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A. Rimélé, M. Gamache,
R. Dimitrakopoulos

G–2017–34

Mai 2017
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Université du Québec à Montréal, as well as the Fonds de recherche du
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H3C 3A7

michel.gamache@polymtl.ca

roussos.dimitrakopoulos@mcgill.ca

Mai 2017

Les Cahiers du GERAD

G–2017–34

Copyright c© 2017 GERAD



ii G–2017–34 Les Cahiers du GERAD

Abstract: Long-term open pit mine scheduling is generally assessed with a mixed integer programming (MIP)
formulation which can be solved with different operations research techniques. To be closer to the reality of
the exploitation, a model can, for instance, take into account a substantial number of blocks to represent the
ore body, include several destinations, or consider the uncertainty of the geology with a stochastic formula-
tion. The inherent complexity of such a model becomes too great to obtain an optimal solution or even a
good feasible solution within a reasonable computational time. This paper first proposes several strategies to
facilitate the resolution of such an MIP by reducing the number of binary variables. To do so, no assumptions
are made over the final result; only a relaxation of binary constraints over a special pattern is considered. A
fast heuristic method, defined as a stochastic topological sorting method, is also developed and provides a
proof of optimality. The proposed methods are tested on a real case study and provide results within 2% of
optimality after 12 minutes and down to 0.3% if a longer running time is allowed.

Keywords: Open pit mining, long-term production scheduling, stochastic optimization, topological sorting,
partial relaxation, heuristic method
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A realistic forecast of the long-term production is required to evaluate the viability of an open pit mining project. Due 

to major costs of infrastructure and investments, lower revenues than expected or only delayed returns on investment 

can compromise all the project and even cause the bankruptcy of the company. Operations research is traditionally 

used to deal with all kinds of production prediction problems, and mine planning is one of them. Several MIP models 

have been developed over the last decades, see Ramazan and Dimitrakopoulos (2004) or Newman et al. (2010), for 

instance. In these models, the ore body is usually discretized into mining blocks and the objective of the optimizer is 

to schedule the extraction of the blocks in an optimal most profitable way, which is maximising the net present value 

over the life of mine. Johnson (1968) was among the first to propose a linear program to optimize the blocks extraction, 

but the linearity of its model resulted in partial extractions which could prove to be unfeasible. Gershon (1983) 

formulated a MIP model but the computational requirements limited its use. Dagdelen (1985) solved the MIP model 

with a Lagrangian relaxation but, again, could not guarantee feasibility. Since then, many improvements and good 

quality heuristic methods have appeared in the literature. Ramazan and Dimitrakopoulos (2004) successfully reduced 

the number of binary variables, major source of complexity, to facilitate the resolution. Cullenbine et al. (2011) 

proposed a sliding time window heuristic method which gave solutions within 2% of optimality. Several methods using 

aggregations of blocks have also been introduced. Ramazan et al. (2005) proposed what they call fundamental trees, 

which are aggregations of blocks with respect to the slope constraints and the similarities of the blocks’ values. Boland 

et al. (2009) presented a method that schedules the aggregates but defines the processing at the block level. Although 

efficient, drawback of aggregating blocks is the way blocks are grouped, which is a strong assumption that constrains 

greatly the solution space, misrepresents mining selectivity and provides misleading results. Chicoisne et al. (2012) 

presented a topological sort based heuristic that is used as a basis of the final algorithm of this paper. The authors first 

efficiently solve the linear relaxation of a simplified model (without, for instance, blending constraints) with a 

decomposition method they call critical multiplier algorithm. Then, they use the obtained fractional schedule as an 

input for a topological sorting algorithm. Finally, they refine the solution with a local search algorithm defined as a 

descent method over subsets of blocks. All these methods are deterministic, as they do not account for uncertainty, but 

they are still widely used in the industry. Furthermore, many commercial schedulers use similar methods (GeoVia 

Whittle Strategic Mine Planning). Nonetheless, in reality the geological data is far from being known with certainty. 

It comes from drill holes which have to be sparse because of the dimensions of the deposits and the considerable 

drilling costs. From this data, average interpolations, named estimations (such as kriging), are conducted to attribute 

to each block its characteristics. These estimations tend to smooth the grades and do not represent the extreme values 

or the unavoidable uncertainty, which mislead the mine planning optimization. That’s why a new stochastic approach 

has been developed for two decades; see a review in Dowd (1994); Ramazan and Dimitrakopoulos (2004); 

Dimitrakopoulos and Godoy (2006); and Dimitrakopoulos (2011). In this risk-based approach, equiprobable simulated 

realizations of the ore body are generated and used as an input for the mine scheduling. A stochastic conditional 

simulation can be defined as a “Monte Carlo technique which represents the in-situ ore body grade and material type 

variability”, Dimitrakopoulos (1998). More details can also be found in Goovaerts (1997). The information provided 

by the simulations about the grade variability allows managing the risk while maximising the net present value (NPV). 

Dimitrakopoulos and Ramazan (2008) proposed a Stochastic Integer Programming (SIP) model for the open pit mine 

scheduling which was then used several times and has proven its efficiency. Compared to a deterministic approach, 

the stochastic approach consistently increases the NPV (up to 25% see Dimitrakopoulos 2011, Ramazan et al. 2013, 

Spleit 2014) and controls better the risk of getting a poor quality production over the set of simulations. Of course, 

solving such models is even harder than for the deterministic case, and exact methods become unpractical when dealing 

with instances of realistic size. Several methods have been developed. Among them, we find again the use of blocks 

aggregation (Menabde, 2004) as well as several metaheuristic methods. Metaheuristic methods do not rely on usual 

operation research solvers but generally start from an initial solution and modify it, allowing temporary deterioration 

of the objective function. Some metaheuristics have managed to tackle very large instances but their performance 

depends on the computational time allowed and the definition of many parameters as well as the generation of an initial 

solution. Lamghari et al. (2012) developed a tabu search method. Montiel et al. (2015) and Goodfellow et al. (2015) 

both used on simulated annealing, combined with particle swarm optimisation and differential evolution for the second 

to address stochastic mining complexes. Gilani and al. (2016) applied an ant colony optimization algorithm. Lamghari 

et al. (2016) presented a progressive hedging method, a scenario-based decomposition technique, hybridized with a 

sliding time window heuristic. 

 

In this work, an SIP model is solved. To reduce the computational time, the solution approach takes advantage of 

the special structure of the problem. The optimisation of the problem is performed using the commercial solver Cplex 

(CPLEX User’s Manual V12R6 2014, CPLEX Parameters References V12R6 2014) and does not require neither an 



 

initial solution nor strong assumptions such as aggregates. The obtained intermediate solution, not fully binary, is then 

refined. The resulting global method aims to rapidly produce a near-optimal. In what follows, we first present the 

general Open pit Mine Planning Stochastic Integer Program (OMPSIP) based on Dimitrakopoulos and Ramazan’s 

(2008, 2013) and Spleit’s (2014) formulations. Then, two strategies of acceleration are proposed, both aiming to reduce 

the number of binary variables using the strong intercorrelations between the blocks. The first strategy relaxes variables 

over a special alternate pattern which simplifies the resolution, while still providing an almost binary solution. The 

second strategy iteratively selects exclusive sets of variables on which binary constraints are applied with the previous 

pattern, in order to converge toward a binary solution without any loss of optimality. Finally, a fully binary scheduling 

algorithm is presented as a stochastic topological sorting on the precedence digraph and weighted by the previous 

partial schedules obtained. The methods are tested on a case study, a real iron ore deposit owned by the industrial 

partner. Computational results are presented in Section 5.3 and are followed by conclusions. 

 

This part first presents the SIP model and two computational acceleration strategies. Then, the main algorithm is 

detailed. 

 

Diverse sets, indices, and parameters, widely used in the proposed Open pit Mine Planning Stochastic Integer 

Programming (OMPSIP) formulation are described below. 

 

Sets and corresponding indices 

ℬ = {𝑖 = 1,… , 𝑁}  Set of blocks in the ore body; 

𝒫 = {𝑝 = 1,… , 𝑃}  Set of considered periods for the schedule; 

𝒟 = {0, 1}  Set of destinations available for the blocks where 0 represents the waste dump and 1 the 

mill; 

𝒮 = {𝑠 = 1,… , 𝑆} Set of scenarios (equiprobable ore body stochastic simulations); 

𝒞 = 𝒞1 ∪ 𝒞2  Set of blocks’ characteristics, 𝒞1 = {𝑐1 = 1,… , 𝐶1} linear metallurgical characteristics (e.g. 

tonnages and trucks hours), 𝒞2 = {𝑐2 = 1,… , 𝐶2} nonlinear characteristics (grades); 

𝐺(ℬ, 𝐴) Oriented graph representing the precedence relationships between blocks. On Figure 1, 
(𝑏, 𝑒) ∈ 𝐴 which means that block 𝑏 ∈ ℬ is a predecessor of block 𝑒 ∈ ℬ; 

 

Figure 1 Precedence relationships between blocks 

Γ𝑖
+ = {𝑏 ∈ ℬ; (𝑖, 𝑏) ∈ 𝐴}  Set of direct successors of block 𝑖. On Figure 1, Γ𝑏

+ = {𝑑, 𝑒, 𝑓}; 
Γ𝑖
− = {𝑎 ∈ ℬ; (𝑎, 𝑖) ∈ 𝐴}  Set of direct predecessors of block 𝑖. On Figure 1, Γ𝑒

− = {𝑎, 𝑏, 𝑐}; 
Γ𝑖
−𝑇𝑜𝑡 Set of the all cone of predecessors of block 𝑖. On Figure 1,  Γ𝑒

−𝑇𝑜𝑡 = {𝑎, 𝑏, 𝑐} ∪
 Γ𝑎
−𝑇𝑜𝑡 ∪  Γ𝑏

−𝑇𝑜𝑡 ∪  Γ𝑐
−𝑇𝑜𝑡; 

𝒩(𝑖)  Set of neighbours of block 𝑖: typically blocks at the North, East, South and West 

on the same level and one block below; 

ℬ1/2  Subset of the ore body as a checked pattern defining one block on  two toward 

each direction (Figure 2 and Figure 3); 



 

 

Figure 2 Vertical section of the checked pattern ore body 

 

Figure 3 Case study checked pattern ore body 

Parameters 

𝑣𝑖,𝑑,𝑠  Economic value of block 𝑖 in scenario 𝑠 if it is sent to destination 𝑑; 

This economic value depends on several parameters: 

  𝑣𝑖,𝑑,𝑠 = {
−𝐸𝑤𝑎𝑠𝑡𝑒

𝑐𝑜𝑠𝑡 . 𝑡𝑖,𝑠 − 𝑇𝐻
𝑐𝑜𝑠𝑡 . 𝑇𝐻𝑖,𝑑      if 𝑑 = 0 ⇔ waste dump                  

𝑅𝑖 − 𝑃𝑐𝑜𝑛𝑐
𝑐𝑜𝑠𝑡 . 𝑐𝑜𝑛𝑐𝑖,𝑠 − 𝐸𝑜𝑟𝑒

𝑐𝑜𝑠𝑡 . 𝑡𝑖 − 𝑇𝐻
𝑐𝑜𝑠𝑡 . 𝑇𝐻𝑖,𝑑      if 𝑑 = 1 ⇔ mill

 

With: 

   𝑅𝑖  Revenue from selling the metal content of block 𝑖; 
   𝑐𝑜𝑛𝑐𝑖,𝑠  Concentrate tonnes of block 𝑖 in scenario 𝑠, 𝑐𝑜𝑛𝑐𝑖,𝑠 ∈ 𝒞1; 

  Where:  

   𝑐𝑜𝑛𝑐𝑖,𝑠 = 𝑡𝑖,𝑠. 𝑅𝑒𝑐𝑖,𝑠 

   𝑅𝑒𝑐𝑖,𝑠  Weight recovery of block 𝑖 in scenario 𝑠, obtained from the simulation of

   the Davis Tube Weight Recovery (used in the case study); 

𝑷𝒄𝒐𝒏𝒄
𝒄𝒐𝒔𝒕   Processing cost of concentrate material per tonne; 

𝑬𝒐𝒓𝒆
𝒄𝒐𝒔𝒕  Extraction cost of ore material per tonne; 

𝑬𝒘𝒂𝒔𝒕𝒆
𝒄𝒐𝒔𝒕   Extraction cost of waste material per tonne; 

𝑻𝑯𝒊,𝒅  Truck hours needed to send the material of block 𝒊 to destination 𝒅; 

𝑻𝑯𝒄𝒐𝒔𝒕  Cost per truck hour; 

𝒕𝒊,𝒔  Tonnes of block 𝒊 in scenario 𝒔; 

𝒒𝒄𝟏,𝒊,𝒔  Quantity of characteristic 𝒄𝟏 of block 𝒊 in scenario 𝒔; 

𝒈𝒄𝟐,𝒊,𝒔  Grade 𝒄𝟐 in scenario 𝒔 of block 𝒊; 

𝒕𝒂𝒓𝒈𝒆𝒕𝒄,𝒑
±  Minimum (-) and maximum (+) targets of quantity or grade 𝒄 in period 𝒑; 

𝒑𝒆𝒏𝒄,𝒑
𝒅𝒆𝒗±  Penalty cost of deviation from the targets of quantity or grade 𝒄 in period 𝒑 (excess +, 

shortage -); 

𝒓 Discount rate taking into account the time value of money and the uncertainty of the future streams 

of cash flows; 

𝒅𝒑 =
𝟏

(𝟏+𝒓)𝒑−𝟏
 Discount factor; 

  

𝑖 ∉ ℬ1/2 

𝑖 ∈ ℬ1/2 



 

Variables 

Binary variables 

𝑥𝑖,𝑑,𝑝 = {
1 if block 𝑖 ∈ ℬ is sent to destination 𝑑 ∈ 𝒟 by period 𝑝 ∈ 𝒫
0 otherwise                                                                                           

; 

To simplify the notation, we set 𝒙𝒊,𝒅,𝒑=𝟎 = 𝟎, ∀𝒊 ∈ 𝓑, ∀𝒅 ∈ 𝓓. 

The expression “by period 𝑝 ∈ 𝒫” means that block 𝑖 was extracted prior to or at period 𝑝, formulation used to 

facilitate the branching during the solving process (Caccetta and Hill, 2003). 

 

Continuous variables 

𝒅𝒆𝒗𝒄,𝒑,𝒔
± ∈ ℝ+ Deviations from the targets in terms of characteristics 𝒄 ∈ 𝓒 for scenario 𝒔 ∈ 𝓢, during period 𝒑 ∈ 𝓟 

(excess +, shortage -); 

 

This section describes the OMPSIP formulation which will be used in the rest of the study. 

Objective function 

𝒎𝒂𝒙𝒁 =
𝟏

𝑺
∑∑∑∑𝒅𝒑. 𝒗𝒊,𝒅,𝒔. (𝒙𝒊,𝒅,𝒑 − 𝒙𝒊,𝒅,𝒑−𝟏)

𝒔∈𝓢𝒑∈𝓟𝒅∈𝓓𝒊∈𝓑

⏞                            
𝑷𝒂𝒓𝒕 𝟏

−∑∑∑𝒅𝒑. (𝒑𝒆𝒏𝒄,𝒑
𝒅𝒆𝒗+. 𝒅𝒆𝒗𝒄,𝒑,𝒔

+ + 𝒑𝒆𝒏𝒄,𝒑
𝒅𝒆𝒗−. 𝒅𝒆𝒗𝒄,𝒑,𝒔

− )

𝒔∈𝓢𝒑∈𝓟𝒄∈𝓒

⏞                                  
𝑷𝒂𝒓𝒕 𝟐

 

The objective function is a trade-off: 𝑃𝑎𝑟𝑡 1 aims at maximising the average profit, discounted cash flow (DCF), 

while 𝑃𝑎𝑟𝑡 2 minimizing the deviations, that is the risk associated with the geological uncertainty. Using this 

formulation, the expected result is a schedule robust to the set of simulations. This formulation accepts a lower average 

DCF to better control the risk. The application of the discount factor also delays the risk and favors the extraction of 

the most valuable blocks in the early periods. The latter is a key point for mining companies as they usually expect a 

fast return on their investment. 

Constraints 

Reserve constraints 
(1)          𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1 ≥ 0                                                                                                                   ∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫 

(2)          ∑ 𝑥𝑖,𝑑,𝑝
𝑑∈𝒟

≤ 1                                                                                                                                              ∀𝑖 ∈ ℬ, ∀𝑝 ∈ 𝒫 

 

The first set of constraints (1) specifies that a block extracted at a certain period is also defined as already extracted 

in the following periods. The set of constraints (2) states that a block can only be extracted once and sent to only one 

destination. 

 

Slope constraints 

(3)          ∑ 𝑥𝑖,𝑑,𝑝
𝑑∈𝒟

≤ ∑𝑥𝑗,𝑑,𝑝
𝑑∈𝒟

                                                                                                               ∀𝑖 ∈ ℬ, ∀𝑗 ∈ Γ𝑖
−, ∀𝑝 ∈ 𝒫 

 

A block 𝑖 is available for extraction only if all of its direct predecessors Γ𝑖
− have already been extracted or are 

extracted within the same period. This means that the block is reachable; i.e., without blocks above it and that the slope 

constraints for the stability of the walls are satisfied. 

 

Capacities constraints 

(4.1) Upper bound 

∑(𝑞𝑐1,𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

− 𝑑𝑒𝑣𝑐1,𝑝,𝑠
+  ≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑝

+                                                                ∀𝑐1 ∈ 𝒞1, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

(4.2) Lower bound 

∑(𝑞𝑐1,𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

+ 𝑑𝑒𝑣𝑐1,𝑝,𝑠
−  ≥ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑝

−                                                                ∀𝑐1 ∈ 𝒞1, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 



 

These two sets of constraints define soft constraints for the upper (4.1) and lower bound (4.2) on the quantities 

targets at each period and in each scenario. The variables 𝑑𝑒𝑣𝑐1,𝑝,𝑠
±  are used as buffers to allow deviations but are 

penalized in the objective function. 

 

Grade quality constraints 

(5.1) Upper bound 

∑(𝑔𝑐2,𝑖,𝑠. 𝑡𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

− 𝑑𝑒𝑣𝑐2,𝑝,𝑠
+ ≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐2,𝑝

+ .∑(𝑡𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

    ∀𝑐2 ∈ 𝒞2, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

(5.2) Lower bound 

∑(𝑔𝑐2,𝑖,𝑠. 𝑡𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

+ 𝑑𝑒𝑣𝑐2,𝑝,𝑠
− ≥ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐2,𝑝

− .∑(𝑡𝑖,𝑠. (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

    ∀𝑐2 ∈ 𝒞2, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

Similar to the capacities constraints, constraints (5.1) and (5.2) penalize excess and shortage of the average grade 𝑐2 

within one period.  

 

Extraction smoothing constraints 

(6)          ∑ 𝑥𝑖,𝑑,𝑝
𝑑∈𝒟

≤ ∑𝑥𝑗,𝑑,𝑝
𝑑∈𝒟

                                                                                                   ∀𝑖 ∈ 𝒫(ℬ), ∀𝑗 ∈ 𝒩(𝑖), ∀𝑝 ∈ 𝒫 

 

These operational constraints impose a continuous sequence of extraction in a way that the extracted blocks, at 

least within the same period, should be close to each other. We could penalize only nearby blocks not extracted 

together, but the case study considered in this paper justifies this stronger formulation in which we enforce the blocks 

on a checked pattern to be simultaneously extracted with its neighbours. 

 

Earliest period of extraction constraints 

(7)          𝑥𝑖,𝑑,𝑝 = 0                          ∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ {⋃ (𝑡 ∈ 𝒫; ∀𝑠 ∈ 𝒮, ∑ 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑡
+

𝑡

𝑡′=1

≤ ∑ 𝑞𝑐1,𝑗,𝑠
𝑗∈Γ𝑖

−𝑇𝑜𝑡∪{𝑖}

)

𝑐1∈𝒞1

} 

 

These last constraints, equivalent to an earliest start of a job, are optional. They eliminate variables to make the 

model easier to solve. The idea is that to reach a block 𝑖 by period 𝑝, at least all its full cone of predecessors Γ𝑖
−𝑇𝑜𝑡 

must be extracted. This cone plus the block 𝑖 represent a certain tonnage or quantity which can be compared to the sum 

of the quantity targets from the first period to period 𝑝. If this last tonnage is less than the one of the cone, it is 

impossible to reach 𝑖 by 𝑝, even in the most optimistic situation in which only the cone is mined. As a consequence, 

in such a case, the corresponding variables 𝑥𝑖,𝑑,𝑝 can be set to 0, which says that block 𝑖 will not be extracted at period 𝑝, 

without any loss of optimality. 

 

 

The main issue when solving this kind of SIP problem with commercial solvers like Cplex is the required 

computational time. Indeed, the larger the number of variables and constraints is, the more complicated it is to obtain 

an optimal solution. When binary variables are considered, the complexity gets much larger and even obtaining a 

reasonably good solution may be hopeless, unless the problem is decomposed and solved sequentially. The ideas 

developed in this section aim to precisely reduce the amount of binary variables in order to accelerate the solution 

process. Of course, the inherent goal is also to obtain a final result close to the initial formulation; i.e., extraction 

variables which must be binary.  

General assessment 

The precedence relationship between two blocks 𝒊 and 𝒋 strongly links their extraction variables 𝒙𝒊,𝒅,𝒑 and 𝒙𝒋,𝒅,𝒑. 

Directly from the slope constraints (3), the following expression is obtained: 



 

(8)          (∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫,      𝑥𝑖,𝑑,𝑝 = 1) ⇒ (∀𝑗 ∈ Γ𝑖
−𝑇𝑜𝑡 ,      ∑ 𝑥𝑗,𝑑,𝑝

𝑑∈𝒟

= 1) 

This leads to the idea that if one block 𝒊 is constrained to be binary then its extraction at period 𝒑 enforces all its 

predecessors to be fully mined too: all the corresponding extraction variables will be binary since, in practice, a block 

is sent to only one destination. 

Partial relaxation using an alternate checked pattern 

For a given mining block 𝑖, the reserve constraints (1) and (2) tighten the possible values if for a given period the 

extraction variables have to be binary. From this assessment comes this idea of enforcing the binarity of only one block 

on two toward each direction with an alternation between two consecutive periods as shown on Figure . 

 

Figure 4 Alternate checked pattern relaxation 

Formally, this can be defined as: 

(9)          𝑥𝑖,𝑑,𝑝 ∈ {
{0,1} if ((𝑖 ∈ 𝑃(𝐵) and 𝑝 𝑚𝑜𝑑 2 = 0) or (𝑖 ∉ 𝑃(𝐵) and 𝑝 𝑚𝑜𝑑 2 = 1))

[0,1] otherwise                                                                                                       
 ∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫 

 

This relaxation divides the number of binary variables by two while leading toward an almost binary result and 

without adding any constraints. 

 

Based on the above remarks, the following expression is obtained: 

(10)      (∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫,      𝑥𝑖,𝑑,𝑝 > 0) ⇒ (𝑥𝑖,𝑑,𝑝+1 = 1) 

 

It means than whenever a block has begun to be extracted (partially or fully), it has to be fully extracted by the next 

period. The definition of the extraction variables by Equation (9) reduces quite substantially the solution space. 

 

Then, the extraction variables corresponding to the waste destination 𝑥𝑖,𝑑=0,𝑝 can also be relaxed. A similar 

relaxation was proposed by Ramazan and Dimitrakopoulos (2004). The authors predefined the destination of each 

block based on its economic value and relaxed the extraction variables corresponding to blocks to be sent to the waste 

dump. The supportive idea is that a block sent to the waste dump is extracted only to access other profitable blocks 

below it. The solver has no interest in fractioning its extraction so binary values can be expected for these variables. 

When adding this new relaxation, the total amount of binary variables is divided by 4 compared to the initial model. 

 

In order to test the efficiency of this partial relaxation, a set of tests has been run with three different integrality 

gaps (1%, 2% and 5%) and different numbers of periods (2, 3 and 4). The ore body used is the full ore body model 

presented later in Section 5. It contains 8223 blocks and 2 destinations. Table 1 presents, for different gaps and different 

number of periods, the results obtained for the partially relaxed model and the fully binary one. Columns 4 and 5 give 

the number of binary variables in the model before and after pre-processing in Cplex. Column 6 presents the 

computational time for the branch and cut algorithm, while column 7 shows the total computational time. Column 8 

shows the computational efficiency of the partially relaxed model (PR) compared to the fully binary model (FM). 



 

Column 9 shows the difference in the objective function of Cplex between the partially relaxed model and the full one; 

of course since the full model is more constrained its objective function is slightly lower. Columns 10 and 11 present 

the resulting number of fully extracted blocks and the remaining non-binary extraction variables.  

 

Table 1 Comparison between the partially relaxed model and the full binary model 

 

 

Figure 5 Computational efficiency: partial relaxation vs initial model 

 

Figure 6 Number of non-binary values of the partially relaxed model 

Even if it is difficult to define a general tendency about the efficiency of the partial relaxation (Figure ), a 

computational gain of time is always present, from 5.6% and up to 66.7%. A similar effectiveness can be expected for 
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FM 32892 9015 1018 1152 361 0
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FM 49338 14146 6477 6780 467 0
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FM 65784 19407 7318 7773 606 0

PR 8223 6919 562 700 284 43
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more periods. Of course, the trade-off of this gain is that some variables remain fractional (Figure ), but they are very 

few: considering 4 periods those variables are between 42 and 86 (depending on the Gap) out of 65784 initially binary 

defined variables.  

 

The previous partial relaxation uses the strong relationship between blocks but these interconnections can be exploited 

further. Indeed, the optimization process is led by high value blocks which results in that their predecessors are 

extracted fast and completely. This idea is confirmed by the resolution of the Relaxed OMPSIP (R-OMPSIP) model 

(for which all the binary variables are linearized). The result of the relaxation is a fractional schedule but most of the 

blocks are either mined at once or within few consecutive periods. As an example, for the following case study, which 

consists of 8223 blocks, 10 periods and 2 destinations (164460 binary variables), the relaxed solution only presents 

4819 fractional values, which corresponds to 1225 different blocks. 

 

A sequential algorithm is proposed to decrease again these non-binary values. The general concept is to solve the 

relaxed model R-OMPSIP and to apply binary constrains only to a subset of variables, denoted Λ𝑘 , at each iteration 𝑘, 

defined as: 

Λ𝑘 = {𝑥𝑖,𝑑,𝑝;  ∃𝑘
′ ∈ ⟦0, 𝑘 − 1⟧,  𝑥𝑖,𝑑,𝑝

𝑘−1 ∉ {0,1}} 

 

More explicitly, this is the set of all the supposedly binary variables which have been attributed a non-binary value 

during any previous iteration. On this set is applied the partial relaxation defined in Section 3.1. Figure  presents the 

result of the relaxed model. The blocks identified by a black cross are the partially extracted ones. In the next iteration 

(Figure ), these same blocks are this time enforced to be binary (white cross), the new result presents other partially 

extracted blocks which once again will be binary constrained during the following iteration.  

 

 

Figure 7 Binary convergence iteration 0 

 

Figure 8 Binary convergence iteration 1 

The expected result is a decreasing amount of non-binary variables. An interesting point is that, compared to the 

initial OMPSIP model, the space of search (feasible solutions) is only enlarged, so with the hypothesis that the 

algorithm converges to a fully binary solution, this solution would also be optimal for the initial model. Of course this 

is deceptive but a low number of fractional values would be totally satisfactory from the operational point of view. 

 

The proposed binary convergence algorithm has been tested on the case study deposit with 8 iterations. The results 

are convincing, after 8 iterations of less than one hour each, the remaining number of fractional values drops to 348 

(Figure ), which corresponds to 202 different blocks. Of course, the number of binary constrained variables increases 

with the number of iterations but remains low: from 2372 at iteration 1 up to 6129 at iteration 7. Figure  presents the 



 

evolution of the number of remaining fractional values iteration after iteration (decreasing function) and the 

computational time they required. 

 

 

Figure 9 Binary convergence 

Moreover, the associated risk is also well controlled. For example, Figure  shows the Discounted Cash Flow (DCF) 

profiles for all the scenarios and their average. The scenarios do not present significant deviations from the average. 

Figure  presents the profiles of the silica grade which is well in the range of tolerance, only less than 0.1% above for 

two scenarios and two periods among the late periods. This is acceptable and normal because the risk is differed to the 

latest periods with the applied discounted factor. 

 

 

Figure 10 DCF per year of the binary convergence algorithm after iteration 7 

 

Figure 11 Silica grade from the binary convergence algorithm after iteration 7 
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The previous algorithms facilitate the resolution of the OMPSIP model by reducing the number of binary variables, 

provide a final solution almost but not fully binary and require a reasonable computational time. The objective is now, 

still using strategies to reduce the computational time, to develop a heuristic method which is fast and which provides 

a full binary high quality solution. The method here was inspired from Chicoisne and Espinoza’s work (2012). It was 

adapted to a stochastic formulation with several destinations and more block selectivity. 

 

The first step is to solve the relaxed model R-OMPSIP described in Section 3.2. The result is a fractional schedule 

which will be used as an input for the main algorithm. Two options can be considered. The first one is to only use this 

relaxed solution which takes 11 minutes to obtain for the case study considered in this paper. The other option is to 

apply a few iterations of the binary convergence algorithm described in Section 3.2, for which each iteration takes 

around one hour. This second option gives a more binary input and is supposed to be closer to the optimal binary result. 

Depending on the time allowed for the total computational time, one option or the other can be used. Both are tested 

to study their impact over the final schedule. 

 

The main idea of the algorithm is a topological sorting of the blocks based on pre-defined weights and under the 

condition that each block, when scheduled, is available; that is, its predecessors have already been extracted. The 

definition of the weights is essential as, for the assignment of a block to a period, the block having the highest weight 

among the available blocks is selected. More details are given after the formulation of the algorithm. 

Global algorithm 

Additional notation 

𝒙𝒊,𝒅,𝒑
∗  Fractional value obtained from the relaxed model representing the percentage of block 𝒊 ∈ 𝓑 sent to 

destination 𝒅 ∈ 𝓓 at period 𝒑 ∈ 𝓟 ∪ {𝟎}; 
𝒅𝒄𝟏,𝒑,𝒔
∗  Value of the deviation of 𝒄𝟏 ∈ 𝓒𝟏from the quantity target in period 𝐩 ∈ 𝓟, for scenario 𝒔 ∈ 𝓢, 

obtained from the relaxed model; 

(𝒑𝒊, 𝒅𝒊)  Pair of variables used to store the period of extraction and destination assigned to the block 𝒊 ∈ 𝓑; 

𝒓𝒄𝒂𝒑𝒄𝟏,𝒑,𝒔 Residual capacity of quantity 𝒄𝟏 ∈ 𝓒𝟏 in period 𝒑 ∈ 𝓟 for scenario 𝒔 ∈ 𝓢; i.e., the quantity that can 

still fit into period 𝒑 without exceeding the upper bound target; 

 

Definition of the weights 

From the relaxed or partially relaxed solution, two sets of weights {𝒘𝟏𝒊, ∀𝒊 ∈ 𝓑} and {𝒘𝟐𝒊,𝒅, ∀𝒊 ∈ 𝓑, ∀𝒅 ∈ 𝓓} are 

defined and will be used in the TopoSort algorithm. 

(11)          𝐸1𝑖 = ∑𝑝.∑(𝑥𝑖,𝑑,𝑝
∗ − 𝑥𝑖,𝑑,𝑝−1

∗ )

𝑑∈𝐷

𝑃

𝑝=1

+ (𝑃 + 1) (1 −∑ 𝑥𝑖,𝑑,𝑃
∗

𝑑∈𝐷

)                                                                   ∀𝑖 ∈ ℬ 

(12)          𝑤1𝑖 = −𝐸1𝑖                                                                                                                                                               ∀𝑖 ∈ ℬ 

(13)          𝑤2𝑖,𝑑 =∑(𝑥𝑖,𝑑,𝑝
∗ − 𝑥𝑖,𝑑,𝑝−1

∗ )                                                                                                               ∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟

𝑃

𝑝=1

 

𝐸1𝑖 can be defined as the expected value of block 𝑖 ’s extraction period. Since the weight 𝑤1𝑖  is the opposite of 𝐸1𝑖, 
the higher the weight is the sooner the block is supposed to be extracted. The weight 𝑤2𝑖,𝑑 represents the percentage 

of block 𝑖 sent to destination 𝑑 from which the most likely destination of the block can be directly determined. The 

objective of both sets of weights is to give to the main heuristic method an input that allows it to be as close as possible 

to the relaxed solution while respecting the various constraints. 

Heuristic method: Stochastic TopoSort Algorithm (STA) 



 

1.  ∀𝑖 ∈ ℬ, 𝑑𝑖 ← 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑤2𝑖,𝑑;  𝑑 ∈ 𝐷} 

2.   𝑗 ← 1 

3.   𝑝𝑐𝑢 = 1 

4.   ∀𝑐1 ∈ 𝒞1, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮, 𝑟𝑐𝑎𝑝𝑐1,𝑝,𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑝
+  

5.  𝒘𝒉𝒊𝒍𝒆 (𝑗 ≤ 𝑁) 𝒅𝒐 

6.   𝒊𝒇 (𝜉 = {𝑖 ∈ ℬ ; 𝛿−1(𝑖) = ∅  𝑎𝑛𝑑 [(𝑑𝑖 = 1 𝑎𝑛𝑑 ∀𝑐1 ∈ 𝒞1, ∀𝑠 ∈ 𝑆, 𝑟𝑐𝑎𝑝𝑐1,𝑝𝑐𝑢,𝑠 + 𝑑𝑐1,𝑝𝑐𝑢,𝑠
∗ ≥ 𝑞𝑐1,𝑖,𝑠) 𝑜𝑟 (𝑑𝑖 =

0)]} ≠ ∅) 𝒅𝒐 

7.    𝑥 ← 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑤1𝑦;  𝑦 ∈ 𝜉} 

8.    𝐺 ← 𝐺\{𝑥} 
9.    𝑝𝑥 ← 𝑝𝑐𝑢 

10.    𝑗 ← 𝑗 + 1 

11.    ∀𝑐1 ∈ 𝒞1, ∀𝑠 ∈ 𝑆, 𝑟𝑐𝑎𝑝𝑐1,𝑝𝑐𝑢,𝑠 ← 𝑟𝑐𝑎𝑝𝑐1,𝑝𝑐𝑢,𝑠 − 𝑞𝑐1,𝑥,𝑠  

12.   𝒆𝒍𝒔𝒆 𝒅𝒐 

13.    𝑝𝑐𝑢 ← 𝑝𝑐𝑢 + 1 

14.  𝒓𝒆𝒕𝒖𝒓𝒏 {(𝑝𝑖, 𝑑𝑖), ∀𝑖 ∈ ℬ} 
 

Step 1 attributes the most probable destination to every block, using the relaxed solution obtained from the 

resolution of the R-OMPSIP model. Step 3 defines the current period as the first one. Step 4 states that for each 

scenario, each period, the initial residual capacity of quantity 𝑐1 is the upper target. With Step 5 begins a loop over all 

the blocks to be scheduled. Step 6 defines, for each iteration, if it exists at least one block that is available from the 

predecessors’ point of view and which fits into the current period. Here, a block “fits” into a period if it has to be sent 

to the waste dump or if for every scenario, all its linear characteristics 𝑐1 are less than the remaining capacities of the 

period 𝑟𝑐𝑎𝑝𝑐,𝑝𝑐𝑢,𝑠 plus the corresponding deviation obtained from the relaxed solution. The cost and impact of this 

deviation were already considered when solving the relaxed model. If such blocks exist, the one with the highest weight 

𝑤1 is selected in Step 7, it is removed from the graph 𝐺 in Step 8 and assigned to the current period (Step 9). The 

number of already scheduled blocks and the residual capacities are updated in Steps 10 and 11. In the case where no 

block can fit anymore in the current period, the next period is considered (Step 13). 

 

In the initial OMPSIP model, several grade quality or continuous extraction constraints are applied but are not 

taken into account in the STA. However, the algorithm relies on the relaxed result, which contains and respects, as 

much as possible, these constraints. As a consequence, it is expected from STA to obtain a satisfactory binary schedule 

with respect to these constraints. 

 

 

Figure 12 Topological sorting steps 

  



 

 

The stochastic topoSort algorithm was tested on an iron ore deposit, owned by the industrial partner in Labrador, 

Canada. 

 

The dimensions of the deposit are around 10 km long from South to North, 2.5km large from East to West and up to 

180m deep. A particularity of this deposit is a low slope of around 6° East and the presence of several lithologies. The 

iron ore is of taconite type which is a sedimentary formation mainly composed of 25-30% magnetite. The typical 

method to extract the ore from the rock is a magnetic separation after fine crushing. A good estimate of the magnetic 

recoverable ore is the David Tube test.  

 

Figure 13 Plan view of the iron ore deposit, feh grades 

 

Figure 14 Cross section of the deposit with the low dip layers 

 

The geological data and uncertainty is based on a set of 10 stochastic conditional simulations provided by the company. 

The ore body model is composed of 8223 blocks of dimensions 100x100x15m. The method used to simulate, named 

DBMAFSIM for direct block minimum/maximum autocorrelation factors simulation (Spleit 2014), first simulates the 

lithology and then diverse grades: FeH (head iron grade), Fec (concentrate iron grade), DTWR (Davis Tube Weight 

Recovery) representing the recoverable iron grade, SiC (concentrate silica grade) for the blocks within each layer. In 

this case study, the only linear characteristic of interest is the amount of concentrate tonnes per period. Two non-linear 

characteristics are considered: the average DTWR grade per period and the average silica. The silica represents the 

main pollutant and is crucial for the quality of the production: a low grade assures a premium price on the market and 

provides a competitive advantage. Two destinations are considered: the mill to process the ore and the waste dump. 

The scheduling is done over 10 periods. 

 

As previously mentioned, the low dip and great South-North extension of the deposit complicate the scheduling. 

Indeed, obtaining a continuous sequence of extraction is more delicate because of the amount of blocks without any 

precedence relationships. Moreover, the low depth does not allow defining an earliest period of extraction for many 

blocks (not many variables can be set to 0). 

N 



 

 

When solving the models, independently of the number of periods or blocks, a critical point for the required 

computational time is the definition of the deviations’ costs 𝑝𝑒𝑛𝑐1,𝑝
𝑑𝑒𝑣± and 𝑝𝑒𝑛𝑐2,𝑝

𝑑𝑒𝑣±. These artificial costs are only 

defined to allow flexibility to the solver in letting it go over the quality constraints but not too much to respect a 

tolerable margin from the contracts for instance. It was noticed that defining too high such costs not only leads to 

unnecessary strict constraints which result in a lower DCF but also increases considerably the computational time. 

This last point comes from the fact that with high penalties, a small modification in the result has a considerable impact 

on the objective function which forces to test much more combinations. Finding, by trial and error, the smallest cost 

possible to find a good quality solution (which respects well the targets of production) provides a considerable 

computational time gain.  

 

With the previous parameters, the OMPSIP model contains 164460 binary variables (extraction variables 𝑥𝑖,𝑥,𝑝), 

600 continuous ones (deviation variables 𝑑𝑒𝑣𝑐,𝑝,𝑠
± ) and around 900000 constraints. The earliest period of extraction 

constrains (7) fix 3780 binary variables to 0.  

 

 

 

In this section, the relaxed schedule is used as an input for the STA to calculate the most probable destination of each 

block and its expected period of extraction (weights). For this case study, which is of relatively small size, the relaxation 

took only 9 minutes to solve. For larger instances, a stochastic implementation of Bienstock and Zuckerberg’s work 

(2010) on solving the relaxed model could be considered. The STA took 3min to run and the results are discussed 

below. Figure  presents the obtained schedule, the blocks being identified with the label “-1” are those that are not 

extracted. We see the effect of the extraction smoothing constraints (6) with, especially in the Northern part of the 

deposit, blocks extracted close to each other. However, some isolated spots are also present. Those different zones are 

satisfactory considering the flatness of the deposit and the size of the blocks, excepting a 400m long zone, they are all 

more than 800m long. 

 

 

Figure 15 Schedule plan views 



 

 

Figure 16 Typical schedule E-W sections 

Figure  presents four typical E-W sections of the schedule, we see the connectivity of the blocks extracted within a 

shared period and also the respect of the precedence constraints.  

 

Figure  shows the destination of the blocks, we can see that not a lot of waste is extracted. 

 

Figure 17 Destinations plan view 

We know that the value of the relaxed solution represents an upper bound on the optimal value of OMPSIP, an 

ideal situation in which all blocks can be partially combined to give the highest profitability. To evaluate how close 

the solution from STA is to the relaxed one, we can calculate for each block the difference between the expected period 

of extraction (fractional values) obtained from the relaxed solution and the period of extraction from STA (binary 

values). The results are presented in Figure  in which the abscissa represents the number of periods of differences and 

the ordinate the number of blocks that present this difference. The results are convincing, only 130 blocks are not 

scheduled within the same year and this number drops to 24 for a difference of at least two years. 



 

 

Figure 18 Differences between the relaxed and the binary solution 

 

The profiles over the scenarios for the diverse quality constraints are very satisfactory. That is, an average close to 

the targets and a well-controlled risk distribution. The production concentrate material (concentrate of iron) is very 

well satisfied, on Figure  we see that the average production is close the target. The run of mine (total amount of 

material sent to the mill), which was not constrained, is plotted in Figure  to make sure the differences between 

scenarios are not too important. Great differences would require for instance different fleets of trucks and shovels, 

which is not desirable from the operational side. The silica (Figure ) is also well controlled and the average DTWR 

grade (Figure ), the recoverable iron grade, fluctuates around the upper target which is not surprising since the higher 

the average iron grade is, the more profitable the production is. We just want to make sure that not all the highest grade 

blocks are extracted together in the first periods. 

 

 

Figure 19 Concentrate tonnes (iron) 
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Figure 20 Run of mine (material sent to the mill) 

 

Figure 21 silica grade 

 

Figure 22 DTWR grade (recoverable iron grade) 

In terms of discounted cash flow, once again the schedule accounts for the uncertainty with DCF profiles close to 

their mean. The range of variability after 10 years corresponds to 1.45% of the expected DCF. 
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Figure 23 Cumulative DCF 

 

Figure 24 Discounted cash inflow per period 

The figures above only give information about the robustness of the schedule. To evaluate the quality of the DCF, 

we can, as previously mentioned, compare for each scenario the DCF of the relaxed solution (upper bound) and the 

binary solution. For each scenario 𝑠, we can calculate a gap defined as: 𝑔𝑎𝑝 =
𝐷𝐶𝐹𝑠

𝑟𝑒𝑙𝑎𝑥𝑒𝑑−𝐷𝐶𝐹𝑠
𝑆𝑇𝐴

𝐷𝐶𝐹𝑠
𝑟𝑒𝑙𝑎𝑥𝑒𝑑 , for which the highest 

calculated value is 1.42%. This means that in the worst case, the schedule obtained from the STA is less than 1.42% 

away from the optimal solution. 

 

Table 2 GAP between the relaxed model and the STA solutions 

Scenario 1 2 3 4 5 6 7 8 9 10 

Gap relaxed – 

STA (%) 
1.38 1.36 1.36 1.31 1.37 1.38 1.33 1.36 1.42 1.39 

 

These DCFs do not take into account the penalty costs (𝑃𝑎𝑟𝑡2 of the objective function), essential in the resolution 

of the model. It is also interesting to compare the values of the objective function of Cplex with the new value     

gapCplex =
objCplex

relaxed−objCplex
DCA

objCplex
relaxed . This time the gapCplex is 2.291%. The larger value of here gapCplex compared to the gaps 
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calculated in term of DCF expresses that the deviations from the targets are larger for the solution from the STA than 

from the relaxed model, even if they remain moderate. 

The obtained results are very satisfactory, especially being within 2.3% of the optimality and as the required 

computational time is only 629 seconds for the relaxed model and 87 seconds for the TopoSort algorithm, 11min56sec 

in total with Cplex v12.4 and computer equipped with a processor i7-2600S 2.8GHz and 8GB of RAM. 

 

In this section, instead of calculating the weights of the STA based on the relaxed model R-OMPSIP, the fractional 

schedule obtained after a few iterations of the binary convergence algorithm defined in Section 3.2 is used. The 

objective value of this schedule is a tighter bound on the optimal binary result. Indeed, since more extraction variables 

are constrained to be binary, the formulation of the last iteration is closer the initial OMPSIP model.  

Four iterations of the binary convergence algorithm have been computed, the computational times required for each 

iteration and the number of remaining fractional variables is presented in Figure . We can see that this number of 

remaining fractional variables decreases fast and goes down to 166 after 4 iterations. As expected, since additional 

binary constraints are added at each iteration, the objective value of Cplex decreases up to 1% after three iterations. It 

is interesting to note that, since this objective value is a tighter upper bound on the optimal binary solution, we can 

recalculate the gapCplex of the previous STA solution obtained with the relaxed model as input and we obtain now a 

value of 1.9%. 

 

Figure 25 Binary converged schedule 

The STA is applied using the fractional schedule provided by the 4th iteration (referenced as converged STA) and 

the results are convincing. First, the differences between the fractional input schedule and the final binary one are small 

as can be seen on Figure . Then, the quality constraints are even better respected with a concentrate production very 

close to the target (Figure 2), an average silica grade completely within the range of tolerance (Figure ), and a DTWR 

grade closer to the upper bound (Figure ). 

 

 

Figure 26 Differences partially relaxed vs converged STA solution 
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Figure 27 Concentrate tonnes, converged STA 

 

Figure 28 Silica grade, converged STA 

 

Figure 29 DTWR, converged STA 

The DCF also presents less risk over the scenarios and its average is closer to the partially relaxed input (Figure 3), 

between 0.01 and 0.03% better (no costs of deviations considered here). When comparing the Cplex objective functions 

between the schedules obtained from the 4th iteration of the binary convergence algorithm and from the converged 

STA, a gapCplex of 0.3% is found. The solution is proven almost optimal. 

 



 

 

Figure 3 DCF per period, converged STA 

 

Table 3 GAP between the partially relaxed and the converged STA solutions 

Scenario 1 2 3 4 5 6 7 8 9 10 

GAP partially 

relaxed – 

TopoSort (%) 

-

0.03 

-

0.02 

-

0.02 

-

0.02 

-

0.01 

-

0.02 

-

0.02 

-

0.02 

-

0.03 

-

0.02 

The trade-off of a schedule closer to the optimal solution is a much higher computational cost, 21h53min instead 

of 12min, one can be more interested in one approach or the other. 

 

A stochastic topological sorting algorithm was presented to solve the long-term open pit mine planning problem and 

gave good and fast results for the average discounted cash flow and the control of geological uncertainty. Two options 

are available as an input for the algorithm. The first option is to provide a fully relaxed solution of the production 

schedule. The advantage of this approach is the rapidity to obtain a solution, within 2% of optimality after 12min for 

the case study considered in this paper (more than 160 000 binary variables). The second option is to apply the two 

proposed acceleration strategies. This approach provides an almost binary optimal schedule in still a reasonable 

computational time. Depending on the requirement of the operations, the fractional schedule can be used as it is since 

after several iterations the number of remaining fractional variable is very low. In this case, the solution is optimal 

since no assumptions have been made except special patterned relaxations. If a fully binary schedule is required, the 

stochastic topoSort algorithm can be applied to the obtained fractional schedule. The result gets even closer to the 

optimality: less than 0.3% for the case study in less than 24h.  

 

Extensions of this work could focus on make the proposed acceleration strategies even more aggressive to continue 

reducing the number of binary variables and to develop an algorithm similar to the one found in Bienstock and 

Zuckerberg (2010) to solve faster the relaxed model, which can be limiting with larger instances. 
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