
Les Cahiers du GERAD ISSN: 0711–2440

Interval observer approach to output
stabilization of linear impulsive
systems

K. H. Degue, D. Efimov,
J. Le Ny

G–2017–28

April 2017
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Abstract: The problem of output stabilization is studied for a class of linear hybrid systems subject to signal
uncertainties: linear impulsive systems under dwell-time constraints. Two problems are considered. First, an
interval observer estimating the set of admissible values for the state is designed. Next, an output stabilizing
feedback design problem is studied where the stability is checked using linear matrix inequalities (LMIs). To
the best of our knowledge, interval observer approach has never been proposed for the stabilization of this
class of hybrid systems. Efficiency of the proposed approach is demonstrated by computer experiments for
Fault Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) of a power split device with clutch
for heavy-duty military vehicles.
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1 Introduction

Impulsive systems are an important class of hybrid systems that include both continuous and discrete event

dynamics. The continuous dynamics are generally represented by differential equations and the discrete

one by switching laws, which govern discontinuous jumps of continuous states [17, 15]. The instants of these

jumps can be time-dependent or state-dependent [3, 17]. Many systems can be modeled as impulsive ones [10].

Biological systems and intelligent vehicle/highway ones are some examples. Impulsive system stabilization is

an important problem treated in the literature [4, 5, 7]. When all uncertainty is included in corresponding

intervals or polytopes, synthesis of a conventional controller using the estimates of true values of the state

may be complicated [1, 22]. In such a case the problem of pointwise estimation can be substituted by the

interval one [9]. Using input-output measurements an observer has to estimate the set of admissible values

(interval) for the state at each instant of time [18]. A major advantage of interval estimation is that it allows

many types of uncertainties to be taken into account in the system [14].

Control of impulsive systems has been studied in previous works [4, 5, 6, 20]. In general in the existing

literature, disturbances or uncertain parameters are such that the design of observers that can converge to

the true values of the state is assumed to be possible. The problem of control design of impulsive systems

becomes very challenging when one has to take into account the presence of a disturbance or uncertain

parameters whose values should be considered to be an interval, rather than a single point measurement.

The use of interval observer approach can be a solution in these cases [13, 12].

This paper sets out to make a contribution at two levels. Firstly, an extension of the results from [4] on

input-to-state stability analysis for linear impulsive systems is proposed. Secondly, using the interval observer

from [10], a stabilizing control design based on interval observers as in [13, 12] is presented. Since the interval

estimates satisfy x(t) ≤ x(t) ≤ x̄(t) for all t ≥ 0, then the stabilization of the bounds x(t) and x̄(t), which are

considered as outputs of an interval observer, ensures the same property for the considered linear impulsive

system. To the best of our knowledge, the interval observer approach has never been proposed for the

stabilization of this class of hybrid systems.

The outline of the paper is as follows. Some basic facts from the theories of interval estimation and hybrid

systems are given in Section 2. In Section 3 we investigate the necessary results from hybrid systems robust

stability under ranged dwell-time, which are applied in Sections 3 and 5 to design respectively the interval

observer and the controller. Finally, the methodology is applied to Fault Detection and Isolation (FDI) and

Fault-Tolerant Control (FTC) of a power split device with clutch for heavy-duty military vehicles in Section 6

in order to demonstrate the efficiency of the developed technique.

2 Preliminaries

The real and integer numbers are denoted by R and Z respectively, R+ = {τ ∈ R : τ ≥ 0} and Z+ = Z∩R+.

Euclidean norm for a vector x ∈ Rn will be denoted as |x|, the symbol |A| for a matrix A ∈ Rn×n corresponds

to the induced matrix norm. The sequence of integers 1, ..., n is denoted as 1, n. The symbols In and En×m
denote the identity matrix with dimension n×n and the matrix with all elements equal to 1 with dimensions

n×m, respectively. For a bounded input u : R+ → R the symbol ||u||[t0,t1] denotes its L∞ norm

||u||[t0,t1] = sup
t∈[t0,t1]

|u(t)|,

if t1 = +∞ then we simply write ||u||. We denote as L∞ the set of all inputs u with the property ||u|| <∞. A

matrix A ∈ Rn×n is called Metzler if all its elements outside the main diagonal are nonnegative, i.e. Ai,j ≥ 0

for 1 ≤ i 6= j ≤ n. The vector of the eigenvalues of the matrix A is denoted as λ(A).
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2.1 Interval relations

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤ A2 are understood

elementwise. The relation P ≺ 0 (P �0) means that the matrix P ∈ Rn×n is negative (positive) definite,

the class of such matrices is denoted as Sn�0 (Sn≺0). Given a matrix A ∈ Rm×n, define A+ = max{0, A},
A− = A+−A (similarly for vectors) such that the matrix of absolute values of all elements |A|abs = A++A−.

Lemma 1 [11] Let x ∈ Rn be a vector variable, x ≤ x ≤ x for some x, x ∈ Rn.

(1) If A ∈ Rm×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

(2) If A ∈ Rm×n is a matrix variable and A ≤ A ≤ A for some A,A ∈ Rm×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax (2)

≤ A+
x+ −A+x− −A−x+ +A−x−.

Furthermore, if−A = A ≤ 0 ≤ A, then the inequality (2) can be simplified: −A(x++x−) ≤ Ax ≤ A(x++x−).

2.2 Stability of hybrid systems under ranged dwell-time

Consider an impulsive linear system with external inputs

.
x(t) = Ax(t) + f(t) ∀t ∈ [ti, ti+1), i ∈ Z+, (3)

x(ti+1) = Gx(t−i+1) + g(ti+1) ∀i ≥ 1,

where x(t) ∈ Rn is the state vector and x(t−i+1) is the left-sided limit of x(t) for t →ti+1; A,G ∈ Rn×n;

f : R+ → Rn, f ∈ L∞ is the input for t ∈ [ti, ti+1); g : R+ → Rn, g ∈ L∞ is the input at time instants ti+1

for all i ≥ 1. The sequence of impulse events ti with i ∈ Z+ is assumed to be positively incremental, i.e.

Ti = ti+1 − ti > 0 and t0 = 0.

Theorem 1 [4] Consider the system (3) with ||f ||∞ = ||g||∞ = 0 and a ranged dwell-time Ti ∈ [Tmin, Tmax]

for all i ∈ Z+, where 0 < Tmin ≤ Tmax < +∞ are given constants. Then it is asymptotically stable provided

that there exist matrices P ∈ Sn�0 and Q ∈ Sn�0 such that for all θ ∈ [Tmin, Tmax]

GTeA
TθPeAθG− P = −Q. (4)

The proof of the above theorem is based on the fact that in this case W (x) = xTPx is a Lyapunov function

for (3) at discrete instants of time ti.

3 Robust stability of hybrid systems under ranged dwell-time

Following [8, 19], robustness with respect to the inputs f and g can be proven (see the definition of the

input-to-state stability (ISS) property given in those works).

Lemma 2 Consider system (3) with a ranged dwell-time Ti ∈ [Tmin, Tmax] for all i ∈ Z+, where 0 ≤ Tmin ≤
Tmax < +∞ are given constants. Then, provided that there exist matrices P ∈ Sn�0 and Q ∈ Sn�0 such that

for all θ ∈ [Tmin, Tmax] the LMI (4) is satisfied, (3) is ISS and the following asymptotic gain is guaranteed
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lim
t→+∞

|x(t)| ≤ [ρP,Q,W ||g||∞ + Tmax(1+ (5)

ρP,Q,W |G|%(A))||f ||∞]%(A),

ρP,Q,W =

√
λmax(W )
λmin(P )

1−
√

λmax(P )− 1
2λmin(Q)

λmin(P )

, (6)

where W = P + supθ∈[Tmin,Tmax] 2PGeAθQeA
TθGTP and %(A) =

{
eµ(A)Tmax µ(A) > 0

1 µ(A) ≤ 0,

for µ(A) = maxi=1,n λ(A+AT

2 ) being a logarithmic norm of the matrix A.

This result implies that (3) has bounded solutions for any bounded inputs f and g if the LMI (4) is valid.

All proofs are skipped due to the space limitation.

4 Interval observer

Consider a hybrid (impulsive) linear system
.
x(t) = Ax(t) +Bu(t) + f(t) ∀t ∈ [ti, ti+1), i ∈ Z+,

x(ti+1) = Gx(t−i+1) +Du(ti+1) + g(ti+1) ∀i ≥ 1, (7)

y(t) = Cx(t) + v(t),

where x(t) ∈ Rn is the state vector and x(t−i+1) is the left-sided limit of x(t) for t →ti+1; u(t) ∈ Rm is the

control; A,G ∈ Rn×n; B,D ∈ Rn×m; f : R+ → Rn, f ∈ L∞ is the input for t ∈ [ti, ti+1); g : R+ → Rn,

g ∈ L∞ is the input at time instants ti+1 for i ≥ 1; y(t) ∈ Rp is the output signal available for measurements;

v ∈ L∞ is the measurement noise; C ∈ Rp×n. As before, the sequence of impulse events ti with i ∈ Z+ is

assumed to be positively incremental, i.e. Ti = ti+1 − ti > 0 and t0 = 0.

We need the following Assumptions for system (7)

Assumption 1 Let Ti = ti+1 − ti ∈ [Tmin, Tmax] for all i ∈ Z+, where 0 ≤ Tmin ≤ Tmax < +∞ are given

constants.

Assumption 2 There exist matrices L ∈ Rn×p, M ∈ Rn×p, P ∈ Sn�0 and Q ∈ Sn�0 such that

i) the LMI

(G−MC)Te(A−LC)TθPe(A−LC)θ(G−MC)− P = −Q (8)

holds for all θ ∈ [Tmin, Tmax];

ii) the matrix (A− LC) is Metzler;

iii) the matrix (G−MC) is nonnegative.

When Assumption 2.i holds, the quadratic form W (x) = xTPx is a discrete-time Lyapunov function for the

LTI discrete-time system zi+1 = e(A−LC)θ(G−MC)zi for all θ ∈ [Tmin, Tmax] and i ∈ Z+ by Theorem 1.

Assumption 3 Let

i) two functions f , f : R+ → Rn, f , f ∈ L∞ be given such that

f(t) ≤ f(t) ≤ f̄(t) ∀t ∈ R+;

ii) two functions g, g : R+ → Rn, g, g ∈ L∞ be given such that

g(t) ≤ g(t) ≤ ḡ(t) ∀t ∈ R+;

iii) a constant 0 ≤ V ≤ +∞ be given such that ||v|| < V .
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Assumption 1 is common in the existing literature concerning observer design, and it implies that the intervals

of time between switching are lower and upper bounded. Assumptions 2.ii and 2.iii are essential for the

approach but are rather restrictive. They can be relaxed using a transformation of coordinates [23], but such

a relaxation will lead to a more complex notation and it is omitted here for brevity. Assumptions 3.i and 3.ii

state that the inputs of the hybrid system (7) are known up to some interval errors f̄(t)−f(t) and ḡ(t)−g(t).

Assumption 3.iii suggests an upper bound V for the amplitude of the noise v.

Under the introduced Assumptions an interval observer equation for (7) takes the form

.
x(t) = (A− LC)x(t) + Ly(t) +Bu(t) + f(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1) (9)

+Du(ti+1) + g(ti+1)−MV,
.
x(t) = (A− LC)x(t) + Ly(t) +Bu(t) + f̄(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1)

+Du(ti+1) + g(ti+1) +MV,

∀i ∈ Z+, where x(t) ∈ Rn and x(t) ∈ Rn are the lower and the upper interval estimates for the state x(t),

respectively, L = (L+ + L−)Ep×1 and M = (M+ +M−)Ep×1.

Theorem 2 [10] Let Assumptions 2.ii, 2.iii and 3 be satisfied. Then in (7),(9),

x(t) ≤ x(t) ≤ x̄(t) t > 0 (10)

provided that x(0) ≤ x(0) ≤ x̄(0). If x ∈ L∞ and Assumptions 1 and 2.i are valid, then x, x ∈ L∞.

5 Control design

The idea of this work consists in solving the stabilization problem for the completely known system (9)

instead of (7). Under conditions of Theorem 2, if both x(t) and x̄(t) converge to zero, then the state x(t)

also has to converge to zero, and boundedness of x(t) follows by the same property of x(t) and x̄(t). In this

case the signal y(t) is treated in the system (9) as a state dependent disturbance.

Corollary 1 Let Assumptions 2.ii, 2.iii and 3 be satisfied, then

|y(t)| ≤ |C|(|x(t)|+ |x̄(t)|), ∀t ∈ R+.

Hence, one has to stabilize the system (9) uniformly (or robustly) with respect to a Lipschitz nonlinearity y.

The control is chosen as a conventional state linear feedback

u(t) =Kx(t) +Kx̄(t), ∀t ∈ [ti, ti+1),

u(ti+1) =Jx(t−i+1) + Jx(t−i+1), (11)

where K, K, J and J are four feedback gains to be designed. When substituting the control (11) into (9), it

follows that

.
x(t) = (A− LC +BK)x(t) + Ly(t) +BKx̄(t) + f(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC +DJ)x(t−i+1) +My(ti+1) (12)

+DJx(t−i+1) + g(ti+1)−MV,
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.
x(t) = (A− LC +BK)x(t) + Ly(t) +BKx(t) + f̄(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC +DJ)x(t−i+1) +My(ti+1)

+DJx(t−i+1) + g(ti+1) +MV,

and it is necessary to analyse stability of this nonlinear system. Let us introduce ε(t) = [xT (t) x̄T (t)]T and

the matrices

R =

[
A− LC +BK BK

BK A− LC +BK

]
,

S =

[
G−MC +DJ DJ

DJ G−MC +DJ

]
,

δ(t) =

[
f(t)− LV
f̄(t) + LV

]
, ς(ti+1) =

[
g(ti+1)−MV

g(ti+1) +MV

]
,

then one can rewrite the system (12) as

ε̇(t) =Rε(t) + δ(t) +

[
Ly(t)
Ly(t)

]
(13)

ε(ti+1) =Sε(t−i+1) + ς(ti+1) +

[
My(ti+1)
My(ti+1)

]
.

Theorem 3 Let Assumptions 1, 2.ii, 2.iii and 3 hold, x(0) ≤ x(0) ≤ x̄(0) and there exist matrices K ∈ Rm×n,
K ∈ Rm×n, J ∈ Rm×n, J ∈ Rm×n, P ∈ S2n

�0 and Q ∈ S2n
�0 such that the matrix inequality

eR
TθSTPeRθ − P +Q = 0 (14)

is satisfied for all θ ∈ [Tmin, Tmax], and

ρP,Q,W
√

2|M |+
√

2Tmax(1+

ρP,Q,W |S|%(R))|L|]%(R)|C| < 1,

where W = P + supθ∈[Tmin,Tmax] 2PSeRθQeR
TθSTP . Then system (13) is ISS with respect to the inputs δ

and ς.

Remark 1 The design of the control (11) may be affected by computational complexity problems. The feedback

gains K, K, J and J are chosen a priori to satisfy (14). The LMI (14) can be reformulated using convexity [2].

6 Application

In this section, the interval observer and the controller that have been designed in this work are applied to

Fault Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) of a complex uncertain system.

Hybrid electric vehicles (HEVs) can be classified with respect to their energy flow used for propulsion

as either series or parallel [24]. Combining these two systems one can obtain the so-called series-parallel

HEVs, which have the advantages of these two basic architectures, but have a more complicated structure.

The Power Split Device (PSD) that divides the power coming from various power sources into the drivetrain

(see Figure 1) plays a major role in the suitable energy management strategy of series-parallel HEVs [16]. A

hybrid powertrain with a high availability for heavy-duty military vehicles is considered for our application.

A series-parallel HEV architecture is considered along with the Ravigneaux geartrain as PSD [24].
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Figure 1: Series-parallel HEV configuration with
PSD [24] Figure 2: Considered system layout [24]

The considered architecture is comprised of a PSD mounted with shafts connected to two electric machines

(EM1 and EM2) through gearboxes, an Internal Combustion Engine (ICE) and transmission with clutch

through a gearbox [24] (see Figure 2). The role of a clutch is to connect the driving shaft to a driven shaft, so

that the driven shaft may be started or stopped at will, without stopping the driving shaft. In conventional

vehicles, the clutch allows for power to be transmitted from the ICE to the wheels in order to change the

speed ratio using the gearbox [24].

The behavior of the clutch is nonlinear, and two different states are considered: the slipped (open) one

and the locked (closed) one. During the locked position of the clutch, the system is considered as a single

equivalent inertia: the disks are rigidly coupled with each other.

With reference to the notations in Table 1, the locked position of the clutch can be modeled by the

following equations

JCL1
d

dt
ΩCL + fCL1ΩCL = TCL2 − TPC ,

TCL1 = TCL2 = TCL,

ΩPC = ΩCL.

Table 1: Parameters used in the Application

Param. Meaning

TCL1 Torque provided upstream of the clutch
TCL2 Torque provided downstream of the clutch
ΩCL Speed of the primary shaft after the clutch
ΩPC Speed of the secondary shaft before the clutch
fCL1 Friction coefficient of the shaft
JCL1 Inertia of the shaft

Let us consider a failure mode of the braking phase of the heavy-duty military vehicle with

TCL1 = TCL2 = 0, and assume that there is a coefficient κ = 1, which is added to the friction coeffi-

cient fCL1 at all instants t = 3k with k ∈ Z+. The case where a decrease in normal force leads to an increase

in friction is considered. This situation leads to a negative friction coefficient [25]. For the application,

the case with fCL1 = −0.5 and JCL1 = 1kg.m2 is considered. Dissipation losses, vibration, abrasion and

temperature effects are neglected. Then this failure mode can be represented by the following system with

x(t) = ΩCL and u(t) = TPC
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.
x(t) = ax(t) + bu(t) + f(t) ∀t 6= 3k, k ∈ Z+,

x(t) = hx(t−) + du(t) + g(t) ∀t = 3k, k ∈ Z+, (15)

y(t) = cx(t) + v(t),

where a, b, c, d and h are defined as follows

a =
−fCL1
JCL1

= 0.5, b =
−1

JCL1
= −1,

c = 10, d = −1, h =
−fCL1 + κ

JCL1
= 1.5,

and x(t) ∈ R, y(t) ∈ R are the state and the output, respectively. The external disturbances and noises f(t),

g(t) and v(t) for simulation are selected as follows

f(t) = β sin(2t), g(t) = δ sin(t),

v(t) = V cos(t),

where β = 10−3, δ = 10−2 and V = 2 are given parameters. Thus,

f(t) = −β, f(t) = β,

g(t) = −δ, g(t) = δ.

Assumption 3 is then satisfied. Assumption 2.ii is verified for l = 0: a − lc = 0.5 is Metzler but not

Hurwitz stable. Assumption 2.iii is verified for m = 0.14: g − mc = 0.1 is nonnegative. By applying

Matlab YALMIP toolbox [21] with discretization to solve the LMIs we found that Assumption 2.i holds for

all θ ∈ [0, 4.6051] . Then the system (9) with the minimum dwell-time θ ∈ [0, 4.6051] is ISS. Therefore

all conditions of Theorem 2 are satisfied and the interval observer (9) solves the problem of interval state

estimation for the Fault Detection and Isolation (FDI). The results of simulation are shown in Figure 3 where

the solid line represents the state x, and the dash lines are used for the interval estimates x and x which are

given in the logarithmic scale.

The default on the state is detectable and isolable since x appears in the Analytical Redundancy Rela-

tion (15) and the Fault signature matrix is distinguishable. Hence it is required to stabilize the state, which

represents the speed of the primary and secondary shaft after and before the clutch during the braking phase

of the heavy-duty military vehicle in the considered failure mode. The time response is required to be less

than 60 seconds. Equations 14 and 6 are satisfied for k = 0.1, k = 0.65, j = 0.1 and j = −0.15 . The matrices

R =

[
−0.15 −0.1
−0.65 0.4

]
, S =

[
0.25 −0.1
0.15 0

]
satisfy all conditions of Theorem 3 for all θ ∈ [0, 4.6051] and the controller (11) solves the problem of

stabilization of the speed ΩCL. Then the system (7), (9), (11) is ISS with respect to the inputs f and g. The

results of simulation are shown in Figure 4 where the solid line represents the state x, and the dash lines are

used for the interval estimates x and x. From these results we can conclude that the speed ΩCL is stabilized

and the time response which is tR ≈ 32 seconds meet the time response requirements.
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Figure 3: Results of the simulation of the interval
state estimation

Figure 4: Results of the simulation of the stabiliza-
tion

7 Conclusion

The problems of interval estimation and robust stabilization for a class of linear hybrid systems subject

to signal uncertainties have been considered in this paper. The goal of the proposed approach is to take

into account the presence of disturbance or uncertain parameters during the synthesis. A new approach for

output feedback design is proposed for this class of systems where an interval observer is used instead of a

conventional one. Knowing the estimates of the upper and the lower bounds of the state, the problem of

output stabilization is reduced to a problem of robust state feedback design. The stability can be checked

using linear matrix inequalities (LMIs). Efficiency of the proposed approach is shown on computer simulations

for Fault Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) of a power split device with

clutch for heavy-duty military vehicles. Future work can focus on nonlinear hybrid systems with parameter

uncertainties, and the reformulations of the conditions of the LMIs (14) and (6) using convexity.
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