using FORIC on forestogram

is the best for forests built using the Ward bilinkage. Plaid model appears to be the least favorable technique.

Table 3: The performance of different biclustering techniques using the average adjusted Rand index ×100. The larger the
adjusted Rand index is, the better the performance will be.

Dimension 30× 30 150× 30

Separation ∆ = 0.5 ∆ = 1 ∆ = 0.5 ∆ = 1
Side row col row col row col row col

Forestogram

Auto Single 55 55 55 55 56 100 56 100
Auto Average 55 55 55 55 56 100 56 100
Auto Ward 55 55 55 55 100 100 100 100

Single 80 55 100 100 94 100 100 100
Average 100 99 100 100 100 100 100 100
Ward 100 99 100 100 100 100 100 100

Heatmap
Single 53 53 100 100 0 100 100 100
Average 100 99 100 100 99 100 100 100
Ward 100 99 100 100 100 100 100 100

Plaid Bicluster 0 0 43 99 0 60 77 94
Convex Bicluster 54 0 100 100 0 100 100 100

5 Application

The yeast galactose gene expression data (Ideker et al., 2001) investigates the influence of the gal gene family

that allows cells to consume galactose, as a source of carbon. A perturbation is made in two different ways,

related to a specific pathway component: i) eliminating one of the gal genes or ii) a wild-type for each subject

regardless of galactose existence. We consider a sub-matrix of this data, widely analyzed by other researchers.

The analysis of the entire data set 3935×20 is feasible thank to computational acceleration of the algorithm.

For a similar analyses see Yeung et al. (2003); Yeung and Ruzzo (2001); Fowler and Heard (2012).

Each value in this data matrix is an average of four replicates. We cluster log10 of data with no prepro-

cessing. The data are available in the supplementary material of Ideker et al. (2001). Forestogram helps to

recognize similar group of genes with the same reaction to genetic perturbation. Figure 6 (bottom panel) is



Les Cahiers du GERAD G–2017–40 9

the two-dimensional projection the forestogram of Figure 6 (top panel). Presence of gene gal perturbation

is indicated by + sign.

The gal4 is the only gene that stays in the same cluster regardless of whether galactose present or not

after perturbation. This means the presence or absence of galactose has no effect on gal4. A similar result

is reported in Fowler and Heard (2012) but with a Bayesian biclustering model.

gal4+gal

wt−gal

gal2−gal

gal4−gal

gal7+gal

gal3+gal

gal10+gal

gal5−gal

gal1−gal

gal7−gal

gal6−gal

gal3−gal

gal10−gal

gal1+gal

gal2+gal

gal5+gal

gal6+gal

wt+gal

gal80+gal

gal80−gal

Figure 6: Top panel: forestogram produced using Ward bilinkage with automatic cut using FORIC. Buttom panel: two-dimensional
projection of forestogram on rows and columns.

6 Proof of Theorem 1

Suppose the biclustering C is given. Following the analysis of variance notation, the Gaussian model (2) can

be re-written in terms of a linear model, by putting the data matrix Yn×p in a long vector ynp×1. The binary

design matrix Xnp×|C| consist of bicluster membership indicators, and θ|C|×1 = [θIJ ]

y | θ ∼MN (Xθ,Σ),

θ ∼MN (τ ,Ω),
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where MN denotes the multivariate normal distribution. The conditional density is

f(y | θ) =
1√
|2πΣ|

exp

{
−1

2
(y −Xθ)>Σ−1(y −Xθ)

}
and the prior distribution on θ is

f(θ) =
1√
|2πΩ|

exp

{
−1

2
(θ − τ )>Ω−1(θ − τ )

}
.

The predictive distribution can be derived by integrating out θ with respect to its prior

f(y) =

∫
f(y | θ)f(θ)dθ

=

∫
exp {log f(y | θ)} f(θ)dθ

=

∫
f(y | θ̂) exp

{
1

2
(θ − θ̂)>

(
−X>Σ−1X

)
(θ − θ̂)

}
f(θ)dθ

=
f(y | θ̂)√
|2πΩ|

∫
exp

{
1

2
(θ − θ̂)>

(
−X>Σ−1X

)
(θ − θ̂)

}
exp

{
−1

2
(θ − τ )>Ω−1(θ − τ )

}
dθ

(6)

Take τ = θ̂ and the predictive distribution simplifies to

f(y) =
f(y | θ̂)√
|2πΩ|

∫
exp

{
−1

2
(θ − θ̂)>

(
X>Σ−1X + Ω−1

)
(θ − θ̂)

}
dθ

=
f(y | θ̂)√
|2πΩ|

√
|2π
(
X>Σ−1X + Ω−1

)−1 |
(7)

Suppose I is the identity matrix and J is the Fisher information. In this case the Fisher information is a

diagonal matrix with elements nIpJ , J = diag{nIpJ}.

Model (2) implies Σ = σ2I, and Ω = φJ−1
1 , where J1 = σ2I is the Fisher information of a single

observation. This setting simplifies the predictive distribution further and gives

f(y) =
f(y|θ̂)√
|2πσ2φI|

√∣∣∣∣2πdiag

{
σ2φ

nIpJφ+ 1

}∣∣∣∣
=

f(y | θ̂)√
|Crow|∏
I=1

|Ccol|∏
J=1

(nIpJφ+ 1)

.

Thus

− 2 log f(y) = −2 log f(y|θ̂) +

|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (8)

But f(y | θ) is a Gaussian likelihood so deriving (4) is straightforward. Substituting σ2 with its empirical

estimator s2 simplifies (8) even further and gives (3).

7 Proof of Theorem 2

The proof is by contradiction. Here we only concentrate on rows i.e. supposing D = Drow and M = Mrow,

and only focus on the complete bilinkage, but the argument is equally valid for other cases.
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Suppose bicluster Y̌ ⊂ Y is separable, Figure 7 helps to follow the notation. From the separability we

know M > D. Now assume Y1 ⊂ Y is merged with Y̌1 ⊂ Y̌, at a certain step, before (Y̌1, Y̌2) merge

together, Y1 ∩ Y̌ = ∅, and Y̌1 ∪ Y̌2 = Y̌. Suppose y1i denotes the rows of Y1, y̌1i denotes the rows of Y̌row,

and ˇ̌y2i denotes the rows of ˇ̌Yrow
2 , for some ˇ̌Y2 ⊂ Y̌2. By he definition of complete linkage, merging Y1 with

Y̌1 means

max
i6=i′
‖y1i − y̌1i′‖ < max

i 6=i′
‖ˇ̌y2i − y̌1i′‖, (9)

and by definition of diameter

max
i 6=i′
‖ˇ̌y2i − y̌1i′‖ < D. (10)

From (9) and (10)

max
i6=i′
‖y1i − y̌1i′‖ < D,

which turns out to be a contradiction, because by separability of Y̌

min
i6=i′
‖y1i − y̌1i′‖ > D.

Y

Y̌

Y̌1 Y̌2

Y1

Figure 7: Notation for a separable bicluster Y̌ ⊂ Y.
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Eren, K., Deveci, M., Küçüktunç, O. and Çatalyürek, Ü. V. (2013) A comparative analysis of biclustering algorithms
for gene expression data. Briefings in Bioinformatics 14(3), 279–292.

Fowler, A. and Heard, N. A. (2012) On two-way bayesian agglomerative clustering of gene expression data. Statistical
Analysis and Data Mining 5(5), 463–476.

Fraley, C. and Raftery, A. E. (1999) MCLUST: software for model-based cluster analysis. Journal of Classification
16, 297–306.



12 G–2017–40 Les Cahiers du GERAD

Gan, X., Liew, A. and Yan, H. (2008) Discovering biclusters in gene expression data based on high-dimensional linear
geometries. BMC Bioinformatics 9, 209.

Hartigan, J. A. (1972) Direct clustering of a data matrix. Journal of the American Statistical Association 67, 123–129.

Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Sanden, S. V.,
Lin, D., Talloen, W., Bijnens, L., Ghlmann, H. W., Shkedy, Z. and Clevert, D. A. (2010) FABIA: factor analysis
for bicluster acquisition. Bioinformatics 26, 1520–1527.

Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of classification 2(1), 193–218.

Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R.,
Aebersold, R. and Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed
metabolic network. Science 292(5518), 929–934.

Kaiser, S., Santamaria, R., Tatsiana, Khamiakova, Sill, M., Theron, R., Quintales, L. and Leisch., F. (2013) Biclust:
BiCluster Algorithms. R package version 1.0.2.

Lance, G. N. and Williams, W. T. (1966) A general theory of classifactory sorting strategies, i. hierarchical systems.
Computer Journal 9, 373–380.

Lazzeroni, L. and Owen, A. (2002) Plaid models for gene expression data. Statistica Sinica 12, 61–86.
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