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Québec – Nature et technologies.
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3000, chemin de la Côte-Sainte-Catherine
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Abstract: Simple, intuitive, and scalable to large problems, k-means clustering is perhaps the most
frequently-used technique for unsupervised learning. However, global optimization of the k-means objec-
tive function is challenging, as the clustering algorithm is highly sensitive to its initial value. Exploiting the
connection between k-means and Bayesian clustering, we explore the benefits of stochastic optimization to
address this issue. Our “no-means” algorithm has provably superior mixing time to a natural Gibbs sampler
with auxiliary cluster centroids. Yet, it retains the same computational complexity as the original k-means
approach. Comparisons on two benchmark datasets indicate that stochastic search usually produces more
homogeneous clusters than the steepest descent algorithm employed by k-means. Our no-means method
objective function has multiple modes which are not too far apart.

Keywords: Unsupervised learning, model-based clustering, Bayesian clustering, stochastic optimization
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1 Introduction

Statistical clustering is the task of classifying objects into disjoint groups based on similarities across several

attributes. In other words, clustering divides a heterogeneous population into homogeneous subgroups. Such

a task is of fundamental importance in a wide range of contemporary applications. Clustering has been used

in genetics to group genes that impact a physical condition (Sun et al., 2016), or group patients with similar

genetic profiles (Freije et al., 2004). In cosmology it has been used to classify stars or exoplanets according

to their habitability for potential lifeforms (Way et al., 2012). In robotics, clustering has served to construct

automated maps of objects and obstacles (Fäulhammer et al., 2017). In marketing, clients can be divided

into different consuming habits (Linoff and Berry, 2011). In computer security, clustering has been used to

detect malware and viruses (Kao et al., 2015).

Clustering has been the subject of a rich and well-established body of literature in statistics and machine

learning – for a recent survey see Xu and Tian (2015). Our focus is on a particularly simple and ubiquitous

clustering algorithm known as k-means (MacQueen, 1967; Lloyd, 1982). Given n multivariate observations

Y = (y1, . . . ,yn), where each observation yi = (yi1, . . . , yip) has p attributes (or features) , the k-means

algorithm attempts to minimize the within-cluster sum-of-squares, or k-means objective function

SW (d) =

n∑
i=1

‖yi − ȳdi‖2, (1)

where ȳ1, . . . , ȳk is the mean in each of k groups, and di ∈ {1, . . . k} is the group membership of yi, with

d = (d1, . . . , dn). The algorithm, illustrated in Figure 1, proceeds by iterating through the following steps.

Let d(t) denote the group memberships at step t. To obtain d(t+1):

1. Calculate each of the group means ȳ
(t)
c , c = 1, . . . k at step t.

2. Calculate d(t+1) by taking each observation yi and re-assigning it to cluster with the closest mean, i.e.,

to cluster ci = arg minc ‖yi − ȳ
(t)
c ‖.

Figure 1: Iterations 1 (left) and 2 (right) of the k-means algorithm for k = 2. The solid symbols denote the centers. The solid
lines depict the Euclidean distance from the current center, and the dashed line shows that from the neighboring center.

Almost 60 years after the first appearance of k-means, many practitioners still use it in its simplest and

original form – see Jain (2010) for a survey of k-means and its extensions. The computational tractability

of k-means makes it especially popular for the analysis of big data (e.g., Farivar et al., 2008; Bahmani et al.,

2012). For data which do not readily cluster by Euclidean distance, a popular strategy is that of spectral

clustering (e.g., Ng et al., 2002; Dhillon et al., 2004), which can be viewed as an embedding of k-means into

a higher-dimensional feature space.

In this paper, we address a well-known shortcoming of the k-means algorithm: its performance is strongly

dependent on the initial cluster assignment d(0) (e.g., Hamerly and Elkan, 2002). A commonly-used approach

is to repeat the algorithm from multiple random starting points, and select the one which produces the

lowest value of SW (d) in (1). As an alternative, Arthur and Vassilvitskii (2007) obtain a considerable gain

by encouraging the cluster centers to be further apart and avoiding the initialization of multiple centers in
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the same natural cluster. In extending k-means to the case where the number of clusters is unknown, Pelleg

and Moore (2000) have noted that sensitivity to starting values is considerably reduced.

The approach adopted here exploits the well-known connection between k-means and the Expectation-

Maximization (EM) algorithm for fitting mixtures of Gaussian distributions (e.g., Hastie et al., 2009, Section

14.3.7). A Bayesian counterpart to this EM algorithm is the “natural” Gibbs sampler which alternately

updates the vector of group memberships and the cluster centroids. However, within the Bayesian clus-

tering paradigm we are free to choose from any number of transition densities to draw from the posterior

distribution. Indeed, we consider a Rao-Blackwellized version of the natural Gibbs sampler which marginal-

izes out the group centers as nuisance parameters, and thus provably decreases the Gibbs sampler’s mixing

time. However, our “no-means” Markov chain Monte Carlo (MCMC) algorithm has the same computational

complexity as k-means, thereby retaining its scalability to big data clustering problems. In order to target

the global minimum of the k-means objective function SW (d) in (1), we combine no-means with simulated

annealing (Kirkpatrick et al., 1983). The performance of no-means is evaluated on two datasets commonly

used to benchmark clustering algorithms. Our investigations indicate that stochastic search almost always

produces more homogeneous clusters than the steepest-descent approach of k-means, for the same initial

values. The benefits of no-means are most apparent when SW (d) has many local minima which are not too

far apart.

The rest of the paper is organized as follows. Section 2 establishes the connection between k-means and

Bayesian clustering, setting the context for our proposed methodology. Section 3 presents the no-means

clustering algorithm. Section 4 compares no-means to k-means on the two datasets. The discussion in

Section 5 outlines some directions for further work.

2 Bayesian clustering

The original idea of the k-means method goes back to Steinhaus (1956), but the term “k-means” first

appears in MacQueen (1967). Early computer implementations of k-means are attributed to Hartigan and

Wong (1979) and Lloyd (1982). While at first glance k-means does not seem tied to a particular statistical

model, it is in fact closely related to the hierarchical Gaussian model

µj
iid∼ N (0, τ2Ip×p)

yi | µ,d
ind∼ N (µdi , σ

2Ip×p),
(2)

where µ = (µ1, . . .µk) are the cluster means. It can be shown that maximizing

p(Y | d) =

∫
p(Y | µ,d)p(µ) dµ

with respect to d is equivalent to minimizing SW (d), as σ → 0 and τ → ∞. The connection is perhaps

most transparent upon switching to a Bayesian paradigm, which augments model (2) with a prior p(d)

on the cluster assignments. For ease of exposition we consider only the uniform prior p(d) ∝ 1, but note

the extensive literature in Bayesian clustering on the specification of group membership priors (e.g., Ewens,

1972; Pitman, 1997; Crowley, 1995; Heard et al., 2006; Kulis and Jordan, 2012). Under the uniform prior,

the posterior distribution

p(d,µ | Y) ∝ p(Y | µ,d)p(µ)× p(d)

can be explored by a “natural” Gibbs sampling approach. That is, one alternately draws from the conditional

distributions

µc | d,Y
ind∼ N

(
ȳc

1 + σ2

ncτ2

,
1

1
τ2 + nc

σ2

Ip×p

)
, c = 1, . . . , k, τ > 0, σ > 0,

di | µ,Y
ind∼ Multinomialk(1,ρi),

(3)
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where ȳc is the mean of the observations assigned to cluster c ∈ {1, . . . , k}, nc is the number of observations

in this cluster,

ρi =

(
φ(yi | µ1, σ), . . . , φ(yi | µk, σ)

)
∑k
c=1 φ(yi | µc, σ)

,

and φ(· | µ, σ) is the PDF of a N (µ, σ2Ip×p) distribution. Then as σ → 0, ρi puts all probability mass on

the cluster c which minimizes ‖yi−µc‖. Similarly as τ →∞, the posterior distribution p(µc | d,Y) puts all

probability mass on the cluster mean ȳc, such that upon taking both limits, the Gibbs sampler simplifies to

the original k-means.

3 No-Means clustering

The Gibbs sampler (3) (which we shall refer to as natGibbs) circumvents the sensitivity of k-means to the

initial cluster assignment d(0), as it can theoretically escape from any local mode of p(d | Y). However,

this escape time can be very long in practice, especially for small σ and for clusters with few observations

(small nc). Moreover, our objective is to minimize the within-cluster sum-of-squares SW (d), which natGibbs

does not achieve as readly as, say, k-means initialized with the right starting value. Below we present our

“no-means” clustering algorithm and how it attempts to resolve both of these issues.

3.1 MCMC proposals

The natGibbs algorithm (3) is but one way of exploring the posterior distribution p(d | Y) =
∫
p(d,µ |

Y) dµ. Indeed, it is well-known that natGibbs has poor mixing time when d and µ (given Y) are highly

correlated with each other (e.g., Amit, 1991; Liu, 1994). However, upon switching from k-means to Bayesian

clustering, we are free to explore p(d | Y) by any number of potentially more efficient MCMC approaches.

Let us begin by taking the limit of the Gaussian mixture model (2) as τ → ∞. This is equivalent to

augmenting the likelihood p(Y | µ,d) with the improper prior p(µ,d) ∝ 1. The corresponding version of

natGibbs replaces the top line of (3) by

µc | d,Y
ind∼ N

(
ȳc,

σ2

nc
Ip×p

)
and keeps the bottom line the same. The marginal posterior distribution of the cluster assignments can then

be calculated in closed form:

p(d | Y) =
p(d,µ | Y)

p(µ | d,Y)
∝ p(Y | µ,d)× π(µ,d)

p(µ | d,Y)

=

∏n
i=1 φ(yi | µdi , σ

2)∏k
c=1 φ(µc | ȳc, σ2/nc)

∝ exp

{
1

2

k∑
c=1

ȳ′cȳc
σ2/nc

− p log(nc)

}
.

(4)

As an alternative to natGibbs, which conditions on the group means µ, we consider a “no-means” Gibbs

sampler, which uses the marginal posterior (4) to update each observation’s cluster label di conditioned on

all other labels, d−i = d \ {di}. Indeed, p(di | d−i,Y) is a multinomial distribution on k states with

Pr(di = c | d−i,Y) ∝ p(d−i ∪ {di = c} | Y). (5)

A full round of no-means cycles through the random variables d1 → · · · → dn, whereas a full round of

natGibbs cycles through d → µ. However, upon noting the conditional independence relations in (3), a

round of natGibbs is exactly equivalent to the Gibbs sampler d1 → · · · → dn → µ1 → · · · → µk. Therefore,

no-means corresponds to a “collapsed” version of natGibbs, thus having provably better mixing time (Liu,

2001, Theorem 6.7.1).

A highly attractive feature of k-means is its low computational cost for a full round of updates, which

is O(nkp). Similarly, we note that calculating each of the k probabilities in (5) essentially requires the
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modification of two p-dimensional dot products, such that the cost of a full round of no-means is also

O(nkp). Thus, no-means benefits from the same scalability as k-means to big data applications.

3.2 Simulated annealing

While MCMC algorithms exploring p(d | Y) are less likely than k-means to become trapped in local modes,

here it is in fact desirable for the MCMC to “converge” to the mode which contains the optimal allocation

vector d? = arg mind SW (d). The technique of Simulated Annealing (SA) (Kirkpatrick et al., 1983; Černỳ,

1985) is specifically designed with such a goal in mind. In relation to our clustering problem, recall that

p(d | Y) in (4) puts all the probability mass on the global minimum of SW (d) as σ → 0. Therefore, our

SA-like algorithm alternates between a no-means MCMC updating cycle and a step which decreases the

value of σ steadily towards zero. The exact steps of the algorithm are given in Algorithm 1.

Algorithm 1 The no-means algorithm with Simulated annealing.

1: Initialize clusters d(0) by allocating observations randomly to k groups as cluster means.

2: Initialize the tuning parameter σ(0) =
√
SW (d(0))/(np) to the average within-cluster componentwise standard deviation.

3: For given (d(t), σ(t)) at step t, obtain d(t+1) by performing a full cycle of the no-means updates (5) with tuning parame-
ter σ(t).

4: Set σ(t+1) = r · σ(t) for some fixed 0 < r < 1.
5: Repeat steps 3 and 4 until min1≤i≤n

{
max1≤c≤k Pr(di = c | d−i,Y)

}
> α for some fixed cutoff probability α.

6: Return the no-means allocation vector which achieves the smallest value of SW (d).

It should be noted that the tuning parameter σ in p(d | Y) is not exactly equivalent to the “temperature”

parameter in the SA approach, such that the usual convergence results for SA (e.g. Bertsimas et al., 1993)

do not apply directly. However, convergence of SA is only guaranteed for a logarithmic cooling schedule,

which can be prohibitively slow in practice (Ingber, 1993). Instead, a much faster geometric cooling schedule

is often used without any theoretical guarantees. This modification of SA is referred to as “Simulated

Quenching” (Ingber, 1993; Sato, 1997; Liu et al., 2008), and is the approach we adopt in Algorithm 1.

4 Benchmarking

To evaluate the performance of the no-means algorithm, we apply it to two benchmark clustering problems,

comparing it to k-means and one of its most popular variants, k-means++ (Arthur and Vassilvitskii, 2007).

This algorithm differs from k-means only in the choice of initial cluster assignment, and has been shown to
achieve considerable gains relative to initializing k-means at random. Since initialization and stochastic search

are complementary techniques, we also consider the effect of starting no-means with the k-means++ initial

values, such that four algorithms in total are compared: k-means, k-means++, no-means, and no-means++.

The two datasets we use for comparisons are:

1. The Cloud dataset of Bache and Lichman (2013), consisting of n = 2048 observations on p = 10

features. Each observation is a satellite image of a cloud, of which the features relate to visible and

infrared light as filtered through the cloud.

2. The Intrusion dataset of Lippmann et al. (2000), consisting of n = 1, 026, 576 observations on p = 36

features. Each observation is a connection record to a node in a computer network modeled on that

of several US Air Force bases. The recorded features include: the length of the connection, data

transmission error rate, and the number of attempted network attacks registered at a given connection.

For each dataset, we ran the four clustering algorithms for 50 steps with k = 2, 4, 8, 16, 32 clusters,

and repeated this experiment 1000 times with different starting values. For each replication, k-means and

no-means were given the same initial cluster allocation, and so were their “++” counterparts. The tuning

parameters of no-means and no-means++ were the quenching rate, r = .9, and the initial standard deviation,

σ(0) =
√
SW (d(0))/(np).
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We use several metrics for comparing the algorithms, all of which are based on the within-cluster sum-

of-squares SW . Let A denote any of the four clustering algorithms: A ∈ {k-means, k-means++, no-means,
no-means++}. Let SW (A) denote the value of the objective function at the optimal cluster allocation from

a given run of A. Figure 2 displays the empirical CDFs of SW (A) for both datasets, all four clustering

algorithms, and k = 2, 4, 8, 16, 32 clusters. The values are standardized by min(SW ), the minimum within-

cluster sum-of-squares over all 4000 clustering attempts for a given dataset and value of k.

Prior to discussing our findings, we introduce two more comparison metrics which are displayed in Table 1.

The first relates to

G(A) = E[SW (k-means)− SW (A)],

the expected gain of algorithm A over k-means (averaged over the 1000 replications). To assess the importance

of this gain, our comparison metric is

GR(A) =
G(alg)

G(k-means++)
,

the gain of algorithm A relative to k-means++. This benchmark is chosen for its simplicity yet remarkable

superiority to uniformly randomized starts (e.g., Bahmani et al., 2012). Note that we have GR(k-means) = 0

and GR(k-means++) = 1. The second metric reported in Table 1 is the proportion of times that no-means

beast k-means with the same initial value, and likewise for the ++ variants.

Table 1: Comparisons between clustering algorithms on benchmark datasets.

k=2 k=4 k=8 k=16 k=32

Cloud Data

no-means
GR(no-means) 3.00 0.00 0.29 -0.05 0.01

prop. beats k-means 1.00 0.98 0.71 0.60 0.58

no-means++
GR(no-means++) 3.00 1.00 1.01 1.01 1.03

prop. beats k-means++ 1.00 0.97 0.88 0.78 0.90

Intrusion Data

no-means
GR(no-means) 0.00 0.72 0.20 0.85 0.06

prop. beats k-means 1.00 0.97 0.92 0.79 0.51

no-means++
GR(no-means++) 1.00 1.32 1.13 1.45 1.15

prop. beats k-means++ 1.00 0.99 0.97 0.86 0.68

The stochastic no-means and no-means++ algorithms almost always outperform their deterministic coun-

terparts, but in the Cloud data often not by much. The flat CDF segments in Figure 2 suggest the presence

of local modes in SW (d). Stochastic search seems to make little difference for these data either because (i)

there are but a few local modes of SW (d) which are relatively far apart (Cloud data, k = 2 − 16), or (ii)

there are many local modes with similar values of SW (Cloud data, k = 32). To some extent, we were able to

improve the performance of stochastic search by changing the value of σ(0), but not enough to compensate

for bad starting values. This is especially apparent with uniform initialization (k-means and no-means).

The gains of stochastic search are more considerable on the Intrusion dataset, where no-means++ can

decrease SW by another 10-45% relative to k-means++ (Table 1: Intrusion data, k = 4 − 32). Presumably

this is because the local modes of SW (d) are sufficiently close for our stochastic search algorithm to be

effective. To support this claim, Figure 3 displays SW (A) against S
(0)
W = SW (d(0)), the terminal and initial

within-cluster sum-of-squares. The distance between modes of SW (d) can be crudely evaluated as follows.

In the Cloud data, the prominent horizontal lines (k = 4−16) indicate that specific modes were attainable

from numerous locations, but these modes are in some sense far apart. These lines disappear as we go left

in Figure 3 towards better starting values. In the Intrusion data, the density of points as we move left

(k = 16, 32) suggests that many initial values lead to similar but distinct local modes (each run of the

algorithm terminates at a mode). The proximity in SW (d) between these modes could be due to a handful

of observations switching clusters, for which our stochastic search algorithm is particularly effective.
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Figure 2: Empirical CDF of SW across datasets, algorithms, and number of clusters.
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Figure 3: Final vs. initial SW across datasets, algorithms, and number of clusters.
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5 Discussion

We propose a stochastic search algorithm to overcome the sensitivity to starting values of the classical k-means

clustering method. Our no-means algorithm is typically more effective than steepest descent, especially when

the k-means objective function has local modes which are not too far apart. This is for the same computational

complexity as k-means, which is essential for scalability to large datasets.

We note the considerable importance of the initial value to the success of the clustering algorithms. One

possible direction of further research is to employ the k-means++ step as an MCMC proposal, such that it

could be used by stochastic search to more freely hop between modes. Another problem is to estimate the

number of clusters. The X-means algorithm of Pelleg and Moore (2000) and the GAP statistic of Tibshirani

et al. (2001) are both approaches to estimating k which could be profitably combined with stochastic search.
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