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Abstract: Recently, two different copula-based approaches have been proposed to estimate the conditional
quantile function of a variable Y with respect to a vector of covariates X: the first estimator is related to
quantile regression weighted by the conditional copula density, while the second estimator is based on the
inverse of the conditional distribution function written in terms of margins and the copula. Using empirical
processes, we show that even if the two estimators look quite different, they converge to the same limit. Also,
we propose a bootstrap procedure for the limiting process in order to be able to construct uniform confidence
bands around the conditional quantile function.

Keywords: Conditional quantile function, copula, quantile regression, bootstrap

Résumé : Récemment, deux approches différentes basées sur la fonction copule ont été proposées pour
estimer la fonction des quantiles conditionnels d’une variable Y par rapport à un vecteur de covariables X:
le premier estimateur est lié au modèle de régression des quantiles pondéré par la densité de la copule
conditionnelle, tandis que le second estimateur est basé sur l’inverse de la distribution conditionnelle écrite en
termes des marges et de la copule. En s’appuyant sur la théorie des processus empiriques, nous montrons que
les deux estimateurs, même s’ils semblent différents, convergent en fait vers la même limite. Nous proposons
aussi une méthode de ré-échantillonage permettant la construction d’une bande de confiance uniforme autour
de la fonction des quantiles conditionnels.

Mots clés : Quantile conditionnel, copule, régression des quantiles, bootstrap
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1 Introduction

Copulas, or dependence functions, are very popular to model the dependence between variables, because one

can remove the effect of marginal distributions, provided the latter are continuous. This is why dependence

measures based on the copula are so robust, compared to the traditional Pearson correlation coefficient.

Copulas also enter naturally when computing the conditional distribution function of a random variable Y

given covariates X = (X1, . . . , Xd). See, e.g., Bouyé and Salmon (2002); Bouyé and Salmon (2009) when

d = 1. This relation between the conditional distribution of Y given X = x and the associated copula was used

recently to propose conditional quantile estimators, as alternative to the quantile regression methods (Koenker

and Bassett, 1978; Koenker et al., 1994; Koenker, 2005) or the parameter approach (Chavez-Demoulin and

Davison, 2005; Neville et al., 2011; Nasri et al., 2013, 2016).

A first copula-based estimator of the conditional quantile was proposed by Noh et al. (2015) and is based

on a weighted quantile regression method. The asymptotic limiting distribution was proved to be Gaussian.

More recently, a much more intuitive estimator of the plug-in type was proposed in Kraus and Czado (2017);

Nasri and Bouezmarni (2017), who compared the estimated MISE of various competitors, including the

estimator proposed by Noh et al. (2015). From the simulations performed in Kraus and Czado (2017); Nasri

and Bouezmarni (2017), it seems that the plug-in estimator performs better than the other copula-based

estimator. However the asymptotic behavior of this estimator was not discussed.

In Section 2, we describe the estimators of Noh et al. (2015) and Kraus and Czado (2017) and we discussed

their implementation. Another closely related parametric estimator proposed in Nasri and Bouezmarni (2017)

is also discussed. In Section 3, we study the asymptotic limiting distribution of the estimators viewed as

stochastic processes over (0, 1) and we show that the two semi-parametric estimators have the same limiting

distribution. We also propose a bootstrapping method for constructing uniform confidence bands for the

conditional quantile functions.

2 Estimation of conditional quantiles

One way to model the dependence between a variable of interest Y and covariates X is to use dependence

functions called copulas; see, e.g., Nelsen (1999). More precisely, suppose that (Y1,X1), . . . , (Yn,Xn) are i.i.d.

observations of (Y,X) with (unconditional) continuous margins (F0, F1, . . . , Fd) and copula C with density c.

By definition, a copula is a joint distribution function of uniform random variables. According to Sklar

(1959), since the margins are continuous, there exists a unique copula C so that the joint distribution function

of (Y,X) can be written in terms of the copula and the margins viz.

P (Y ≤ y,X ≤ x) = C{F0(y),F(x)}, y ∈ R,x ∈ Rd, (1)

where F(x) = (F1(x1), . . . , Fd(xd)). The copula C is the cdf of (U,V), where U = F0(Y ) and V = F(X).

2.1 Copula-based conditional quantiles

Denote by H(y,x) the conditional distribution function of Y given X = x. The expression of the conditional

distribution function H in terms of the copula function and the marginal distributions appeared explicitly

first in Bouyé and Salmon (2002); Bouyé and Salmon (2009) in the case d = 1. However, it is easy to extend

it to any d ≥ 1, and one can easily show that

H(y,x) = P(Y ≤ y|X = x) = C{F0(y),F(x)}, y ∈ R, x ∈ Rd, (2)

where C(u,v) is the conditional distribution function of U given V ≡ F(X) = v ≡ F(x). In fact, according

to Rémillard (2013, Proposition 8.6.2), for u ∈ [0, 1] and v = (v1, . . . , vd) ∈ (0, 1)d,

C(u,v) =
∂v1 · · · ∂vdC (u, v1, . . . , vd)

∂v1 · · · ∂vdC (1, v1, . . . , vd)
,
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and c(u,v) = ∂uC(u,v) = c(u,v)/
∫ 1

0
c(z,v)dz, so C(u,v) =

∫ u
0
c(z,v)dz/

∫ 1

0
c(z,v)dz.

Now, the associated conditional quantile function Q(α,x), α ∈ (0, 1), is given by

Q(α,x) = inf{y ∈ R : H(y,x) ≥ α}. (3)

Using (2), we get that Q depends only on the margins F0, F and the copula C viz.

Q(α,x) = F−1
0 [Γ{α,F(x)}] , (4)

where Γ(α,v) is the quantile of order α of the distribution function C(u,v), u ∈ [0, 1], with v ∈ (0, 1)d. Note

that (4) is the basic equation for defining the plug-in estimator.

Next, using (2) and Koenker and Bassett (1978), one gets that Q(α,x) is also a solution of

arg min
a

E [ρα (Y − a) c {F0(Y ),F(x)}] , (5)

where ρα(y) = y {α− I (y < 0)} = (1 − α)|y|I(y < 0) + αyI(y ≥ 0), y ∈ R, and I is the indicator function.

The latter equation is used by Noh et al. (2015) to construct an estimator of Q(α,x).

2.2 Estimation of the copula and the margins

To estimate the conditional quantile using copulas, one needs to estimate the copula C associated with (Y,X)

or (U,V), and the margins F0,F. First, one can assume that Yi = F−1
0 (Ui) and Xij = F−1

j (Vij), where

(U1,V1), . . . , (Un,Vn) are i.i.d. observations from copula C.

2.2.1 Estimation of the copula

For sake of simplicity, we assume that the copula belongs to a parametric family {Cθ : θ ∈ O}, so the esti-

mation of the copula is given as Cθn , where θn is a rank-based consistent estimator of the true parameter θ0.

Consequently, the quantile function Γ(α,v) ≡ Γθ(α,v) can be estimated by Γθn(α,v), α ∈ (0, 1), v ∈ (0, 1)d.

The parametric family approach is also what Noh et al. (2015) and Kraus and Czado (2017) considered. In

fact, in the case of several covariates, Kraus and Czado (2017) used a particular case of a parametric copula

family, namely a D-vine model, which is a construction of a copula using a given set of parametric bivariate

copula families. Note that instead of considering a parametric family of copulas, one could estimate the

density of the copula non-parametrically, so that all the conditional quantile estimators discussed here could

also be computed. However the convergence is slower and it often suffers from the curse of dimensionality

(Bouezmarni et al., 2013; Bouezmarni and Rombouts, 2009, 2010; Janssen et al., 2016). The next step is to

estimate the margins.

2.2.2 Estimation of the margins

Motivated by the IFM method, one could use parametric families to estimate each of the margins. This

would make sense in several applications. For copula-based quantile estimators, this approach was suggested

in Nasri and Bouezmarni (2017), where a parametric copula-based estimator was proposed. One can also

consider non-parametric estimators, namely for any y ∈ R and any x = (x1, . . . , xd) ∈ Rd,

Fn0(y) =
1

n+ 1

n∑
i=1

I(Yi ≤ y), Fnj(xj) =
1

n+ 1

n∑
i=1

I(Xij ≤ xj), j ∈ {1, . . . , d}, (6)

and set Fn(x) = (Fn1(x1), . . . , Fnd(xd)). Further note that Fn0(y) = Dn ◦ F0(y), where Dn is the empirical

distribution distribution function of the Ui’s and Fn(x) = Bn ◦ F(x), where Bn is the vector of empirical

marginal distribution functions of V1, . . . ,Vn. Noh et al. (2015) proposes a kernel-based estimator F̂n0 for F0

such that n1/2 supy |F̂n0(y)−Fn0(y)| Pr→ 0 as n→∞. This was used in Kraus and Czado (2017). Even if F̂n0

is continuous, the precision of the estimation might not be better and there is always the question of the

choice of the bandwidth. This is why we will use the estimators given by (6). For the rest of the section,

let x be given and set v = F(x). It then follows that Fn(x) = Bn(v). For sake of simplicity, x or v might

be omitted. We present the copula-based estimators we will study.
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2.3 Weighted quantile regression estimator

Surprisingly, the natural plug-in estimator did not appeared first in the literature. In fact, Noh et al. (2015)

proposed a copula-based model mixed with a quantile regression approach using (5) viz.

Qn,wqr(α,x) = arg min
a

[
n∑
i=1

ρα (Yi − a) cθn{Fn0(Yi),Fn(x)}

]
, (7)

even if the solution is not necessarily unique. In fact they take cθn(u,v) instead of taking cθn(u,v) but it does

not change anything. However, a unique way to define a solution to (7) is by using the empirical weighted

distribution function Hn defined for any y ∈ R by

Hn(y) =

n∑
i=1

I(Yi ≤ y)wi,n = Gn{F0(y)}, with Gn(u) =

n∑
i=1

I(Ui ≤ u)wi,n,

where, for any i ∈ {1, . . . , n},

wi,n =
cθn{Fn0(Yi),Fn(x)}∑n
j=1 cθn{Fn0(Yj),Fn(x)}

=
cθn{Fn0(Yi),Fn(x)}∑n
j=1 cθn{Fn0(Yj),Fn(x)}

=
cθn{Dn(Ui),Bn(v)}∑n
j=1 cθn{Dn(Uj),Bn(v)}

.

The estimator Qn,wqr(α,x) is then defined as the quantile of level α of Hn, i.e.,

Qn,wqr(α,x) = H−1
n (α) = F−1

0 ◦G−1
n (α), α ∈ (0, 1). (8)

If â = arg mina [
∑n
i=1 ρα (Yi − a) cθn{Fn0(Yi),Fn(x)}], then Hn(â) ≥ α ≥ Hn(â−). Hence H−1

n (α) sat-

isfies (7).1 It is easy to show that Hn is a consistent estimator of the distribution function H given by

H(y) = H(y,x) = C{F0(y),v}, y ∈ R. Also Gn is a consistent and asymptotically unbiased estimator of the

distribution function G given by G(u) = C(u,v), u ∈ [0, 1].

2.4 Plug-in estimators

Expression (4) provides a natural way for estimating the conditional quantile. We already mentioned that

we will estimate the margins by using the empirical distribution functions (6), but for sake of completeness,

we describe both parametric and semi-parametric estimators of Q(α,x), as they are based on the following

plug-in estimation Cθn
{
F̂0(y), F̂(x)

}
of H(y,x).

2.4.1 Parametric estimator

In the parametric approach, we assume that the marginal distributions F0 and F, belong to parametric

families, denoted by F0(·,β0) and F(·,β) respectively. If βn0 and βn are consistent estimators of β0 and β,

then for any y ∈ R, Ȟn(y) = Cθn {F0(y,βn0),F(x,βn)} is clearly a consistent estimator of H(y) = H(y,x),

yielding the natural parametric estimator

Qn,p(α,x) = Ȟ−1
n (α) = F−1

0 [Γθn{α,F(x,βn)},βn0] , α ∈ (0, 1). (9)

Remark 1 Two methods for estimating the parameters are developed in the literature. First, we can esti-

mate simultaneously β0, β and θ using the complete maximum likelihood, see, e.g. Shih and Louis (1995).

However, this method requires intensive calculations and sometimes the numerical optimization problem is

difficult to solve. Second, Xu (1996) and Joe (1997) proposed a two-step process, called inference function

for margins (IFM), in order to estimate the marginal functions and copula parameters. This method con-

sists in the first step in estimating the marginal functions parameters, followed in the second step by the

estimation of the copula parameters through the pseudo-observations Ûi = F0(Yi,βn0) and V̂ij = Fj(Yi,βnj),

j ∈ {1, . . . , d}, i ∈ {1, . . . , n}. Most of the time, this is done by maximizing the likelihood density at these

pseudo-observations. The IFM method is often used because it is easy to implement. Note that as discussed

in Noh et al. (2013), if the estimation of the margins is incorrect, the estimation of the copula parameter θ

can then be biased.

1If Hn ◦H−1
n (α) = α, then every {y;Hn(y) = α} =

[
H−1

n (α), y0
]
, for some y0, also satisfies (8). If Hn ◦H−1

n (α) > α, then

H−1
n (α) is the unique solution of (8).
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2.4.2 Semiparametric estimator

Here, the marginal distributions are estimated using (6). To estimate the copula parameters using a rank-

based estimator, one can use for example the pseudo-MLE method proposed by Genest et al. (1995) and

Shih and Louis (1995). First, a consistent estimation H̃n of H is given by

H̃n(y) = Cθn{Fn0(y),Fn(x)} = G̃n ◦ F0(y), y ∈ R, (10)

where G̃n(u) = Cθn{Dn(u),Bn(v)}, which is a consistent estimate of G(u) = C(u,v), u ∈ [0, 1]. As a result,

the estimation of Q(α,x) is defined for any α ∈ (0, 1) by

Qn,sp(α,x) = H̃−1
n (α) = F−1

n0 [Γθn{α,Fn(x)}] = F−1
0 ◦ G̃−1

n (α). (11)

3 Asymptotic behavior of the copula-based estimators

In this section we find the asymptotic distribution of the conditional quantile functions for the proposed

estimators, extending the results of Noh et al. (2015). As a result, we obtain that the plug-in estimator and

the weighted quantile regression estimator converge to the same limit. We also propose a different bootstrap

algorithm that can be used to construct uniform confidence bands about the conditional quantile function.

As before, x is fixed and v = F(x). Recall that H(y) = C{F0(y),v} = G◦F0(y), for any ∈ R. Throughout

this section, it is assumed that the density f0 = F ′0 exists and is positive everywhere. If the support is not R,

just transform Y accordingly. This way F0(y) ∈ (0, 1) for any y ∈ R. Also suppose that the density c of the

(d+ 1)-dimensional copula C is positive on (0, 1)d+1. Then H is continuously differentiable and with density

h satisfying h(y) = f0(y)c(u,v) > 0, for any y ∈ R. Further write Q(u) = H−1(u) and Γ(u) = G−1(u),

u ∈ (0, 1).

3.1 Convergence of the parametric estimator

In what follows, ∇β0F0(y,β0) is a p0-dimensional column vector, ∇βF is a p × d matrix, ∇vCθ(u,v) is a

d-dimensional column vector, ∇θCθ(u,v) = Ċθ(u,v) is a q dimensional column vector which represent the

partial derivatives with respect to β0, β, v and θ of F0, F, Cθ and Cθ respectively. Throughout this section, it

is assumed that these derivatives are continuous. Also, we assume that cθ(u,v) is continuously differentiable

with respect to u ∈ (0, 1).

Set Bn0 = n1/2(βn0 − β0), Bn = n1/2(βn − β), and Θn = n1/2(θn − θ0). Finally, define Ȟn(y) =

n1/2
{
Ȟn(y)−H(y)

}
for any y ∈ R, and Qn,p(u) = n1/2 {Qn,p(u)−Q(u)}, u ∈ (0, 1). The proof of the

following theorem, giving the asymptotic behavior of the parametric quantile process, follows readily from

the Delta method (van der Vaart and Wellner, 1996). To simplify notations, set g(u) = c(u,v) = cθ0(u,v),

G(u) = Cθ0(u,v), Ċ(u,v) = ∇θCθ(u,v)|θ=θ0
and ∇vCθ0(u,v) = ∇vC(u,v). Further set F0 = F0(·,β0) and

F = F(·,β).

Theorem 1 Assume that (Bn0,Bn,Θn) converges in law to a centered Gaussian vector (B0,B,Θ).2 Then,

as n→∞, Ȟn converges in D(R)3 to a continuous centered Gaussian process Ȟ, denoted Ȟn  Ȟ = Ǧ ◦F0,

where

Ǧ(u) = Θ>Ċ(u,v) + B>∇βF
{
F−1(v),β

}
∇vC(u,v) + g(u)B>0 ∇β0

F0

{
F−1

0 (u),β0

}
, u ∈ [0, 1].

Furthermore, Qn,p  Qp in D(0, 1), where Qp(u) = − Ȟ{Q(u)}
h{Q(u)} , u ∈ (0, 1). In particular, for any [a, b] ⊂

(0, 1), n1/2 sup
u∈[a,b]

|Qn,p(u)−Q(u)| converges in law to sup
u∈[a,b]

∣∣∣∣ Ȟ{Q(u)}
h{Q(u)}

∣∣∣∣.
2See, e.g. Joe (1997) for sufficient regularity conditions.
3Convergence in D(I) means that for any close interval [a, b] ⊂ I, the process converges in law in the Skorokhod topology on

D([a, b]). In particular, any continuous function of the process converges in distribution. See, e.g., Billingsley (1999).
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3.2 Convergence of the semiparametric estimator

We now study the convergence of the conditional quantile process Qn,sp(u) = n1/2 {Qn,sp(u)−Q(u)},
u ∈ (0, 1). Before stating the theorem, define Dn(u) = n1/2{Dn(u) − u}, and BBBn(v) = n1/2(Bn(v) − v),

u ∈ [0, 1], v ∈ (0, 1)d. The proof of this theorem follows from the Delta method (van der Vaart and Wellner,

1996).

Theorem 2 Assume (Dn,BBBn,Θn) converges in D
(
[0, 1]1+d × Rq

)
to centered Gaussian process (D,BBB,Θ).4

Then, as n→∞, G̃n converges in D ([0, 1]) to G̃ = H + Dg, where

H(u) = Θ>Ċ(u,v) +BBB(v)>∇vC(u,v), u ∈ [0, 1].

Furthermore, Qn,sp  Qsp in D(0, 1), where Qsp(u) = − G̃{Γ(u)}
h{Q(u)} , u ∈ (0, 1). In particular, for any [a, b] ⊂

(0, 1), n1/2 sup
u∈[a,b]

|Qn,sp(u)−Q(u)| converges in law to sup
u∈[a,b]

∣∣∣∣∣ G̃{Γ(u)}
h{Q(u)}

∣∣∣∣∣.
A way to bootstrap the process G̃ is given next.

Algorithm 1 (Bootstrapping G̃) First, estimate θ using a regular rank-based estimator θn of the form θn =

Tn(U1,n,V1,n, . . . , Un,n,Vn,n) in the sense of Genest and Rémillard (2008), and set vn = Fn(x).

Then, for each k ∈ {1, . . . , N}, repeat the following steps:

• generate (U?i ,V
?
i ) ∼ Cθn , i ∈ {1, . . . , n};

• compute the associated empirical margins D?
n, F?n;

• calculate the pseudo-observations U?i,n = D?
n (U?i ), V?

i,n = F?n (V?
i ), i ∈ {1, . . . , n};

• estimate θ?n = Tn
(
U?1,n,V

?
1,n, . . . , U

?
n,n,V

?
n,n

)
;

• define G̃(k)
n (u) = n1/2

[
Cθ?n {D

?
n(u),B?

n(vn)} − Cθn(u,vn)
]
, u ∈ [0, 1].

The next theorem shows the consistency of the proposed bootstrap and is proven in Appendix A.

Theorem 3 An n→∞, G̃(1)
n , . . . , G̃(N)

n converge to independent copies of G̃.

Remark 2 Note that as shown in Genest and Rémillard (2008), most interesting estimators are regular. In

particular, estimators of the class R1: this means that there exists a continuously differentiable function J

so that E[J(U,V)] = 0 and Θn = n−1/2
∑n
i=1 J{Dn(Ui), Bn(Vi)} + oP (1). For example, pseudo-maximum

likelihood estimators, as defined in Genest et al. (1995), belong to this class.

3.2.1 Construction of the uniform 100(1− α)% confidence band for Q

To construct the uniform confidence band on [a, b] ⊂ (0, 1), we generate N processes G̃(k), k ∈ {1, . . . , N}
and they are evaluated at u ∈ A = {a + j(b − a)/m; j = 0, . . . ,m}, where m is fixed but large enough (say

m = 1000). The density f0 is estimated with a Gaussian kernel estimator fn0, so h(u) = h◦Q(u) is estimated

by hn(u) = fn0 ◦Qn,sp(u)cθn(u,vn), when vn = Fn(x). One then compute

bk,n = max
u∈A

∣∣∣G̃(k)(u)
∣∣∣ /hn(u), k ∈ {1, . . . , N},

and let bn(α) be the associated quantile of order 1 − α. The uniform confidence band about Q is given

by Qn,sp(u) ± n−1/2bn(α), u ∈ [a, b]. A 95% confidence interval about a single point Q(u) is given by

Qn,sp(u)± n−1/21.96σ̂/hn(u) where σ̂2 is the sample variance of the values G̃(k)(u), k ∈ {1, . . . , N}.
4This assumption is satisfied for most well-behaved rank-based estimator of θ. See, e.g., Genest and Rémillard (2008).



6 G–2017–14 Les Cahiers du GERAD

3.3 Convergence of the weighted quantile regression estimator

In this section, for u ∈ (0, 1) we study the convergence of the conditional quantile process Qn,wqr(u) =

n1/2 {Qn,wqr(u)−Q(u)}. It extends the results in Noh et al. (2015), where only the convergence at a

single value was proven. In order to formulate the result, we need to define another sequence of stochastic

processes, namely
◦
Gn(u) = n−1/2

n∑
i=1

{I(Ui ≤ u)g(Ui)−G(u)} , u ∈ [0, 1].

It follows from the theory of stochastic processes (van der Vaart and Wellner, 1996) that (Dn,BBBn,
◦
Gn) con-

verges in D
(
[0, 1]2+d

)
to centered Gaussian processes (D,BBB,

◦
G). The proof of the following theorem is given

in Section B. It shows that the two estimators have the same asymptotic distribution.

Theorem 4 Assume that (Dn,BBBn,
◦
Gn,Θn) converges in D

(
[0, 1]2+d × Rq

)
to centered Gaussian processes

(D,BBB,
◦
G,Θ). Then, as n→∞, Gn converges in D ([0, 1]) to G = G̃. Furthermore, Qn,wgr  Qwqr in D(0, 1),

where Qwqr(u) = −G{Γ(u)}
h{Q(u)} , u ∈ (0, 1). In particular, for any [a, b] ⊂ (0, 1), n1/2 sup

u∈[a,b]

|Qn,wqr(u)−Q(u)|

converges in law to sup
u∈[a,b]

∣∣∣∣G{Γ(u)}
h{Q(u)}

∣∣∣∣.
Remark 3 Using our notations, the bootstrap algorithm proposed in Noh et al. (2015) yields values Q

(k)
n,wqr,

k ∈ {1, . . . , N}, so that Q(k)
n,wqr = n1/2

{
Q

(k)
n,wqr −Q

}
converges to Q(k)

wqr+Qwqr, where Q(k)
wqr is an independent

copy of Qwqr. It then follows that their algorithm works for estimating the asymptotic variance σ2
α, in the

sense that what they call σ̂2
boot satisfies σ̂2

boot ≈
σ2
α

n if n and N are large. However, their procedure is slower

than the one we propose since we do not need to compute Y ?i = F−1
n0 (U?i ) and X?

i = F−1
n (V?

i ), i ∈ {1, . . . , n}.
Also computing H̃n is faster than computing Hn.

4 Conclusion

We have shown that two seemingly different estimators for the conditional quantile function have in fact

the same limit. However, the plug-in estimator is easier and faster to implement, in addition to being more

accurate for small samples, as shown by simulations in Kraus and Czado (2017); Nasri and Bouezmarni

(2017). Therefore, this is the one we recommend.

A Proof of Theorem 3

Proof. Using Genest and Rémillard (2008) and Theorem 2, we get that

(D?n,BBBn,BBB
?
n,Θn,Θ

?
n) 

(
D⊥,BBB,BBB⊥,Θ,Θ + Θ⊥

)
,

where
(
D⊥,BBB⊥,Θ⊥

)
is an independent copy of (D,BBB,Θ). Hence, since n1/2{B?

n(vn)−v} = BBB?n(vn)+BBBn(v),

it follows from the Delta Method and Theorem 2 that

n1/2
[
Cθ?n {D

?
n(u),B?

n(vn)} −G(u)
]

= Ċ(u, v)>Θ?
n +∇vC(u,v){BBB?n(vn) +BBBn(v)}

+g(u)D?n(u) + oP (1)

 Ċ(u, v)>
(
Θ⊥ + Θ

)
+∇vC(u,v){BBB⊥(v) +BBB(v)}+ g(u)D⊥(u)

= Ċ(u, v)>Θ⊥ +∇vC(u,v)BBB⊥(v) + g(u)D⊥(u) + H(u)

= G̃⊥(u) + H(u),

where G̃⊥ is an independent copy of G̃, while n1/2 {Cθn(u,vn)−G(u)}  H. As a result, G̃(1)
n , . . . , G̃(N)

n

converge to independent copies of G̃.
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B Proof of Theorem 4

Set ċ(u,v) = ∇θcθ(u,v)|θ=θ0
, ∇vcθ0(u,v) = ∇vc(u,v). It suffices to prove the convergence of Gn(u) =√

n(Gn(u)−G(u)). We can write

Gn(u) =
1

n

n∑
i=1

I(Ui ≤ u)cθn{Dn(Ui),Bn(v)}/sn,

where sn = 1
n

∑n
i=1 cθn{Dn(Ui),Bn(v)}.

Next, set rn(u) = cθn{Dn(u),BBBn(v)}−g(u)− {Θ
>
n ċ(u,v)+g′(u)Dn(u)+∇vc(u,v)>BBBn(v)}

n1/2 , u ∈ [0, 1]. By hypoth-

esis, as n→∞, n1/2 sup
u∈[0,1]

|rn(u)| converges in probability to 0. It then follows that

Gn(u) =
1

n1/2sn

n∑
i=1

I(Ui ≤ u){cθn{Dn(Ui),Bn(v)} − g(Ui)}+
◦
Gn(u)/sn −G(u)n1/2(sn − 1)/sn

= {Ln(u) +
◦
Gn(u)−G(u)Ln(1)−G(u)

◦
Gn(1)}/sn,

where Ln(u) = n−1/2
∑n
i=1 I(Ui ≤ u){cθn{Dn(Ui),Bn(v)} − g(Ui)}. Now,

Ln(u) = Θ>n

{
1

n

∑
i=1

I(Ui ≤ u)ċ(Ui,v)

}
+

1

n

n∑
i=1

I(Ui ≤ u)Dn(Ui)g
′(Ui)

+BBBn(v)>

{
1

n

n∑
i=1

I(Ui ≤ u)∇vc(Ui,v)

}
+ oP (1)

= Θ>n Ċ(u,v) +

∫ u

0

Dn(z)g′(z)dz +BBBn(v)>∇vC(u,v) + oP (1).

Next, assuming that ug(u)→ 0 as u→ 0, we have∫ u

0

Dn(z)g′(z)dz = n−1/2
n∑
i=1

∫ u

0

g′(z){I(Ui ≤ z)− z}dz

= n−1/2
n∑
i=1

I(Ui ≤ u){g(u)− g(Ui)} − n1/2{ug(u)−G(u)}

= g(u)Dn(u)−
◦
Gn(u).

As a result, Ln  H + gD−
◦
G = G̃−

◦
G. so, Gn  G = G̃ in D([0, 1]).

C Supplementary material on copula families

C.1 Conditional quantile function for common Archimedean copula families

Elliptical copulas are simply copulas associated with elliptical distributions through Sklar’s representation (1).

Since a copula is invariant by monotone increasing transformations, an elliptical copula is typically associated

with a (d+1)-dimensional random vectorZ having representationZ = R1/2AS, whereR is a positive random

variable independent of S, which is uniformly distributed of the unit sphere of Rd+1, and AA> = R, where

R =

(
1 β>

β Σ

)
is an invertible correlation matrix. In fact, R is the correlation matrix of Z iff E(R) <∞.

However, in general, Z is never observed. Fortunately, there is a relationship between R and the matrix T
of Kendall’s tau associated with the copula (Fang et al., 2002) making it possible to estimate R: for any

j, k ∈ {1, . . . , d + 1}, τjk = 2
π arcsin(Rjk). For details on the estimation, see, e.g. Rémillard (2013, Section

8.7.2.1). We now present the quantile functions for the two most popular elliptical copulas: the Gaussian

copula and the Student copula. The details are given in Appendix D.
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Gaussian copula with parameter R Denote by Φ the distribution function of a standard Gaussian variate.

Then, setting σ2 = 1− β>Σ−1β, we have, for any α, u ∈ (0, 1), and any v = (v1, . . . , vd) ∈ (0, 1)d,

Γ(α,v) = Φ

{
σΦ−1(α) +

d∑
k=1

(Σ−1β)kΦ−1(vk)

}
. (12)

Student copula with ν degrees of freedom and parameter R Let tµ be the distribution function of a

Student random variable with µ > 0 degrees of freedom. Then, setting σ̃2 =
(
1− β>Σ−1β

) (
1 + w>Σ−1w

ν

)
,

we have that for any α, u ∈ (0, 1), and any v = (v1, . . . , vd) ∈ (0, 1)d,

Γ(α,v) = tν

{
σ̃t−1
ν+d(α) +

d∑
k=1

(Σ−1β)kt
−1
ν (vk)

}
. (13)

D Computations for the Gaussian and Student copulas

Let Z = (Z0,W) ∼ Nd+1(0,R), with R =

(
1 β>

β Σ

)
. Then ε = Z0−β>Σ−1W ∼ N(), σ2) is independent

of W, and σ2 = 1−β>Σ−1β. Thus the conditional distribution of Z0 given W = w is N(β>Σ−1w, σ2). As

a result, C{Φ(z0),Φ(w1), . . . ,Φ(wd)} = Φ
(
z0−β>Σ−1w

σ

)
, yielding formula (12).

Similarly, if Z = (Z0,W) has a Student distribution with ν > 0 degrees of freedom and parameter

R =

(
1 β>

β Σ

)
, denoted Z ∼ Td+1(ν,R), then its density is proportional to

(
1 + z>R−1z

ν

)− (ν+d+1)
2

,

z = (z0,w) ∈ Rd+1. Thus, the conditional distribution of Z0 given W = w is the same as β>Σ−1w + σ̃Z,

where σ̃2 =
(
1− β>Σ−1β

) (
1 + w>Σ−1w

ν

)
and Z ∼ T1(ν̃), with ν̃ = ν + d degrees of freedom (Simard and

Rémillard, 2015, Appendix B). It follows from (2) that

C{tν(z0), tν(w1), . . . , tν(wd)} = tν̃

(
z0 − β>Σ−1w

σ̃

)
.

Formula (13) is then easily obtained.
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