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Université du Québec à Montréal, ainsi que du Fonds de recherche du
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
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Abstract: Visualization of high-dimensional data is counter-intuitive using conventional graphs. Parallel
coordinates is proposed, as an alternative, to explore multivariate data more effectively. However, when the
data are high-dimensional with thousands of lines overlapping, it is difficult to extract relevant information
through the parallel coordinates. The order of the axes determines the perception of information on parallel
coordinates. Thus, if coordinates are improperly ordered, the information between attributes remain hidden.
Here we propose a general framework to reorder the coordinates. This framework depend on the objective
of data visualization. It is also flexible to contain many conventional ordering measures. We also present
the coordinate ordering binary optimization problem and enhance towards a computationally efficient greedy
approach that suites high-dimensional data. Our approach is applied on wine data and on genetic data.

Keywords: Dimension ordering, high-dimensional data, Kullback-Liebler divergence, parallel coordinates
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1 Introduction

When data are high-dimensional, representing each attribute marginally may lead to an incomplete or unclear

visualization. Multidimensional graphs such as scatter plot matrices, glyphs, and parallel coordinates are

proposed to facilitate multivariate data exploration. Here we focus on parallel coordinates which D’Ocagne [9]

invented, primarily as a two-dimensional diagram to approximate the graphical computation of a mathemat-

ical function using nomogram. Parallel coordinates are further studied in [17] to allow the visualization of

multidimensional data on a transformed two-dimensional space [3].

Suppose the data matrix contains n observations in rows and p attributes in columns. A common data

visualization representation is scatter plot of data in orthogonal coordinates, where each axis is an attribute

and each observation is a point. This representation is limited to maximum p = 3 attributes. In paral-

lel coordinates representation, axes are parallel lines and each observation is a line, passing through each

coordinate [2]. This technique extends data visualization for p > 3.

Several parallel coordinates software have been developed so far. Some of them like XDAT and XMDVTool

are interactive and some others like Statistica and ggparallel R package are not. Software visualization

tools mostly provide options such as applying filters, data clustering, and switching coordinates for a better

visualization. Theoretically, there is no limit on the number of observations or the number of attributes.

However, when the number of observations is large, many lines overwhelm the display, and the parallel

coordinate graph becomes dense to analyze visually. On the other hand, high-dimensional data contains

large number of attributes, leading to a wide and an unclear representation.

Several techniques are proposed to improve the visual exploration of data in parallel coordinates. These

techniques aim to reorder attributes, so that data exploration becomes more straightforward. These tech-

niques aim to highlight relations between attributes and to reduce data clutter. Our framework attempts to

introduce a criterion that adapts to the purpose of parallel coordinate visualization. Here, we mainly focus on

two purposes, exploring the dependence between attributes and the data separation. However, our technique

is flexible and can be adapted for other purposes like outlier detection. If the purpose of visualization is

exploring the dependence between attributes, then the criterion mimics a sort of correlation. If clustering is

of interest, then the criterion measures the separation.

Figure 1 shows the impact of data reordering on highlighting the dependence between attributes even in

the case of a small number of attributes, both for dependence and clustering purposes. The left panel shows

only the relation between x3 and x4. With a coordinate reordering, two relationships appear, one between x1
and x4 and another between x3 and x4. Figure 2 shows that dimension reordering enhances cluster detection.

In the left panel, data are separable only by x3 and x4. However, with a proper reordering, the same data

are separable by x1 and x4 as well.

The paper is structured as follows. Section 2 summarizes some coordinate reordering techniques and

demonstrates the duality between orthogonal coordinates and parallel coordinates. Section 3 introduces our

coordinate reordering criterion. Section 4 proposes an optimization algorithm for reordering attributes. The

first application is carried out on the wine quality dataset in Subsection 5.1 to explore the dependence with

relatively small number of attributes. Another application of our method is shown in Subsection 5.2 on

high-dimensional genetic data to explore data separation.

2 Coordinate order

The order of coordinates has a visible impact on the perception of data structure including the visualization

of attribute dependence and the detection of clusters. [24] points out the parallel coordinate display visualizes

the inter-coordinate dependence between neighboring dimensions, but does not reveal the dependence between

non-adjacent coordinates—clearly emphasizing on the importance of coordinate order.

Coordinate reordering helps highlighting data dependencies, promotes visual data mining, and facilitates

data exploration. Figure 1 shows an example of four-dimensional data in its original order and after being

reordered properly. Figure 1b shows that there is a linear relation between x1 and x3 which is not visible
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x1 x2 x3 x4

(a)

x2 x1 x4 x3

(b)

Figure 1: Parallel coordinate graph when the axes are improperly ordered (left panel) versus properly ordered to explore attribute
dependence (right panel).

x1 x2 x3 x4

(a)

x2 x1 x4 x3

(b)

Figure 2: Parallel coordinate graph when the axes are improperly ordered (left panel) versus properly ordered to explore data
separation (right panel).

in Figure 1a. This relation is detected through many parallel lines between the two coordinates. Further

examples on other dependence are presented in Figure 3. Interactive software enable manual attribute

reordering. Users can change the order of attributes by switching axes. Handling the order manually is

time consuming, and some relations still may remain undetected. Developing an automatic technique seems

essential for a good visualization, specially for large number of attributes.

Some authors proposed automatic techniques to find the best order for data visualization. The pro-

posed techniques focus on highlighting the dependence among attributes. They aim to put a attribute in

the neighborhood of the most dependent attribute. For instance, [4] proposes a technique to minimize the

dissimilarities or partial dissimilarities between two adjacent attributes. The dissimilarity is often measured
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through the Euclidean distance over a pair of attributes. It is not difficult to see that minimizing the Eu-

clidean distance coincides with maximizing the squared correlation. Unfortunately, correlation (or Euclidean

distance) is unreliable to uncover all types of dependencies. Correlation is a deficient measure to uncover non

linear dependencies [6]. For instance if x follows a symmetric distribution such as Gaussian, the correlation

between x and x2 is zero.

[24] proposes another technique for coordinate reordering, which aims to reorder by minimizing outliers

between two neighboring coordinates. An observation is considered as an outlier if it involves no neighboring

data. The neighbor is defined by the Euclidean distance after applying a certain threshold. This technique

is sensitive to the chosen threshold. [19] suggests a reordering technique using variety of metrics, e.g. max-

imizing correlation, reducing the number of clutters, etc. This approach gives an effective visualization and

exploration of structures within a large multivariate data set, and meanwhile provides enhancement of di-

verse structures by supplying a range of automatic variable orderings. [11] suggests subspace clustering and

coordinate ranking. [7] proposes several reordering metrics such as number of crossing lines, angle of crossing,

and mutual information. Another algorithm is independently developed using a genetic algorithm, to high-

light important features and allow the detection of irregularities using Pearson correlation [5]. [20] combines

singular value decomposition to select the attributes that have the highest contribution and then applies a

nonlinear correlation coefficient to order the axes.

The perception of patterns and clusters depends on the choice of the coordinate system. Therefore, it is

important to know how to read the coordinate system. Despite the spread of parallel coordinates between

practitioners, it is still unknown to many researchers in academica, especially when it comes to the inter-

pretation of the shapes observed in parallel coordinates. Some authors were interested in the graphic trans-

formation from orthogonal coordinates to parallel coordinates already. [17] states that the representation in

parallel coordinates is a projective transformation of orthogonal coordinates. [15] studies the transformation

of a linear function to parallel coordinates in more details.

Some other dualities are studied in [17] and [27]. In point-line duality, some other mappings can be

expressed using the envelope of lines in parallel coordinates [15]. Here we do not review the mathematical

details, but rather focus on visual aspects. In Figure 3, some common functions are drawn in orthogonal

coordinates and in parallel coordinates.

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

O

(a) y = x

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

(b) y = −x

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

(c) y = 0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) y = sin(x)

Figure 3: The duality between the Orthogonal coordinates (top) and the parallel coordinates (bottom) for 4 common functions.

A set of points located on a line is represented in parallel coordinates by a set of lines that intersect at a

definite point. The horizontal position of this point depends on the slope of the linear function. If the slope

is negative, the intersection point is located between the parallel axes (Figure 3b). Different patterns are
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observed in a linear function with a slope superior to 1, or inferior to 1. However, as most software normalize

the data before treatment, only parallel lines appears for a positive slope. This is illustrated in Figure 3a

and Figure 3b.

Figure 3c shows a constant function. This function is illustrated by a set of lines that converge to a single

point. A periodic function is translated by 2 sets of lines intersecting in 2 different points as in Figure 3d.

Detecting the functions using the parallel coordinate shapes is still confusing, because some shapes resemble.

The main difference is in the intersecting points. Despite this uncertainty in the interpretation of some shapes,

it is clear that when two attributes are dependent, the parallel coordinate graph shows a certain pattern.

Cluster visualization is different in orthogonal coordinates and in parallel coordinates. Figure 4 illustrates

the separation and correlation in both coordinate systems. Figure 4a shows separable and correlated data.

The clusters are visible and some patterns appears in parallel coordinates. These patterns translate set of

linear functions with different coefficients to set of lines. Figure 4b shows separable and uncorrelated data.

The patterns are not much different than Figure 4a, but, the clusters are more distinguishable. Figure 4b

translates correlated but non-separable data, and Figure 4d illustrates non-separable and uncorrelated data.
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(a) Separable and cor-
related data
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(b) Separable non cor-
related data
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(c) Non separable cor-
related data
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(d) Non separable non
correlated data

Figure 4: Separation and correlation in orthogonal coordinates (top panel) and in parallel coordinates (bottom panel).

3 General information criterion

Various methods are used to order coordinates, from Euclidean distance to correlation. As only two coordi-

nates are visualized at a time, it looks promising to order coordinates through some measures defined over

the bivariate data distribution. Take two arbitrary attributes, say x1, x2. Define two hypothetical bivariate

probability measures over the product of their sample space, and over the same sigma algebra F . In other

words, define two probability spaces
(
Ω,F , F

)
, and

(
Ω,F , H

)
for (x1, x2). For the simplicity of notation we

denote the probability measures F and H by their imposed distribution functions F (x1, x2) and H(x1, x2).

Let F (x1, x2) and H(x1, x2) impose different probability measures, i.e.

∃(x1, x2) ∈ IR2 such that F (x1, x2) 6= H(x1, x2).

Define the general information as

GI(x1, x2) =
1

G′′(1)

∫ ∫
G

{
dF (x1, x2)

dH(x1, x2)

}
dH(x1, x2), (1)
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where dF (x1, x2)/dH(x1, x2) is the Radon-Nikodym derivative, G(.) is a univariate smooth function and

G′′(1) is the second derivative of G(.) at 1. The second derivative G′′(1) in (1) adjusts for scaling. Criterion (1)

is closely related to the Kullback-Leibler divergence, the cross entropy, and the joint entropy.

The choice of F relative to H defines the measuring concept and the choice of G(.) defines the measuring

statistic. A common choice of F and H is the data joint distribution and the product of marginal data dis-

tributions, respectively. In this case, the measuring concept reduces to dependence. The Pearson correlation

as a measure of dependence arises if F (x1, x2) is bivariate Gaussian.

A common choice of G(.) is G(u) = u log(u) which brings the Kullback-Leibler divergence of F relative

to H. Our suggestion for G(u) is a univariate function that

i) vanishes at 1, i.e. G(1) = 0,

ii) its first derivative is smooth at 1 , i.e. |G′′(u)| is bounded in an infinitesimal neighborhood u ∈
(1− ε, 1 + ε).

The first condition ensures that GI is well-defined. In other words, GI = 0 if and only if the reference

probability measures F and H coincide. The second condition ensures the asymptotic statistical behavior of

GI as the number of observations n increases.

One may choose the statistic of interest by varying G(u). It is easier to understand the role of G(.) in the

context of discrete random variables. If (x1, x2) is a pair discrete random variables, H(x1, x2) = F (x1)F (x2),

then various famous statistics of contingency tables are derived by varying G(u)

• G(u) = 2u log u gives the log likelihood ratio statistic,

• G(u) = (u− 1)2 gives the Pearson chi-square statistic,

• G(u) = u(1− 1/
√
u) gives the Freeman-Tukey statistic,

• G(u) = (1− u)2/u gives the Neyman statistic,

• G(u) = u(
3
√
u2 − 1) gives the Cressie-Read statistic,

and more importantly G(u) = u log u is the mutual information

GI(x1, x2) =
∑
x1

∑
x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
,

where p(x1, x2) is the joint probability mass, p(x1) and p(x2) are the marginal masses.

If visualization towards data clutter is preferred, it is more meaningful to measure the separation instead

of dependence. Therefore, one may define F (x1, x2) to be a k component distribution

dF (x1, x2) =

k∑
c=1

pcgµc
(x1, x2)dx1dx2 (2)

and H(x1, x2) to be a single component distribution

dH(x1, x2) = gµ(x1, x2)dx1dx2, (3)

where gµ(., .) is a density family indexed by the location parameter µ. Such a measure mimics the silhou-

ettes [25] if g is Gaussian bivariate density.

Ordering with respect to outliers is feasible through assigning a heavy-tailed, such as the Student’s t-

distribution, for F and a bivariate Gaussian for H. Many other concepts such as dispersion, skewness,

prediction power, multi-collinearity, etc, can be quantified through the general information criterion (1), and

then be used to order the coordinates for further visual inspection.
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4 Order optimization

Suppose data contain p attributes. The total number of coordinate permutation is p! impossible to check

visually for large p. It is natural to put the most informative coordinates early in the graph. This is specially

helpful while data are high-dimensional.

Suppose the general information matrix, call the symmetric weight matrix, is computed for all pairs

of attributes Wp×p = [GI(xi, xj)]. The problem of finding optimal neighboring coordinates is reduced to

estimation of a binary symmetric adjacency matrix A = [aij ] that maximizes the total information

Â = argmax ‖A�W‖ (4)

s.t.

aij = 0 or aij = 1 (5)

a>i 1 = 1>aj = 2 (6)

aij = aji, (7)

‖A‖ ≤ 2q (8)

where a>i is the ith row of A, aj is the jth column of A, � is the Hadamart product, and ‖A‖ =
∑

i

∑
j |aij |

is the L1 Frobenius norm.

The objective function
∑p

i=1

∑p
j=1 aijwij in (4) computes the utility of incorporating some adjacent

coordinates. The constraint (5) ensures whether or not a coordinate is neighbor to another. The constraint (6)

ensures a coordinate is neighbor to only two other coordinates. The constraint (7) imposes symmetry on the

adjacency matrix. The constraint (8), for a q < p, selects only q out of p coordinates for visualization.

Standard solvers such as CPLEX can be used to solve this integer-linear optimization program after

fixing q. If q ≥ p, the integer program only finds the adjacent coordinates and relaxes the selection. For

high-dimensional data, this optimization is cumbersome to solve even with powerful computers. We propose

a faster algorithm by optimizing the objective function (4) hierarchically as follows.

The first pair of coordinates are the one that maximize the objective function at the first iteration

(x̂1, x̂2) = argmax GI(xi, xj) (9)

1 ≤ i ≤ p− 1 i+ 1 ≤ j ≤ p.

The jth, j = 3, . . . , q coordinates is

x̂j = argmax GI(x̂j−1, xi), (10)

i ∈ {1, . . . , p}\{x̂1, x̂2, . . . , x̂j−1}.

The computation of this greedy algorithm is of time complexity O(p2) and dominated by the first step of

the algorithm (9). A faster algorithm of order O(qp) can be achieved by fixing the first coordinate manually

and order the remaining coordinates using (10). This technique is scalable with the number of coordinates p,

specially for high-dimensional data while q � p.

5 Application

To test the proposed algorithm, we used two well-known datasets. The first is the white wine quality data [1].

This dataset includes 12 attributes. The second dataset is Golub genetic data [13]. It is a high-dimensional

data and only 50 attributes out of 2030 are selected for visualization.

5.1 Wine dataset

These data are the result of a chemical analysis of white wines taken from [1]. The data include 4898 ob-

servation measurements over 12 attributes: fixed acidity (x1), volatile acidity (x2), citric acid (x3), residual
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sugar (x4), chlorides (x5), free sulfur dioxide (x6), total sulfur dioxide (x7), density (x8), pH (x9), sul-

phates (x10), alcohol (x11) and quality (x12, a score between 0 and 10). This dataset is analyzed for several

reasons such as outlier detection, classification, and regression. [7] used this database to evaluate the dimen-

sion reordering techniques in parallel coordinates using crossing angles and mutual information. First, the

optimal order for mutual information of problem was compared to the solution found by greedy algorithm.

The optimization problem was solved using IBM ILOG CPLEX Optimization Studio 12.7.1 a 2.20 GHz Intel

core i7-2702MQ processor and 16.00 Go RAM taking around 17 seconds compared to around 1 second for our

greedy algorithm. The optimal solution given by CPLEX is a circle-like neighborhood matrix. To transform

this neighborhood matrix it into a list, the circle is cut at the pair with the minimum mutual information.

Figure 5 presents a comparison between the order given by CPLEX and the order given with our greedy

algorithm. Many pairs of adjacent attributes appear in both panels (x8, x11), (x8, x4), (x7, x6), (x6, x12),

(x12, x2), (x2, x3), and (x1, x9).

(a) Order with CPLEX,
∑

i

∑
j GI(xi, xj) = 2.53.

(b) Order with greedy algorithm,
∑

i

∑
j GI(xi, xj) =

2.13

Figure 5: Comparison between the order found with CPLEX (top panel) and the order with our Greedy algorithm (bottom panel).
The blue values between a pair of coordinates are GI(xi, xj).

These data are used also to evaluate the impact of changing the statistic by varying G(.) when the concept

measure (F relative to H) is set to dependence. Therefore, F is set to the joint probability, F (x1, x2), and

H is set to the product of probability masses, F (x1)F (x2).

The results are illustrated in Figure 6. The values between each 2 adjacent attributes are the numerical

values of the criterion. All the algorithms started with the highest information and tend to decrease.

The order changes as the statistic varies, compare for instance Figure 6a with Figure 6d. The first 3 coor-

dinates are ordered similarly by Mutual information, Cressie and Freeman-Tukey. Again, Mutual information

and Tukey-Freeman selected the same 7 first attributes and give a different order for the last 5 attributes. In

statistics literature it is known that the behaviour of Neyman and Pearson statistics are alike. Here, Neyman

and Pearson statistics give exactly the same order. Tukey statistic starts with a different attribute. However,

Cressie-Read represents the dependence on attributes along with other statistics, for instance (x2, x12) and

(x7, x6) are also represented by Pearson statistic.

Comparing the total information of each statistic,
∑

i

∑
j GI(xi, xj), shows that Pearson gives the highest

value of 4.13, followed by Cressie, mutual information, Neyman, with total information around 2, and Freeman

statistic with a total information of 0.58. As the Pearson statistic provides the highest total information

between adjacent attributes, we suggest to use Pearson statistic to reorder attributes for this data set.

The order proposed by all criteria places the more dependent attributes first ending with nearly indepen-

dent attributes. Through this data example, we notice that changing the criterion change the order globally,

however many coordinates are placed in the neighborhood of one another overall.
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(a) Freeman-Tukey,
∑

i

∑
j GI(xi, xj) = 0.58 (b) Neyman,

∑
i

∑
j GI(xi, xj) = 2.09

(c) Cressie-Read,
∑

i

∑
j GI(xi, xj) = 2.39 (d) Pearson chi-square,

∑
i

∑
j GI(xi, xj) = 4.13

Figure 6: Wine data reordered based on different statistics.
∑

i

∑
j GI(xi, xj) is the sum of the values written between the pair

of coordinates.

5.2 Genetic dataset

We applied the developed approach to [13]. Golub dataset consists of 47 patients with acute lymphoblastic

leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). The observations have been assayed

with Affymetrix Hgu6800 chips, resulting in 7129 gene expressions (Affymetrix probes). The data was

preprocessed, giving 2030 attributes [21]. This data is high-dimensional so, selecting the most informative

attribute subset is crucial. Finding the genes that separates the data are more appealing than dependence

in genetic application. Therefore, we apply the separation statistic described earlier, by choosing F to be a

bivariate k-component Gaussian (2), and H to be a single component Gaussian (3).

The visualized dimensions are those which maximize the criterion of the list. To find the appropriate

order, we tried to run the optimization algorithm (4) using CPLEX, but it did not converge for q = 50.

Therefore, we only present the result of our greedy method. To improve the computational complexity of the

greedy algorithm, the first attribute is selected to be the one with the highest univariate separation criterion.

Fixing the first attribute avoids computation of general information criterion (1) for all pairs of attributes.

This is a huge gain while data are high dimensional.

When the number of clusters is not known, we suggest to use a large number of clusters for the reordering

and then adjust the colors for a better visualization. This data are clustered into 7 clusters. Then, 3 small

clusters are re-grouped to visualize only 4 groups. Figure 7b illustrates the results. The top panel shows

clustered data reordered based on separation metric and the bottom panel shows clustered data reordered

based on Pearson correlation. It is clear that for the purpose of cluster detection, separation criterion

highlights the data separation more clearly. The sum of separation criterion is around 57 for the order found

based on the separation criterion and 30 for the order based on Pearson correlation. It is natural to expect

that the total information for separation is higher when the attributes are reordered for that purpose. Not

only the total information, but also the parallel coordinate graph clearifies the effect of choosing the right

measure for the visualization purpose. The result confirms that when the purpose of reordering is data

separation, or cluster detection as discussed in Section 1, then, F and H needs to defined in the direction of

visualization purpose.
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(a) Golub data reordered based on separation criterion. The value between the adjacent axes is the general
information adapted to measure separation,

∑
i

∑
j GI(xi, xj) = 57.
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(b) Golub data reordered based on Pearson correlation. The value between the adjacent axes is the general
information adapted to measure separation,

∑
i

∑
j GI(xi, xj) = 30.

Figure 7: Golub data reordered based on separation criterion and on Pearson correlation.

6 Conclusion

This paper presents a new and a general framework for coordinate ordering. The new framework is gen-

eral enough to cover many existing ordering methods. This framework is based on a general information

criterion defined to cover wide range of ordering measures. A computationally efficient ordering algorithm

is developed to cover high-dimensional data visualization. The tests showed that according to the purpose

of the reordering, the criterion and the statistic need to be chosen appropriately in order to achieve a useful

coordinate order.
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