
Les Cahiers du GERAD ISSN: 0711–2440

The carousel scheduling problem

B.J. de Sousa Pessoa, D. Aloise,
L. dos Anjos Formiga Cabral

G–2017–37

May 2017

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2017-37) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2017-37) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
– Bibliothèque et Archives Canada, 2017

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
– Library and Archives Canada, 2017

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-37
https://www.gerad.ca/fr/papers/G-2017-37
https://www.gerad.ca/en/papers/G-2017-37
https://www.gerad.ca/en/papers/G-2017-37

The carousel scheduling
problem

Bruno Jefferson de Sousa Pessoa a

Daniel Aloise b,c

Lućıdio dos Anjos Formiga Cabral a

a Department of Scientific Computing, Federal University
of Paráıba (João Pessoa), Brazil

b Département de Génie Informatique et Génie Logiciel,
Polytechnique Montréal, Montréal (Québec) Canada

c Groupe d’études et de de recherche en analyse des
décisions (GERAD), Montréal (Québec) Canada

bruno@ci.ufpb.br

daniel.aloise@polymtl.ca

lucidio@ci.ufpb.br

May 2017

Les Cahiers du GERAD

G–2017–37

Copyright c© 2017 GERAD

ii G–2017–37 Les Cahiers du GERAD

Abstract: Scheduling problems on which constraints are imposed with regard to the temporal distances
between successive executions of the same task have numerous applications, ranging from task scheduling in
real-time systems to automobile production on a mixed-model assembly line. This paper introduces a new
NP-hard optimization problem belonging to this class of problems, namely the Carousel Scheduling Problem
(CSP). We present a mathematical formulation for the CSP based on mixed-integer linear programming
(MILP) as well as a series of cuts to improve its resolution via exact methods. Finally, we propose an
iterative solution method which greatly reduces the number of variables in the CSP formulation. The reported
computational experiments show that, for a given time horizon, the proposed iterative method increases the
size of CSP instances solved up to optimality.

Keywords: scheduling, fair sequences, integer programming

Acknowledgments: Research of the second author was partially funded by CNPq-Brazil grant number
308887/2014-0

Les Cahiers du GERAD G–2017–37 1

1 Introduction

Scheduling problems concern the allocation of tasks to limited resources over time [2]. Their importance

has increased with industrial development and the advancement of manufacturing processes. Thus, they

constitute one of the most important classes of problems addressed in Operations Research.

Among the various types of scheduling problems, some focus on the proportional sharing of resources over

time. This type of scheduling problem brings a number of benefits, ranging from cost minimization in an

assembly line to task scheduling in real-time systems. Toyota was one of the first companies to realize the

advantages of producing different kinds of products, keeping the usage rate of all parts used by the assembly

line as constant as possible. The company created the Just-in-Time production system, whose aim is to

produce only the needy products in demanded quantities at the right time [8]. Toyota has used this system

on its assembly lines, and as a result, storage costs and shortages have been reduced, and machine idleness

has been minimized during the production process [18].

Scheduling problems where the temporal distances between successive executions of tasks or activities

are not longer than a pre-specified distance are often referred to in the literature as distance-constrained

scheduling problems [14] or, simply, fair sequences [18]. In this paper, we present a new optimization problem,

namely the Carousel Scheduling Problem (CSP), which belongs to the class of problems that deals with fair

sequences. More specifically, the CSP is a periodic scheduling problem with a finite time horizon, that given a

set of tasks with different priorities and number of executions, aims to build a sequence of tasks such that the

maximum temporal distances between successive executions of identical tasks are minimized. When taken

together, these features provide the CSP with the necessary requirements to be regarded as a new scheduling

problem.

Mathematically, the CSP can be defined as follows. Let X = {x1, x2, . . . , xn} be a set of n symbols, each

having unit length, and c : X → Z+ a priority function. For a symbol xi, we denote ci = c(xi) its priority.

Consider a sequence S = s1, s2, . . . , sT of T symbols of X, with T ≤ TMAX, where TMAX is a parameter

of the problem corresponding to the maximum length of the sequence. The frequency or the number of

copies or occurrences of the symbols in S is a variable of the problem and is at least equal to one. The

distance di,k,k+1 between the copies k and k + 1 of symbol xi ∈ X is the number of symbols between them

plus one. Assuming that l is the index of the last copy of symbol xi in the sequence, di,l,1 is the distance

between the last copy of xi in a cycle and its first copy in the subsequent cycle. By denoting Di the largest

distance between all the consecutive copies of symbol xi, including di,l,1, the goal is to find a sequence S that

minimizes the largest product Dici, for i = 1, . . . , n.

Figure 1 illustrates a CSP solution for a set of symbols X = {A,B,C,D,E, F} with priorities cA > cB =

cC = cD > cE > cF . Two possible solution sequences for this instance are presented. They represent two

feasible solutions with different distributions of symbols. In Solution 1, the copies of a given symbol are

positioned one after the other, which results in a bad solution to the CSP. In the second solution, the copies

are spaced as evenly as possible. Comparing these solutions on the basis of the distances between the copies

of symbol A, the largest distance is observed to decrease from DA = 9 in Solution 1 to DA = 3 in Solution 2.

Consequently, the product DAcA also decreases. As the largest distances of all the symbols are minimized,

Solution 2 is better than Solution 1.

Figure 1: Uniform and non-uniform distribution of symbols.

2 G–2017–37 Les Cahiers du GERAD

It is important to note that in addition to bridging a gap in the literature, the CSP covers many specific

applications that have been neglected . We discuss below some scenarios involving the CSP.

In a digital TV system, part of the bandwidth allocated to the TV stations is reserved for the airing

of interactive applications, i.e., computer programs capable of providing interactivity between viewers and

television content [20]. In addition to enhancing the TV watching experience, such programs facilitate the

advertisement of products in a more dynamic manner. They are aired cyclically from servers to users on a

one-way communication channel. To download them, the user terminals must listen to the communication

channel until the arrival of the requested data. A cycle or sequence of transmissions consists of an ordered set

of applications, which may be aired several times within a cycle in accordance with the application priority.

At the end of the airing of the last application in the cycle, the first one is aired again. Considering that

applications whose advertisers pay more for their placement are aired more frequently than others and that

the optimal frequency of each application is also a variable of the problem, the objective is to minimize

the maximum temporal distance between successive transmissions of the same application, and therefore

the waiting time of the users. The length of the transmission sequence is variable, finite, and limited to a

maximum value, which usually corresponds to the length of a TV program, a program block, or the time

reserved for commercial advertisements. In general, the CSP occurs in most push system applications [4],

environments involving data broadcast [16, 17], and it can also be applied to the traditional advertisement

scheduling approach [10].

Periodic machine maintenance [1, 3] is another context in which the CSP can be applied. In such a scenario,

a maintenance schedule should be designed to minimize the time between two successive maintenance services,

given that the maintenance costs increase with the time elapsed since the last maintenance. As costs vary

from machine to machine, the ideal frequency of maintenance services for each machine is a variable of

the problem. Moreover, in most real-world situations, there is a limitation that the time horizon in which

maintenance services are to be performed must be finite and in accordance with a schedule established a

priori (e.g., one day, one week).

Real-time scheduling is also within the scope of the CSP [21]. Some real-time systems use a task scheduling

mechanism based on the so-called proportional-share control, with the goal of minimizing the response time

to user requests. For this purpose, the tasks should be executed at a uniform rate over time, through a

prioritization strategy that aims to reflect the degree of importance of each task. As in the previous examples,

the processes with higher priorities are executed at a higher frequency than others. To avoid starvation, i.e.,

when low-priority processes take too long to be executed, it is necessary to limit the maximum length of the

sequences or cycles and establish the minimum frequency or number of executions for each of the tasks.

The remaining of this paper is organized as follows. Section 2 reviews the main studies related to the

CSP and highlights its characteristics. Section 3 presents the mathematical formulation of the problem as

a mixed-integer linear program. Section 4 proves that the problem is NP-hard. Section 5 presents some

valid cuts to the CSP. In Section 6, our solution method based on exact algorithms is described in detail.

Computational experiments are reported in Section 7. Finally, the conclusions are presented in Section 8.

2 Literature review

Fair sequences or constrained-distance scheduling problems have been mainly addressed in the fields of com-

puter science and operations research. In the field of computer science, many studies have explored the

development of theories and algorithms for scheduling real-time systems and problems arising from broad-

cast data transmission.

In 1989, Holte at al [15] formalized a scheduling problem of sporadic tasks, namely the pinwheel problem,

inspired by satellite communication with a single ground station. Satellites send information periodically to

the ground station, which has the ability to process data from a single satellite at a time. The transmission

frequency is a satellite requirement and hence an input of the problem. Thus, the problem is to build a

sequence of transmissions that meets the requirements of each satellite while simultaneously avoiding loss

Les Cahiers du GERAD G–2017–37 3

of information, considering the processing restrictions of the ground station. A few years later, the stride

scheduling algorithm was developed with the aim of implementing a proportional-share control over processor

time [21]. To this end, the algorithm designs a schedule whose processes are executed evenly in time according

to its priorities, and as a result, the response time of each process is reduced. Similarly, Baruah et al. [5]

developed the notion of fairness in resource allocation, which they referred to as P-fairness. The underlying

concept is to gradually schedule tasks according to weights calculated from their period and execution time.

Accordingly, the tasks are scheduled with a certain uniformity over time. By the same time, Han et al. [14]

introduced the distance-constrained scheduling problem, which involves scheduling a set of tasks to be executed

periodically under the constraint that the temporal distance between successive executions should be less

than a preset value. The pinwheel problem can be considered as its discrete version. Bar-Noy and Ladner [4]

defined the window scheduling problem, which occurs in some applications involving broadcast data, such as

push systems and on-demand media. Given a set of transmission channels, a set of pages to be transmitted

in discrete time slots, and a time window associated with each page, a schedule that aims to solves the

problem assigns pages to slots such that the temporal distance between any consecutive occurrences of the

same page, considering all the transmission channels, is at most equal to its corresponding window. The

data broadcast problem [16] can be regarded as the optimization version of the windows scheduling problem.

It aims to find a sequence of message transmissions within an infinite time horizon, which minimizes the

temporal distance between two consecutive transmissions of a message and thus the user waiting time. More

recently, Garcia-Villoria and Salhi [10] introduced a new scheduling problem that occurs in the TV sector. It

involves scheduling of commercial advertisements in order to satisfy advertisers and, therefore, broadcasters.

The advertisers buy discrete time slots for advertisements and request that the successive transmissions of

the same advertisement should be as evenly spaced in time as possible. The slots have airdates and are

divided into three groups according to the audience rating (low, medium, and high). The number of times

that the advertisements should be aired and the minimum number of slots to be allocated to the middle

and high audience groups are inputs of the problem. The objective of the problem is to find a feasible

schedule that minimizes the irregularity of the time intervals between two consecutive transmissions of the

same advertisement.

In the field of operations research, the topic under discussion gained momentum with the introduction

of the Just-in-Time production method, which was applied by Toyota to assembly lines in the 1980s. The

Just-in-Time method produces different models at a uniform rate over time in order to reduce inventory

costs [18]. By studying the Just-in-Time production system, Miltenberg [19] formulated it as a non-linear

integer programming problem, aiming to minimize the total deviation between the obtained production rates

and the desired production rates for each product. Anily et al. [1] studied an activity scheduling problem of

various types within an infinite time horizon, which they referred to as scheduling of maintenance services.

In their work, they considered a set of machines to be maintained with costs that increase in proportion

to the elapsed time since the last maintenance. The larger the temporal distance, the higher is the cost

involved. Hence, the goal of the problem is to find an optimal schedule that minimizes the average cost per

unit time to maintain several different machines over time. Bar-Noy et al. [3] studied a generalized version

of the maintenance scheduling problem by including the possibility of maintaining multiple machines in the

same time slot. Corominas et al. [6] presented the Response Time Variability Problem (RTVP), which is a

scheduling problem that arises whenever tasks (clients or products) need be sequenced in order to reduce the

variability in the temporal distance between their executions [7, 11, 9]. In the RTVP, the task sequences are

periodic and finite. Moreover, the demand or number of occurrences of each task is specified a priori; thus,

it is an input to the problem. Garcia-Villoria and Pastor [12] introduced the minmax response time problem

(mRTP), which is the minmax version of the RTVP.

Most of the problems cited above occur in a context where the time horizon considered is infinite. However,

many practical situations require the sequence of activities to be performed in a range of finite and prede-

termined time, as discussed in the previous section. When considering a finite time horizon, it is necessary

to treat the temporal distances between cycles, which have a direct impact on the definitions, formulations,

and the solution methods developed to the problems. Among the problems mentioned, the only ones besides

the CSP that treat periodic scheduling with a finite time horizon are the RTVP and mRTP. Although the

4 G–2017–37 Les Cahiers du GERAD

TV advertisement scheduling problem is also considered with a finite time horizon, it differs from the other

problems in that it is not cyclical . Unlike the CSP, the lengths of the sequences in the RTVP and mRTP are

established a priori based on the number of copies of each task, which is an input to the problem. Thus, a

number of applications in which the frequency of each task cannot be determined in principle are not covered.

In these practical situations, such frequencies are variables of the problem and not inputs. Thus, the CSP

can be regarded as a generalization of the RTVP and mRTP.

3 Problem formulation

The terminology used in this section follows the formal definition of the problem presented in Section 1. The

proposed formulation, based on MILP, is divided into two parts. The first part describes the problem data,

its basic properties, and the strategy for calculating the distances between consecutive copies in the same

cycle. The second part focuses on the description of variables and constraints involved in the calculation for

copies belonging to consecutive different cycles.

Data

n Number of symbols.
X Set of symbols x1, . . . , xn.
Mi Maximum number of copies of symbol xi ∈ X.
Ki Index set of the copies of xi ∈ X, i.e., Ki = {1, . . . ,Mi}.

TMAX Maximum length of the feasible sequences.
ci Priority of symbol xi ∈ X.

Hik Set of positions that can be occupied by the k-th copy of symbol xi ∈ X, i.e., Hik = {k, . . . , TMAX}.

Variables

yikh 1 if the k-th copy of symbol xi ∈ X is in position h ∈ Hik; 0 otherwise.
di,k,k+1 Distance between the k-th and (k + 1)-th copies of symbol xi ∈ X; k ∈ \{Mi}.

Di Largest distance between two consecutive copies of symbol xi ∈ X.
P Largest product Dici, xi ∈ X.
pik Position of the k-th copy of symbol xi ∈ X.

Model

Minimize P (1)

s.t. P ≥ Dici, ∀i = 1, . . . , n, (2)

Di ≥ di,k,k+1, ∀i = 1, . . . , n, ∀k ∈ Ki \ {Mi}, (3)∑
i:xi∈X

∑
k∈Ki

h∈Hik

yikh ≤ 1, ∀h ∈ {1, . . . , TMAX}, (4)

∑
h∈Hik

yikh ≤ 1, ∀i = 1, . . . , n, ∀k ∈ Ki, (5)

∑
k∈Ki

∑
h∈Hik

yikh ≥ 1, ∀i = 1, . . . , n, (6)

pik =
∑
h∈Hik

yikhh, ∀i = 1, . . . , n, (7)

∑
h∈Hik

yikh ≥
∑

h∈Hi,k+1

yi,k+1,h, ∀i = 1, . . . , n, ∀k ∈ Ki \ {Mi}, (8)

pi,k+1 ≥ pik −

1−
∑

h∈Hi,k+1

yi,k+1,h

TMAX, ∀i = 1, . . . , n, ∀k ∈ Ki \ {Mi}, (9)

di,k,k+1 ≥ pi,k+1 − pik, ∀i = 1, . . . , n, ∀k ∈ Ki \ {Mi}, (10)∑
j:xj∈X

∑
k∈Kj

∑
h∈Hjk

yjkh ≤ TMAX, (11)

Les Cahiers du GERAD G–2017–37 5

P,Di, pik ≥ 0, ∀i = 1, . . . , n, ∀k ∈ Ki, (12)

di,k,k+1 ≥ 0, ∀k ∈ Ki \ {Mi}, (13)

yikh ∈ {0, 1}, ∀xi ∈ X,∀k ∈ Ki,∀h ∈ Hik. (14)

The objective function (1) minimizes the maximum product between the largest distance of consecutive

copies of symbol xi and its priority ci, ∀xi ∈ X, defined by constraints (2). Constraints (3) establish, ∀xi ∈ X,

the largest distance between two consecutive copies of symbol xi, considering only the distances belonging to

a single cycle. Constraints (4), (5), and (6) guarantee, respectively, that at most one copy will be allocated

at each position of the feasible sequences, each copy will be allocated no more than once, and each symbol

will have at least one copy in the sequence. Constraints (7) calculate the positions of the copies of all the

symbols. The unallocated copies are positioned out of the sequence, specifically at the zero position. Further,

constraints (8) impose the condition that the (k + 1)-th copy of symbol xi cannot be allocated if the k-th

copy is not allocated. Constraints (9) state that the positions of the allocated copies are defined in ascending

order of k, i.e., pi,k+1 ≥ pik. When the (k + 1)-th copy is not allocated, the subtraction in the parentheses

is equal to one, causing the right side of the inequality to be at most equal to zero, i.e., when pik = TMAX.

Thus, the inequality is always valid when a given copy is not allocated. The calculation of the distances

between consecutive copies of each symbol is described by constraints (10), while constraint (11) ensures that

the maximum length of the feasible sequences is less than or equal to TMAX. Finally, constraints (12)–(14)

are the domain constraints of the variables of the model.

According to the CSP definition, the number of copies of each symbol in the sequence is not known a

priori, which makes the definition of the maximum number of allowed of copies of each symbol, i.e., Mi, for

i = 1, . . . , n a step in the model decision process. It these values are overestimated, some copies are not used,

i.e., they are allocated to the available positions.

To illustrate the relationship between the main components of the model, consider the set of symbols

X = {1, 2, 3, 4, 5}, with priorities c1 = 10, c2 = 9, c3 = 8, c4 = 7, c5 = 6,Mi = 5,∀xi ∈ X, and TMAX = 15.

An optimal solution to this instance is shown in Figure 2, highlighting the distances between the copies of

symbol 1.

�������

� � � � � � � � � � � �

������

������

Figure 2: Optimal sequence for the set of symbols X = {1, 2, 3, 4, 5}, with priorities c1 = 10, c2 = 9, c3 = 8, c4 = 7, c5 = 6,
maximum number of copies Mi = 5, ∀xi ∈ X, and TMAX = 15.

Since the number of allocated copies is less than the maximum for all the symbols, the position of some

copies is zero. Hence, the copies of symbol 1, in ascending order, occupy the positions 1, 5, 9, 0, 0, respectively.

Note that the distances treated in the first part of the model are limited to a single cycle, and the distances

between the last copy of each symbol of a cycle and the first of the next cycle are not considered. Such

distances between cycles are part of the CSP definition because they are responsible for the cyclical nature

of the problem. Figure 3 shows the optimal solution of Figure 2, emphasizing the notion of cycles and the

distance between copies belonging to different consecutive cycles.

Variables and constraints involved in calculating the distances between copies from different cycles are

described below.

6 G–2017–37 Les Cahiers du GERAD

������

��������

Figure 3: Notion of cycles and distance between the last copy of symbol 1 of cycle t and the first of cycle t+ 1.

Wi Distance between the last allocated copy of a cycle and the first copy of the next cycle of symbol xi ∈ X.
Ui Sequence length plus the distance from the beginning of the sequence to the first copy of symbol xi ∈ X.
Ri Distance between the beginning of the sequence and the last allocated copy of symbol xi ∈ X.

αik, wik Auxiliary variables for finding the last unallocated copy of symbol xi ∈ X.

Di ≥Wi, ∀i = 1, . . . , n, (15)

Wi = Ui −Ri, ∀i = 1, . . . , n, (16)

Ui =
∑

j:xj∈X

∑
k∈Kj

∑
h∈Hjk

yjkh + pi1, ∀i = 1, . . . , n, (17)

Ri =
∑
k∈Ki

αik, ∀i = 1, . . . , n, (18)

∑
k∈Ki

wik = 1, ∀i = 1, . . . , n, (19)

αik ≤ 1− wik + pik, ∀i = 1, . . . , n, ∀k ∈ Ki, (20)

αik ≤ wikTMAX, ∀i = 1, . . . , n, ∀k ∈ Ki, (21)

Wi, Ui, Ri, αik ≥ 0, ∀i = 1, . . . , n, ∀k ∈ Ki, (22)

wik ∈ {0, 1}, ∀i = 1, . . . , n, ∀k ∈ Ki. (23)

Constraints (15) include, in the set of distances between consecutive copies of symbols, the distances

between the last allocated copy from one cycle and the first of the next cycle, which are calculated by means

of constraints (16)–(21). The rationale behind it is presented in constraints (16), where Ui is the sum of the

total length of the sequence to be constructed and the distance between the beginning of the sequence and the

first copy of symbol xi, and Ri is the distance between the beginning of the sequence and the last copy of xi.

Figure 4 shows the representation of the sequence 2-1-5-3-1-5, emphasizing the subsequences corresponding

to variables U1, R1, and W1 in parts (a), (b), and (c), respectively. Variable Ui can be easily calculated by

means of constraints (17), whereas Ri is the major obstacle to finding Wi, because the position of the last

allocated copy of xi is not known initially. Constraints (18)–(21) calculate the distance between the beginning

of the sequence and the last allocated copy of symbol xi,∀xi ∈ X. They ensure that Ri =
∑
k∈Ki

αik is less

than or equal to the positions of the copies of xi. Since the model minimizes Wi,∀xi ∈ X, Ri is maximized,

i.e., it is raised to the highest position of a copy of xi (recall that unallocated copies have positions set to

zero). Non-negativity and integrality constraints on the problem variables, i.e., (22) and (23), respectively,

complete the model.

The large number of variables of the model is mainly due to the maximum number of copies of each

symbol, which constitutes the index set of several variables. The variables yikh, pik, di,k,k+1, αik, wik, for i =

1, . . . , n, k ∈ Ki, and h ∈ Hik, depend on the maximum number of copies Mi, as the index k is directly
linked to it. In Section 5 we present a mathematical programming model that yields good upper bounds for

Les Cahiers du GERAD G–2017–37 7�������

� � � � � � � � � � �

���

���

���

� � � � � � � � � � � �

� � � � � � � � � � � �

�

	
��� 	
�����

�� � �

�� � �

�� � �� � �� � �

Figure 4: Representation of the sequence 2-1-5-3-1-5 with emphasis on the subsequences corresponding to variables U1 (a),
R1 (b), and W1 (c).

the maximum number of used copies of each symbol, enabling that optimal solutions are obtained via exact

methods in much smaller computing times.

4 NP-hardness of the CSP

In this section, we show that the decision version of the CSP is NP-complete. The reduction is obtained from

the periodic maintenance scheduling problem [3], which can be defined as follows. Given n machines and

service intervals l1, l2, . . . , ln such that
∑n
i=1

1
li
≤ 1, does there exist an infinite maintenance service schedule,

in which consecutive services of machine i are spaced by exactly li time slots and no more than one machine

is serviced in a single time slot?

To align the two problems more closely, consider the decision version of the CSP. I.e., Given the set of

symbols X = {x1, . . . , xn} each having unit length, and priorities c1, c2, . . . , cn ∈ Z+, does there exist a finite

sequence of symbols whose largest product Pi = ciDi, associated to each xi ∈ X, is smaller or equal to B?

We show that a positive or negative answer to one of the questions above necessarily implies the same answer

to the other for a particular value of B. The following propositions form the foundation of the main result

of this section.

Proposition 1 Let S∗ be a CSP solution sequence of length T , and mi the number of used copies of symbol

xi ∈ X in S∗. The inequalities T ≤ Dimi always hold, for i = 1, . . . , n.

Proof. Let di,mi,1 be the distance between the last allocated copy of symbol xi of a cycle and the first

copy of xi in the next cycle. Assume that the distance between consecutive copies of xi is Di =

max {maxk=1,...,mi−1{di,k,k+1}, di,mi,1}. Then,

T =

mi−1∑
k=1

di,k,k+1 + di,mi,1 ≤
mi∑
k=1

Di = Dimi.

Corollary 1 If T ≤ Dimi, for i = 1, . . . , n, then
∑n
i=1

1
Di
≤ 1.

Proof. The inequalities to be analyzed are listed below:

T ≤ D1m1,

T ≤ D2m2,

...

T ≤ Dnmn.

8 G–2017–37 Les Cahiers du GERAD

Dividing both sides by their respective Di, the inequalities become

T

D1
≤ m1,

T

D2
≤ m2,

...

T

Dn
≤ mn.

Therefore,

T

(
n∑
i=1

1

Di

)
≤ T,

n∑
i=1

1

Di
≤ 1

Proposition 2 Let L = {l1, l2, . . . , ln} be a set of distances, whose lcm(l1, . . . , ln) is equal to B and∑n
i=1

1
li

= 1. The optimal solution f of a CSP instance with symbols X = {x1, . . . , xn} and priorities

ci = B
li

is then greater than or equal to B.

Proof. Let D = {D1, . . . , Dn} be the set of the largest distances of a feasible CSP solution. If f < B, then

Pi = ciDi < B, which implies Di < li, for i = 1, . . . , n. According to Corollary 1,
∑n
i=1

1
Di
≤ 1 is a necessary

condition for the set D to be schedulable. Since
∑n
i=1

1
li

= 1, if Di < li, for any symbol xi ∈ X,
∑n
i=1

1
Di

> 1,

resulting in an unschedulable set of distances. Consequently, Pi = ciDi ≥ B, for i = 1, . . . , n.

Proposition 3 Consider the CSP instance of Proposition 2. If f = B, all the distances between consecutive

copies of symbol xi are exactly Di,∀xi ∈ X.

Proof. Based on Proposition 2, if f = B, then Pi = B, for i = 1, . . . , n. Furthermore, Di = li and∑n
i=1

1
Di

= 1. Let S be a the considered solution sequence to the given instance. Supposing that its length

is T , a symbol xi ∈ X has at least mi =
⌈
T
Di

⌉
copies in S; otherwise, its largest distance would be greater

than Di. Assume that the number of copies is given by mi = T
Di

+ λi, where λi, for i = 1, . . . , n, is a

non-negative real number, and
∑n
i=1(TDi

+ λi) = T . Developing this equality we obtain(
T

D1
+ λ1

)
+

(
T

D2
+ λ2

)
+ · · ·+

(
T

Dn
+ λn

)
= T.

Dividing both sides by T , we have(
1

D1
+
λ1

T

)
+

(
1

D2
+
λ2

T

)
+ · · ·+

(
1

Dn
+
λn
T

)
= 1,

n∑
i=1

1

Di
+

n∑
i=1

λi
T

= 1.

As
∑n
i=1

1
li

= 1 and Di = li,
∑n
i=1

λi

T = 0. Knowing that λi is a non-negative real number, the last equality

holds if and only if λi = 0, FOR i = 1, . . . , n. Consequently,

T = Dimi, for i = 1, . . . , n. (24)

Les Cahiers du GERAD G–2017–37 9

Now, consider a symbol xi in S. Since xi has mi copies, the set of distances between its consecutive copies

has mi elements: di,1,2, . . . , di,mi−1,mi , di,mi,1. Because the sum of these distances is equal to T , if one of

them is less than Di, then T < Dimi, which contradicts (24). Thus, all the distances between consecutive

copies of symbol xi in S,∀xi ∈ X, must be exactly equal to Di.

Theorem 1 The Carousel Scheduling Problem is NP-hard.

Proof. Consider the following reduction from the periodic maintenance scheduling problem (PMSP). Given

an instance of the PMSP with n machines and service intervals l1, . . . , ln, such that
∑n
i=1

1
li
≤ 1, the

corresponding instance of the CSP has (n + t) symbols, where t 1
B = 1 −

∑n
i=1

1
li

and B = lcm(l1, . . . , ln),

such that
∑n
i=1

1
li

+
∑n+t
i=n+1

1
B = 1.The priorities of the symbols are given by ci = B

li
, i = 1, . . . , n, and cj = 1,

for j = n+ 1, . . . , n+ t, and the maximum length of the feasible sequences, TMAX, is equal to B. We show

that the PMSP has a solution if, and only if, the corresponding instance of the CSP has an objective value

smaller or equal to B.

(If) If the PMSP has a solution to the above instance, the distance between consecutive maintenance

services is exactly li, for i = 1, . . . , n. If
∑n
i=1

1
li

= 1, then t = 0, and any sequence of B symbols belonging

to the infinite solution sequence is also a solution to the CSP, whose distances between consecutive copies are

all equal to li = B
ci

and the objective value is P = cili = B, for i = 1, . . . , n. If
∑n
i=1

1
li
< 1, there are t time

slots not occupied by symbols in any interval of B slots. In this case, it suffices to place t distinct symbols

in such slots to reach a solution sequence for the CSP, whose objective value is exactly B.

(Only If) First, Proposition 2 shows that the solution value of the given CSP instance cannot be smaller

than B. Then, from Proposition 3, we can conclude that, if a solution to the considered CSP instance has an

objective value equal to B, all the distances between the consecutive copies of a symbol xi, for i = 1, . . . , n, are

equal to li. Further, if t ≥ 1, the only distance between consecutive copies of a symbol xj , j = n+1, . . . , n+ t,

is equal to B, since there is only one copy of this symbol in the sequence. Accordingly, disregarding the

symbols xj , for j = n+ 1, . . . , t, the sequence is a solution for the PMSP whose period is B.

5 Cuts

This section presents valid cuts for the CSP that aim to reduce the search space of the problem and hence

improve the performance of exact methods in searching for optimal solutions. The terminology used below

is based on the mathematical formulation described in Section 3.

Proposition 4 Let xr and xs be symbols of a CSP instance. There exists an optimal solution, where symbol xs
is placed in the first position of the solution sequence, i.e., ys11 = 1.

Proof. Assume that the symbol placed in the first position of an optimal solution S∗ is xr, i.e., yr11 = 1,

and the first copy of symbol xs is in position ps1 > 1. Let us consider a sequence S′, shifted to the

right in relation to S∗, such that the k-th copy of symbol xi, belonging to S∗, is placed in the position

p′ik = (pik + β) mod T,∀xi ∈ X,∀k ∈ Ki, where β = T − ps1 + 1 and T is the length of S∗. That solution is

also optimal to the considered instance with ps1 = 1.

Proposition 5 Consider a CSP instance with n symbols and such that ci ≥ ci+1, for i = 1, . . . , n− 1. There

exists an optimal solution to this instance in which Di ≤ Di+1

Proof. Let S∗ be an optimal sequence to the given instance. Suppose, without loss of generality, that the

objective value of S∗ is P ∗ = ciDi, and there exists a symbol xj in S∗ such that ci > cj and Di > Dj .

Exchanging the positions of symbols xi and xj in S∗, we have a sequence S′ with objective value P =

max{ciDj , cjDi} < ciDi = P ∗. Extending this result to the entire set of symbols, we obtain an optimal

sequence where Di ≤ Di+1, for i = 1, . . . , n− 1.

10 G–2017–37 Les Cahiers du GERAD

Proposition 6 Consider a CSP instance with n ≥ 2 symbols. There exists an optimal sequence in which there

are no copies of the same symbol placed in consecutive positions. Therefore, the constraints

yikh + yi,k+1,h+1 ≤ 1, ∀i = 1, . . . , n, ∀k ∈ K \ {Mi},∀h ∈ (Hik ∩Hi,k+1),

do not fully eliminate the set of optimal solutions of the CSP.

Proof. As n ≥ 2, Di ≥ 2, for i = 1, . . . , n, in any feasible solution. Let S∗ be an optimal solution whose

objective value is f∗. If there exist two copies of a symbol xi placed in consecutive positions, where D∗i ≥ 2,

one of them can be eliminated, generating a new sequence whose objective value is less than or equal to f∗.

Proceeding in this way, we can also generate an optimal sequence, possibly smaller, where there are no

consecutive copies of the same symbol placed in consecutive positions.

The set of cuts presented in the sequel were observed to be valid in all our computational results presented

in Section 7. Although intuitive, we were not able to provide a formal proof for it. For that reason, we present

it as a conjecture for future research and reference.

Conjecture 1 Consider a CSP instance with n symbols and such that ci ≥ ci+1, for i = 1, . . . , n− 1. There

exists at least one optimal solution to this instance such that mi ≥ mi+1, where mi is the number of used

copies of symbol xi, and such that∑
h∈Hi+1,k

yi+1,k,h ≤
∑
h∈Hik

yikh, ∀xi ∈ X \ {xn},∀k ∈ Ki+1.

Indeed, one of the main difficulties in solving the CSP is to establish valid values for the maximum number

of copies Mi of each symbol xi ∈ X so as to reduce the number of variables of the problem indexed by Ki.

The maximum length of the feasible sequences is a trivial upper bound to those values. However, since such

a value is used as an index of several variables, the total number of variables would be extremely large.

Based on Proposition 6 and the imposition that each symbol must have at least one copy in the solution

sequence, a slightly better value is Mi = min{TMAX
2 , TMAX − (n− 1)}, for i = 1, . . . , n. Nevertheless, our

experiments showed that this is not enough to allow CSP resolution via exact methods. The result below

concerns obtaining more accurate values for the maximum number of copies Mi of each symbol xi ∈ X.

Proposition 7 Let X = {x1, . . . , xn} be a set of symbols such that c1 ≥ · · · ≥ cn. The maximum number of

copies Mi∗ , for some x∗i ∈ X, can be made equal to ρi∗ , where

ρi∗ = Maximize mi∗ (25)

s.t. P ≥ ciDi, ∀i = 1, . . . , n, (26)

Di ≤ Di+1, ∀i = 1, . . . , n− 1, (27)

T ≤ miDi, ∀i = 1, . . . , n, (28)

T =
∑
i∈X

mi, ∀i = 1, . . . , n, (29)

mi ≥ 1, ∀i = 1, . . . , n, (30)

T ≤ TMAX, (31)

P,Di, T,mi ≥ 0, ∀i = 1, . . . , n. (32)

Proof. The objective function (25) aims to maximize the number of copies of symbol x∗i ∈ X. Constraints (26)

make P larger than all the products between a symbol priority and the largest distance between two of its

consecutive copies. Constraints (27) and (28) consist of the results presented in Propositions 5 and 1,

respectively. Constraints (29) state that T is equal to the total number of copies used by the whole set of

Les Cahiers du GERAD G–2017–37 11

symbols, while constraints (30) impose that at least one copy of each symbol be used. Let Q be the polyhedron

related to constraints (26)–(32). Since constraints (26)–(32) are all valid for the CSP, every solution for the

CSP is feasible in Q. Consequently, a projection of Q onto the subspace defined by the variables of the CSP

is a relaxation for it.

The proof above also allows to conclude that if (25) is replaced by (1), a lower bound for the CSP is

obtained. Although model (25)–(32) is able to provide valid values for the maximum number of copies of

each symbol xi ∈ X, there is no guarantee of their quality. Indeed, the use of an upper bound solution value

f for the CSP problem can improve the quality of the values obtained by the model. For that purpose, it

suffices to add the inequality

P ≤ f. (33)

The closer f is with respect to the CSP optimal solution, the better the accuracy achieved for the maximum

number of copies Mi of each symbol xi ∈ X. Model (25)–(33) is called MNCi∗ (maximum number of copies)

thereafter in the text, where i∗ stands for the index of the target symbol.

6 Solution method

Algorithm 1 describes our iterative exact method to solve the CSP. The input parameters for the algorithm

are: X, the set of symbols, c : X ← Z+, the priority function, TMAX, the maximum length of the sequence,

a real value ∆, 0 < ∆ < 1, and itmax that represents the maximum number of allowed iterations of the

algorithm. The idea behind the algorithm is to solve the CSP model, described in Section 3, with much less

variables indexed by Mi, for i = 1, . . . , n.

Algorithm 1 Exact method for the CSP problem

1: procedure CSPSolver(X, c, TMAX,∆, itmax)
2: LB ← value of (1) subject to (26)–(32)
3: f ← LB + LB ×∆
4: for it = 1 to itmax do
5: for i = 1 to n do
6: Mi ← result of MNCi

7: end for
8: solve CSP with cut P ≤ f
9: if (the optimal solution was found) exit

10: f ← f + LB ×∆
11: it← it+ 1
12: end for
13: end procedure

Initially, a valid lower bound LB is obtained in line 2 and an initial estimate for the CSP solution f is

calculated in line 3. Then, the loop of lines 4-12 is repeated for at most itmax iterations. In the inner loop

of lines 5-7, the maximum number of copies Mi is calculated for each symbol xi ∈ X, with f as the current

value for inequality (33). Next, at line 8, the CSP model is solved using Mi as the maximum value in set Ki,

for i = 1, . . . , n, and cut P ≤ f which can make the problem possibly infeasible. If that does not occur, the

optimal CSP solution was found and the algorithm terminates. Otherwise, f is increased in line 10 and the

iteration is incremented in line 11. The algorithm is guaranteed to find an optimal solution whenever itmax

is set to
⌈
cmax×n−LB

LB×∆

⌉
, where cmax is the largest priority value among all symbols.

Indeed, iterations are each time longer to execute. This is due to the fact that as f increases, the values

Mi likely increase too, which increases, in turn, the number of variables for the CSP model. Consequently,

the value of ∆ plays an important role in the algorithm. On the one hand, small ∆ values may result in

many iterations without changing considerably the Mi values to turn feasible the CSP instance. On the

other hand, large ∆ values may increase too much the Mi values making the CSP problem very expensive

to compute in each iteration, and thus, directly affecting the performance of our algorithm.

12 G–2017–37 Les Cahiers du GERAD

7 Computational experiments

Our experiments are designed to assess the performance of Algorithm 1 on different instances. The MILP

model was solved with CPLEX 12.6 as well as the NLP models solved in lines 2 and 6 of Algorithm 1 which

were linearized via binary expansion of variables (see e.g.[13]). The experiments were carried out on an Intel

Core I7 with 1.9 GHz and 6 GB of RAM, running Ubuntu 14.04 LTS operation system. The time limit for

the execution of each instance was set to one hour of CPU time. All the reported computational times in

the following tables are given in seconds.

First, we describe the instances used in our experiments. Then, we analyze the impact of the cuts

presented in Section 5. Next, we discuss the results obtained from the execution of the iterative solution

method of Section 6. Finally, the last set of experiments aims to compare the performance of the different

exact approaches for the CSP solution.

7.1 Instances

We generated 90 instances grouped into 18 classes according to the number of symbols (n) and the maximum

length of the sequences (TMAX). We considered instances with 5, 7, 9, 11, 13, and 15 symbols, and TMAX

equal to 2n, 3n, and 4n. For each pair (n, TMAX), five distinct instances were generated by assigning

random priorities to each symbol in the interval [1, 2n]. The name of the classes follows the following format:

class n TMAX. Thus, class 5 15 denotes the class of instances with five symbols and TMAX = 15.

All the instances are available online at https://sites.google.com/site/carouselschedulingproblem/

instances.

7.2 Impact of the cuts

In this section, we analyze the impact of the cuts presented in Section 5 on solving the CSP model of Section 3

directly via a MILP solver. These cuts are derived from Propositions 3, 4, 5, and Conjecture 1. They are

named c1, c2, c3, and c4, respectively. The reported experiments evaluate the addition of one set of cuts at a

time to the CSP model. Thus, each instance is solved four times, one for each set of cuts. We report results

on classes of instances in which at least one of its instances is solved to optimality by the use of a set of cuts

alone. Further, we do not present results for class (class 5 10) as its instances are solved too quickly.

In Table 1, NC is the sum of the maximum numbers of copies of each symbol, i.e., the trivial value⌈
TMAX

2

⌉
as calculated from Proposition 6. CSP refers to the CSP model presented in Section 3 without

none of the proposed cuts, CSP c1 to CSP c4 concern the CSP model with the addition of cuts c1 to

c4, individually, and CSP C corresponds to the CSP model with the addition of all cuts. Column Time

contains the average time to solve the instances of the classes considered. The label TL (Time Limit) is used

whenever at least one of the instances of the class is not solved in one hour of allowed CPU time. Finally,

the Gap column presents the average relative difference (in %) between the best avegare solution values and

lower bounds reported at the end of CPLEX executions.

Table 1: Comparison of CSP models enhanced by the proposed cuts.

CSP CSP c1 CSP c2 CSP c3 CSP c4 CSP C

Class NC Time Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time Gap(%)

class 5 15 40 73.93 0.00 22.01 0.00 104.42 0.00 50.29 0.00 19.09 0.00 6.26 0.00
class 5 20 50 1161.71 0.00 330.73 0.00 1268.57 0.00 154.86 0.00 326.95 0.00 92.59 0.00
class 7 14 49 23.57 0.00 9.39 0.00 20.54 0.00 20.39 0.00 10.63 0.00 2.68 0.00
class 7 21 77 TL 10.63 TL 9.24 TL 11.44 TL 2.69 668.48 0.00 148.51 0.00
class 9 18 81 TL 4.63 TL 4.00 TL 2.87 TL 5.55 329.03 0.00 38.59 0.00
class 11 22 121 TL 11.87 TL 5.67 TL 10.74 TL 11.06 TL 2.11 148.32 0.00

The results show a significant improvement of model CSP C over model CSP. The total computational

time spent was considerably cut. If we consider only the classes for which all instances were solved to

https://sites.google.com/site/carouselschedulingproblem/instances
https://sites.google.com/site/carouselschedulingproblem/instances

Les Cahiers du GERAD G–2017–37 13

optimality using both models, the average computing times were reduced by a factor of 11. Moreover, the

joint use of the cuts in model CSP C allowed to solve all the tested instances of the referred classes to

optimality.

7.3 Solution method results

Algorithm 1 was tested on all instances with ∆ = 0.05 after limited computational experiments. Since

the cuts discussed in the previous section improved the CSP performance, we included them into the CSP

formulation solved within our solution method. All results presented in the current section correspond to

average solution values obtained for the instances of each class.

In Table 2, NC denotes the sum of the maximum numbers of copies of each symbol obtained from model

MNC, LB denotes the lower bound value LB obtained in line 2 of Algorithm 1, BS is the best solution found

for the CSP by our iterative solution method, and Gap is the gap (in percentage) between the best solution

and the lower bound found by CPLEX in the last iteration of the algorithm. This value is actually zero

whenever the instance is solved to optimality. Column LB Time is the time spent on computing LB, MNC

Time is the time spent on solving MNC, and Total Time is the total CPU time of Algorithm 1. The label

TL is used whenever at least one instance of a class is not solved to optimality. Column NE corresponds to

the number of times that the CSP formulation was solved in line 8 of Algorithm 1. Finally, NS indicates the

number of instances not solved to optimality within the time limit of 1 hour, except for instances class 13 52

and class 15 60 for which the algorithm was allowed to run for five hours in order to obtain at least one CSP

feasible solution in all instances of the class.

Table 2: Solution method results.

IC NC LB BS
Gap
%

LB
Time

MNC
Time

Total
Time

NE NS

class 5 10 10.20 39.60 39.60 0.00 0.22 0.28 0.65 1.00 0
class 5 15 16.20 32.40 34.40 0.00 0.32 0.32 2.00 1.60 0
class 5 20 24.00 29.00 32.20 0.00 0.14 0.54 30.78 2.20 0
class 7 14 14.00 55.40 55.40 0.00 0.28 0.47 0.84 1.00 0
class 7 21 22.20 61.20 62.40 0.00 0.42 0.99 7.04 1.00 0
class 7 28 33.40 63.20 64.80 0.00 0.40 2.05 150.24 1.00 0
class 9 18 19.80 115.60 115.60 0.00 0.33 1.01 1.64 1.00 0
class 9 27 30.40 101.40 101.40 0.00 0.37 3.36 35.33 1.00 0
class 9 36 44.60 87.00 88.20 0.00 0.35 4.26 448.68 1.00 0
class 11 22 24.40 161.40 161.40 0.00 0.25 1.74 3.43 1.00 0
class 11 33 38.20 139.20 139.20 0.00 0.36 5.91 49.00 1.00 0
class 11 44 52.60 149.00 150.40 0.87 0.55 8.74 TL 1.00 1
class 13 26 28.60 215.40 215.40 0.00 0.24 2.49 4.77 1.00 0
class 13 39 46.40 218.40 218.40 0.00 0.40 7.83 404.49 1.00 0
class 13 52 67.60 187.40 191.80 2.51 0.74 13.18 TL 1.20 2
class 15 30 33.60 336.20 336.20 0.00 0.20 4.66 8.58 1.00 0
class 15 45 56.40 301.20 302.20 0.31 0.64 10.07 TL 1.00 1
class 15 60 81.40 286.60 303.00 5.31 0.85 17.38 TL 1.00 5

From a total of 90 instances, 81 were solved to optimality within the allowed limit. Instances with up

to 9 symbols were all optimally solved regardless of the TMAX value. Further, our solution method solved

to optimality 93.33%, 86.67%, and 60% of the instances with 11, 13, and 15 symbols, respectively. For

TMAX = 2n, 3n, 4n, the algorithm was able to obtain optimal solutions in 100%, 96.67%, and 73.33% of

the instances, respectively.

As expected, the performance of the solution method decreases rapidly with the increase of NC due to

the exponential character of the branch-and-bound algorithm. Up to 50 copies, the solution method solved

all instances. Above this, the solution method had difficulties to found optimal solutions. The maximum

number of copies of an instance solved to optimality was 60.

The results showed that LB values are not far from the best solution values found, max. ≈ 11% and on

avegare 1.8%, which demonstrates the quality of the bounds obtained in line 2 of Algorithm 1. Consequently,

14 G–2017–37 Les Cahiers du GERAD

the big majority of the instances was solved with only one iteration of our solution method. More details

about our experiments can be found at https://sites.google.com/site/carouselschedulingproblem/

computational-experiments.

7.4 Comparison between the proposed methods

Our last set of experiments compares our solution method with the branch-and-cut algorithm used by CPLEX

for solving MILP problems such as the CSP. Table 3 and 4 present results on the basis of three performance

metrics: CPU times (Time), best CSP solution values (BS), and number of instances not solved to optimality

in each class (NS). The CSP C column refers to the solution via CPLEX of the CSP model enhanced by the

cuts presented in Section 5, and SM refers to the CSP solution via our iterative solution method. Table 3 is

restricted to the classes of instances for which all of its instances were solved to optimality by both methods

in one hour.

Table 3: Average CPU times obtained by CPLEX on solving model CSP C and those obtained by SM.

Time

IC CSP C SM

class 5 10 0.24 0.65
class 5 15 6.26 2.00
class 5 20 92.59 30.78
class 7 14 2.68 0.84
class 7 21 148.51 7.04
class 9 18 38.59 1.64
class 9 27 802.90 35.33
class 11 22 148.32 3.43
class 13 26 1165.41 4.77
class 15 30 1242.89 8.58

We clearly notice in Table 3 that our iterative solution method SM outperforms CPLEX in general,

except for the smallest used instances in class 5 10. For these instances, the number of variables in the CSP

formulation is not large enough to justify the use of our iterative method. In contrast, the cutoff attains a

factor of approximately 245 for class 13 26.

Table 4: BS and NS results obtained by CPLEX on solving CSP C and SM.

CSP C SM

IC BS NS BS NS

class 7 28 65.20 3 64.80 0
class 9 36 98.00 5 88.20 0
class 11 33 142.00 4 139.20 0
class 11 44 179.00 5 150.40 1
class 13 39 246.80 5 218.40 0
class 13 52 223.20 5 191.80 2
class 15 45 379.00 5 302.20 1
class 15 60 388.80 5 303.00 5

Table 4 focus on the remaining class of instances. CPLEX and our iterative algorithm was allowed to run

for five hours for the instances of the classes class 13 52 and class 15 60 so that it could obtain at least one

feasible CSP solution. Regarding CSP solution values, those obtained by SM are on average approximately

12% better than those obtained via CPLEX, reaching a peak of 22% of improvement for the class class 15 60.

In general, considering all classes of instances, SM allowed to solve more instances to optimality given the

established time limit of one hour: 81 against 53 by CPLEX while directly solving model CSP C.

https://sites.google.com/site/carouselschedulingproblem/computational-experiments
https://sites.google.com/site/carouselschedulingproblem/computational-experiments

Les Cahiers du GERAD G–2017–37 15

8 Conclusions

In this paper, we introduced the Carousel Scheduling Problem (CSP), a new optimization problem that has

a wide spectrum of applications, ranging from task scheduling in real-time systems to automobile production

on a mixed-model assembly line. We showed that the CSP problem is NP-hard and presented its formulation

based on mixed-integer linear programming. Since the number of variables of the problem increases rapidly

with the input size, we developed cuts that reduce the search space of the problem by eliminating symmetries

and feasible regions, but preserving at least one optimal solution. As a result, we significantly improved

the efficiency of the formulation. In addition, we developed a mathematical model that provides good lower

bounds for the problem. All these improvements were put together and resulted in an efficient iterative exact

method to solve the CSP which outperforms its solution via CPLEX.

To carry out the experiments we created a set of benchmark instances that will be used as a reference in

the future. Some instances could not be solved optimally within the time limit, which establishes a frontier

to future works. In this way, future research may focus on designing heuristic and metaheuristic procedures

as well as hybrid methods mixing exact and heuristic approaches. Moreover, exact methods can still be

proposed over ours with the development of new branch-and-bound algorithms exploring the polytope of the

CSP problem.

References
[1] Shoshana Anily, Celia A. Glass, and Refael Hassin. The scheduling of maintenance service. Discrete Applied

Mathematics, 82(1):27–42, 1998.

[2] K.R. Baker. Introduction of Sequencing and Scheduling. Wiley, 1974.

[3] Amotz Bar-Noy, Randeep Bhatia, Joseph (Seffi) Naor, and Baruch Schieber. Minimizing service and operation
costs of periodic scheduling. Math. Oper. Res., 27(3):518–544, August 2002.

[4] Amotz Bar-Noy and Richard E. Ladner. Windows scheduling problems for broadcast systems. SIAM J. Comput.,
32(4):1091–1113, 2003.

[5] S. K. Baruah, N. K. Cohen, and D. A. Plaxton, C. G.and Varvel. Proportionate progress: A notion of fairness
in resource allocation. Algorithmica, 15(6):600–625, 1996.

[6] Albert Corominas, Wieslaw Kubiak, and Natalia Moreno Palli. Response time variability. Journal of Scheduling,
10(2):97–110, 2007.

[7] Albert Corominas, Wieslaw Kubiak, and Rafael Pastor. Mathematical programming modeling of the response
time variability problem. European Journal of Operational Research, 200(2):347–357, 2010.

[8] Tanka Nath Dhamala and Wieslaw Kubiak. A brief survey of just-in-time sequencing for mixed-model systems.
International Journal of Operations Research, 2(2):38–47, 2005.

[9] Alberto Garćıa-Villoria, Albert Corominas, Xavier Delorme, Alexandre Dolgui, Wieslaw Kubiak, and Rafael
Pastor. A branch and bound algorithm for the response time variability problem. Journal of Scheduling,
16(2):243–252, 2013.

[10] A. Garca-Villoria and S. Salhi. Scheduling commercial advertisements for television. International journal of
production research, 53(4):1198–1215, Oct 2014.

[11] Alberto Garca-Villoria and Rafael Pastor. Solving the response time variability problem by means of a genetic
algorithm. European Journal of Operational Research, 202(2):320–327, 2010.

[12] Alberto Garca-Villoria and Rafael Pastor. Minimising maximum response time. Computers & Operations
Research, 40(10):2314–2321, 2013.

[13] Oktay Günlük, Jon Lee, and Janny Leung. A Polytope for a Product of Real Linear Functions in 0/1 Variables,
pages 513–529. Springer New York, New York, NY, 2012.

16 G–2017–37 Les Cahiers du GERAD

[14] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance-constrained scheduling and its applications to
real-time systems. IEEE Trans. Computers, 45(7):814–826, 1996.

[15] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-time scheduling problem. In
22nd Hawaii International Conference on System Sciences, Kailua-Kona, pages 693–702, 1989.

[16] Kenyonand and Schabanel. The data broadcast problem with non-uniform transmission times. Algorithmica,
35(2):146–175, 2003.

[17] Eun-Seok Kim and Celia A. Glass. Perfect periodic scheduling for three basic cycles. Journal of Scheduling,
17(1):47–65, 2014.

[18] Wieslaw Kubiak. Fair sequences. In In Handbook of Scheduling: Algorithms, Models and Performance Analysis,
Leung, J.Y-T., editor, Chapman & Hall/CRC, Boca, 2004.

[19] J. Miltenberg. Level schedules for mixed-model assembly lines in just-in-time production systems. Management
Science, 35(2):192–207, February 1989.

[20] Steven Morris. Interactive TV standards: a guide to MHP, OCAP, and JavaTV. Elsevier, San Diego, CA, 2005.

[21] C. A. Waldspurger and E. Weihl. W. Stride scheduling: Deterministic proportional- share resource management.
Technical report, Cambridge, MA, USA, 1995.

	Introduction
	Literature review
	Problem formulation
	NP-hardness of the CSP
	Cuts
	Solution method
	Computational experiments
	Instances
	Impact of the cuts
	Solution method results
	Comparison between the proposed methods

	Conclusions

