
Les Cahiers du GERAD ISSN: 0711–2440

Computational comparison of several algorithms
for the minimum cost perfect matching problem

S. Wøhlk
G. Laporte

G–2017–11

February 2017

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2017-11) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2017-11) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
– Bibliothèque et Archives Canada, 2017

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
– Library and Archives Canada, 2017

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-11
https://www.gerad.ca/fr/papers/G-2017-11
https://www.gerad.ca/en/papers/G-2017-11
https://www.gerad.ca/en/papers/G-2017-11




Computational comparison of
several algorithms for the min-
imum cost perfect matching
problem

Sanne Wøhlk a

Gilbert Laporte b

a CORAL - Centre for Operations Research and Logistics,
Department of Economics and Business Economics,
Aarhus University, Fuglesangs allé 4, DK-8210 Aarhus V,
Denmark

b GERAD and Canada Research Chair in Distribution
Management, HEC Montréal, 3000, chemin de la Côte-
Sainte-Catherine, Montréal, Canada H3T 2A7

sanw@econ.au.dk

gilbert.laporte@cirrelt.ca

February 2017

Les Cahiers du GERAD

G–2017–11

Copyright c© 2017 GERAD



ii G–2017–11 Les Cahiers du GERAD

Abstract: The aim of this paper is to computationally compare several algorithms for the Minimum Cost
Perfect Matching Problem on an undirected graph. Our work is motivated by the need to solve large
instances of the Capacitated Arc Routing Problem (CARP) arising in the optimization of garbage collection
in Denmark. Common heuristics for the CARP involve the computation of matchings of the odd-degree nodes
of a graph. The algorithms used in the comparison include the CPLEX solution of an exact formulation, a
recent implementation of the Blossom algorithm, as well as six constructive heuristics. The Blossom algorithm
works well on graphs containing fewer than 4000 nodes and outperforms CPLEX in terms of computing time.
For larger instances, we found that one of the constructive heuristics consistently exhibits the best behavior
compared with the other five.

Keywords: Perfect Matching Problem, Blossom algorithm, Capacitated Arc Routing Problem, rural post-
man problem, garbage collection

Acknowledgments: This project is funded by the Danish Council for Independent Research - Social Sciences.
Project “Transportation issues related to waste management” [grant number 4182–00021] and by the Natural
Sciences and Engineering Research Council of Canada [grant number 2015–06189]. This support is gratefully
acknowledged.



Les Cahiers du GERAD G–2017–11 1

1 Introduction

The purpose of this paper is to provide a computational comparison of several algorithms for the Minimum

Cost Perfect Matching Problem, simply referred to as the Matching Problem in what follows. The problem

is defined on an undirected complete graph G(N,E), where N is the set of n nodes (n is even) and E is the

set of edges e = (i, j), where i, j ∈ N and i < j. For each node i ∈ N , we denote by δ(i) the set of edges

incident to i. Let ce = cij be a non-negative weight associated with edge e = (i, j). In practice this weight

represents an edge length or a travel cost along it. Given a node i, all other nodes are called neighbors of i

and we refer to the node closest to i as its nearest neighbor.

A complete matching is defined as a set of edges M ⊂ E for which M ∩ δ(i) = 1 for all i ∈ N . We

denote by c(M) =
∑
e∈M ce the cost of matching M . The Matching Problem is to determine a minimum

cost complete matching M∗ in G.

To formally describe the Matching Problem, we define binary variables xe equal to 1 if and only if edge e

belongs to the matching. The problem is then to

minimize
∑
e∈E

cexe

subject to
∑
e∈δ(i)

xe = 1 ∀i ∈ N (1)

xe ∈ {0, 1} ∀e ∈ E. (2)

Our work is motivated by the need to solve large-scale instances of the Capacitated Arc Routing Problem

(CARP) arising in the optimization of garbage collection routes in Denmark. An effective heuristic for the

CARP is to first solve a Rural Postman Problem (RPP) by ignoring the vehicle capacity constraints, and then

cut the RPP solution into feasible routes as was done, for example in [5] and [10]. By optimal partitioning

of the RPP solution, an approximation algorithm with fixed ratio can be obtained for the CARP [12] A

good heuristic for the RPP consists of first identifying connected components of required edges (those with

a positive demand), connecting these components by means of a minimum cost spanning tree, and then

matching the odd-degree nodes of the graph induced by the connected components and the spanning tree [4].

The Matching Problem can be solved exactly by CPLEX and by the Blossom algorithm [3]. The most

resent publicly available implementations of the latter are [2, 8]. The matching problem has also been

investigated from an approximation point of view and the most recent algorithm has a worst-case performance

ratio of c(M)/c(M∗) ≤ log2(n) [11]. Either of the exact algorithms can be time consuming. In some

applications, such as ours, it is desirable to compute high quality solutions within short computing times.

We have therefore implemented several greedy heuristics that meet this requirement. In this spirit, we did

not develop post-optimization procedures which would typically result in higher time complexity. We have

compared the heuristics between themselves on the large instances, and with the exact algorithms when this

was possible. Our heuristics are described in Section 2, followed by comparative computational results in

Section 3. Conclusions follow in Section 4.

2 Matching heuristics

We now outline the algorithms we have used in our analysis. All algorithms start with an empty matching

M and iteratively add a single edge to M until all nodes are matched. Throughout this section, we use S to

denote the set of unmatched nodes.

In the Greedy heuristic, we add to the matching an edge of minimum cost that connects two unmatched

nodes and repeat this until all nodes are matched. This is detailed in Algorithm 1. The time complexity of

Greedy is O(n3) in our implementation. It can be reduced to O(n2 log n) by using a priority queue.

The intuition behind the Largest heuristic is to first identify a match for the nodes that are most isolated

in their location. To this aim, we first identify for every node i the distance H(i) to the nearest neighbor, and



2 G–2017–11 Les Cahiers du GERAD

Algorithm 1 Greedy

Set S = N , M = ∅
while S 6= ∅ do

Select (i, j) = arg min{ci′j′ |i′, j′ ∈ S, i′ 6= j′}
M = M ∪ {(i, j)}
S = S \ {i, j}

end while
return M

we then consider the nodes in non-increasing order with respect to H(i). If a node is not already matched, it

will be matched to its nearest unmatched neighbor and the process is reiterated until all nodes are matched.

Largest is outlined in Algorithm 2 and has a time complexity of O(n2).

Algorithm 2 Largest

Set S = N , M = ∅
Set H(i) = min{cij |j ∈ N, j 6= i}, ∀i ∈ N
while S 6= ∅ do

Select i = arg max{H(i′)|i′ ∈ S}
Select j = arg min{cij′ |j′ ∈ S, j′ 6= i}
M = M ∪ {(i, j)}
S = S \ {i, j}

end while
return M

The heuristic Largest* is a modified version of Largest in which the values of H(i) are updated at each

iteration, in such a way that the node that is furthest away from its nearest unmatched neighbor can be

chosen as i at each iteration. This is illustrated in Algorithm 3. Note that by storing additional information

regarding the nodes resulting in the H(i)-values, this update needs only be performed for a subset of the

nodes. However, in the worst case, the H(i)-value must be updated for all i ∈ S. This results in a worst-case

time complexity of O(n3) in our implementation.

Algorithm 3 Largest*

Set S = N , M = ∅
Set H(i) = min{cij |j ∈ N, j 6= i}, ∀i ∈ S
while S 6= ∅ do

Select i = arg max{H(i′)|i′ ∈ S}
Select j = arg min{cij′ |j′ ∈ S, j′ 6= i}
M = M ∪ {(i, j)}
S = S \ {i, j}
Update H(k), ∀k ∈ S

end while
return M

In the Sum heuristic, the nodes i are considered in non-increasing order with respect to the sum ∆(i)

of their distance to all other nodes. If a node is unmatched, it will be matched to the nearest unmatched

neighbor. This is illustrated in Algorithm 4 which has a time complexity of O(n2).

Sum*, which is outlined in Algorithm 5, is a modified version of Sum in which the values of ∆(i) are

repeatedly updated to reflect the sum of the distances to all the unmatched neighbors and the next node to

be matched to its nearest unmatched neighbor is the one where this sum is highest. The update adds to the

run time, but does not increase the worst-case time complexity which remains O(n2).

The Regret heuristic outlined in Algorithm 6 requires some notation. For every node i ∈ S, let m1(i)

denote the nearest neighbor and let m2(i) denote the second nearest, i.e. m1(i) = arg min{cij |j ∈ S, j 6= i} and

m2(i) = arg min{cij |j ∈ S, j 6= m1(i), j 6= i}. The regret value of i is then defined as R(i) = cim2(i)
− cim1(i)

and reflects the extra cost incurred if i is not matched to its nearest neighbor.



Les Cahiers du GERAD G–2017–11 3

Algorithm 4 Sum

Set S = N , M = ∅
Calculate ∆(i) =

∑
e∈δ(i) ce, ∀i ∈ N

while S 6= ∅ do
Select i = arg max{∆(i′)|i′ ∈ S}
Select j = arg min{cij′ |j′ ∈ S, j′ 6= i}
M = M ∪ {(i, j)}
S = S \ {i, j}

end while
return M

Algorithm 5 Sum*

Set S = N , M = ∅
Calculate ∆(i) =

∑
e∈δ(i) ce, ∀i ∈ N

while S 6= ∅ do
Select i = arg max{∆(i′)|i′ ∈ S}
Select j = arg min{cij′ |j′ ∈ S, j′ 6= i}
M = M ∪ {(i, j)}
S = S \ {i, j}
Update ∆(k), ∀k ∈ S

end while
return M

The intuition behind Regret is to give priority to those nodes that we would most regret not to match to

their nearest neighbors and to try and match those nodes in the best posible way. Therefore, we repeatedly

identify the unmatched node with highest regret value and match it to its nearest unmatched neighbor.

During this process, the regret values are updated to only take unmatched nodes into account. As for

Largest*, the update can be time consuming in the worst case, but in practice we can decrease the time for

this update significantly by storing m1(k) and m2(k) and only update R(k) if one of these are one of the

nodes just matched. The worst-case time complexity of Regret is O(n3).

Algorithm 6 Regret

Set S = N , M = ∅
Calculate R(i), ∀i ∈ N
while S 6= ∅ do

Select i = arg max{R(i′)|i′ ∈ S}
Set j = m1(i)
M = M ∪ {(i, j)}
S = S \ {i, j}
Update R(k), ∀k ∈ S with m1(k) ∈ {i, j} or m2(k) ∈ {i, j}

end while
return M

3 Results and analysis

We now describe our test instances and we provide extensive computational comparisons of our algorithms.

3.1 Test instances

We have used two sets of data in our analysis. The first set is based on the 88 real-life graphs presented

in [6]. These graphs were originally designed for arc routing problems. For each graph, we have created four

matching graphs by selecting a subset of the nodes using different criteria. A complete graph is then created

for matching purposes by using shortest path distances between the selected nodes in the original graphs. In

the first graph, all nodes are selected (if the number of nodes is odd, we leave out the one designated as “the

depot” in the data). In the second graph, all odd-degree nodes are selected, whereas the odd-degree nodes

with respect to the required edges are used in the third graph. Finally, in the fourth graph, only nodes of



4 G–2017–11 Les Cahiers du GERAD

degree one are selected (in case of an odd number, the one listed first is left out). This procedure yields a

total of 352 graphs that we will call real graphs. The number of nodes range from two to 11640.

The second set contains 352 randomly generated graphs with the same number of nodes as those in set

one. For each of the graphs, the nodes are randomly generated according to a discrete uniform distribution

in the 1000 × 1000 square. Based on these nodes, a complete graph is generated with Euclidean distances

between each pair of nodes, rounded up to the nearest integer. These graphs are referred to as random graphs.

The algorithms were implemented in C++ and executed on an Intel Xeon CPU with 12 cores running at

3.5 GHz and 64 GBs RAM. We used CPLEX 12.6.1 with standard settings and allowed it to take advantage

of the parallel processors. All other algorithms were executed sequentially. For the Blossom algorithm, we

used the freely available Blossom V implementation [8, 7].

We have only run CPLEX on the 268 graphs of each set having less than 4000 nodes, with a time limit

of one hour. Within this time limit, CPLEX could find an optimal matching for 148 real graphs and for 236

random graphs.

The Blossom V crashed for graphs with n > 4000. We contacted the author of this algorithm, but neither

he nor we have been able to find the explanation for this unintended behavior. It was therefore only run on

graphs with fewer than 4000 nodes. On these graphs, it successfully obtained an optimal matching for 233

real graphs and for all 268 random graphs.

3.2 The optimal cost of matchings

Figure 1: Optimal costs of matchings for random graphs.

We first consider the cost of optimal matchings for the randomly generated graphs. All 268 random graphs

with n < 4000 were solved to optimality. Figure 1 depicts the cost of the optimal matchings as a function

of n and indicates a clear relationship between n and matching cost f(n). We have found the empirical

relationship

f(n) =
l
√
n

3
,

where l = 1000 is the size of the l × l-square in which we have generated the nodes. The determination

coefficient is R2 = 99.8%. This estimate is consistent with the result presented in [9, 2] and with the

approximation formula of [1] for the Traveling Salesman Problem.

In Figure 2, we show the optimal matching costs of the 148 real graphs that could be solved to optimality

within the time limit as a function of n. The figure indicates that no clear relationship exists for the optimal

matching cost for real graphs.



Les Cahiers du GERAD G–2017–11 5

Figure 2: Optimal costs of matchings for real graphs.

3.3 Cost analysis of heuristics

We now investigate the six heuristics as regards their ability to obtain low cost matchings.

Figure 3 shows the cost obtained by each of the heuristics for the 352 random graphs as well as the optimal

cost for those with n < 4000. Note that the curve for Sum is partially hidden behind the curve for Sum*.

This figure suggests that the two heuristics Largest and Largest* are outperformed by the other heuristics.

We also note that Sum and Sum* perform equally well and appear to perform better than Greedy and Regret

on random graphs.

Figure 3: Optimal costs and costs obtained by the six heuristics for random graphs.

To further analyze the performance of the heuristics, we show in Figure 4 the relative cost obtained by

each heuristic as a percentage above the best cost obtained. The left-hand side of the figure depicts the

results for real graphs, whereas the right-hand side plots the results for random graphs. To support the

figure, Tables 1–4 provide the mean percent above the best (Table 1 for real graphs and 2 for random graphs)

and the standard deviation of the percentage (Table 3 for real graphs and 4 for random graphs), both for the

full set of graphs and for different size groups. The first column in each table states the range of n in each
group and the second column gives the number of graphs in the group.



6 G–2017–11 Les Cahiers du GERAD

Figure 4: Cost obtained by the heuristics displayed as percent above the best. Left: Real graphs. Right: Random graphs.
Top: All heuristics. Bottom: Only the best two heuristics.

Table 1: Mean percent above best known for real graphs.

Number Largest* Largest Greedy Regret Sum Sum*

All 352 55.0 40.3 23.1 20.9 9.3 9.3
0-500 104 51.7 39.8 22.0 19.6 13.7 12.4
500-1000 55 54.4 42.9 28.3 24.8 12.7 16.2
1000-2000 49 65.1 48.3 26.1 24.0 11.7 10.9
2000-4000 60 64.7 43.4 23.7 22.1 8.8 8.8
4000-6000 41 48.5 33.1 17.3 16.5 0.7 0.4
> 6000 43 44.5 31.1 20.6 17.7 0.4 0.3

Note that when the optimal matching is known, the costs are relative to its value. However, when the

optimal cost is not known, the costs are shown relative to the best heuristic result. This is particularly clear

for random graphs where a shift occurs at n = 4000. A similar shift is also present for real graphs, but is less

noticeable.

Because we observed a tight relationship between the optimal matching costs and the function f(n) =

l
√
n/3 for random graphs in Section 3.2, we can use this function to estimate the optimal matching cost for

graphs with n > 4000 and use it as a benchmark for evaluating the quality of the heuristics. This is done

in the central part of Table 2. Consider, for instance, the graphs with n > 6000. For these graphs, the

heuristic Sum is only 0.2% on average above the best result (because it often provides the best). However,

when we compare with the estimated optimal cost, Sum only performs 19.8% on average above the optimal

solution value. The shift listed in the last part of the table indicates the difference between these two numbers

(adjusted for rounding) and corresponds to the size of the shift observed in Figure 4.



Les Cahiers du GERAD G–2017–11 7

Table 2: Mean percent above best known for random graphs.

Number Largest* Largest Greedy Regret Sum Sum*

All 352 62.0 46.9 20.2 18.3 12.5 12.2
0-500 104 57.5 46.5 25.2 19.9 15.1 14.3
500-1000 55 70.7 55.5 25.3 23.6 16.9 16.2
1000-2000 49 72.4 55.4 24.6 24.8 17.2 17.1
2000-4000 60 73.6 54.3 23.9 23.5 17.4 17.4
4000-6000 41 48.6 31.7 5.7 5.4 0.3 0.3
> 6000 43 46.7 31.5 5.5 5.7 0.2 0.2

4000-6000 41 75.5 55.5 24.9 24.5 18.4 18.4
> 6000 43 75.5 57.3 26.2 26.4 19.8 19.8

The shift:

4000-6000 26.9 23.8 19.1 19.1 18.2 18.2
> 6000 28.8 25.8 20.7 20.7 19.7 19.7

Consider the top part of Figure 4 again. The first result to notice is how stable the performance of the

heuristics is for random graphs compared to the real graphs. This is supported by Tables 3 and 4 in which

the standard deviations are reported. As an example, the standard deviation for Largest* is 22.8% for all

real graphs compared to 17.8% for all random graphs. For both types of graphs, the results vary more for

small graphs than they do for the larger ones. Again, this is more pronounced for random graphs, where

the standard deviation of Largest* is 24.3% for n < 500, but only 3.3% for n > 6000. The corresponding

values for real graphs are 23.8% and 12.2%, respectively. The last two lines of Table 4 provide the standard

deviation of the shifted results, i.e. with performance relative to the estimated matching cost. Another way to

look at the stable performance of the heuristics is to notice in Tables 1 and 2 how the mean of each heuristic

only changes slightly when we consider different size groups. Alternatively, consider the shifts in Table 2,

where the size of the shift for each heuristic is stable for the two size groups.

Table 3: Standard deviation of percent above best known for real graphs.

Number Largest* Largest Greedy Regret Sum Sum*

All 352 22.8 15.7 12.0 11.2 8.1 11.9
0-500 104 23.8 15.5 12.0 10.7 8.0 7.4
500-1000 55 16.5 12.9 10.2 9.6 3.8 22.1
1000-2000 49 23.4 18.7 14.3 14.4 7.7 7.0
2000-4000 60 30.1 18.6 14.8 13.8 7.2 8.0
4000-6000 41 9.9 6.3 5.8 5.6 1.1 0.5
> 6000 43 12.2 8.8 6.1 5.7 0.7 0.5

Table 4: Standard deviation of percent above best known for random graphs.

Number Largest* Largest Greedy Regret Sum Sum*

All 352 17.8 13.7 9.6 9.5 7.9 7.7
0-500 104 24.3 17.5 8.2 9.5 6.8 6.2
500-1000 55 10.6 5.1 4.1 5.5 2.1 2.1
1000-2000 49 8.5 5.4 2.5 3.9 1.8 1.7
2000-4000 60 6.4 3.4 2.0 3.2 1.1 1.1
4000-6000 41 4.2 2.4 1.5 2.3 0.3 0.4
> 6000 43 3.3 1.9 1.4 1.7 0.3 0.2

4000-6000 41 5.2 2.8 1.9 2.2 1.0 1.0
> 6000 43 4.1 2.2 1.7 1.9 0.9 0.8

We now compare the performance of the six heuristics. When we consider the top part of Figure 4, it is

clear that the two heuristics Largest* and Largest perform significantly worse than the other heuristics with

a mean of 55.0% (62.0%) and 40.3% (46.9%), respectively, for all real (random) graphs. Both Greedy and

Regret show an average performance with a mean of 23.1% (20.2%) and 20.9% (18.3%), respectively, for all

real (random) graphs. The two heuristics that show the best performance are Sum and Sum*, both having



8 G–2017–11 Les Cahiers du GERAD

a mean of 9.3% for real graphs and of 12.5% and 12.2%, respectively, for random graphs. The lower part of

Figure 4 provides the same plot as the top part, but only shows Sum and Sum*. The plot clearly indicates

that the two heuristics do indeed perform equally well and no clear winner among the two can be selected

solely based on matching cost. We counted the number of times a heuristic was the best (1), worst (6),

and so on. These results are shown in Figure 5 and further support the relative ranking. Even though this

figure indicates that Sum is superior to Sum* as it wins more often, Tables 1 and 2 show that it is a minor

advantage when considering the average performance. Indeed, when Sum does not provide the best result, it

is 3.1 (2.5) percent above the best cost for real (random) graphs on average. The corresponding number for

Sum* is 4.1 (2.1) percent, confirming that we cannot identify one of these as the preferred one.

Figure 5: Relative ranks of the heuristics. Left: Real graphs. Right: Random graphs.

3.4 Run time analysis of heuristics

Finally, we consider the run time of the six heuristics as well as the Blossom V algorithm and CPLEX, both

of which solve the problem optimally. Since no significant differences in run time between real graphs and

random graphs are observed, we only show the plots for real graphs. This is done in Figure 6, where run

times in seconds are shown as a function of n.

Figure 6: Run time for real graphs. Top: All graphs. Left: All algorithms, Right: All except CPLEX. Bottom left: Graphs with
n < 4000. All algorithms except CPLEX. Bottom right: All graphs. Only Sum and Sum*.



Les Cahiers du GERAD G–2017–11 9

At the top left of the figure, we show all eight algorithms run on all graphs. It is clear from this plot that

the run time for CPLEX rapidly increases and in fact, CPLEX often fails to solve the problem within the

time limit of one hour. CPLEX could solve 148 graphs with n < 4000 (out of 268) to optimality within the

time limit. For random graphs, 236 graphs were solved by CPLEX. This means that for practical purposes

CPLEX is not the best tool for solving the Matching Problem.

The top right part of the figure shows all graphs excluding CPLEX and can be used for comparison

purposes. We note that the longest run time observed for Blossom is 12 seconds and for the most slow

heuristic it is 36 seconds for larger graphs. In the lower left part of the figure, we only show graphs with

n < 4000. Here we clearly observe that even for relatively large graphs, the Blossom algorithm is quite

fast and with this advanced implementation of a very complicated algorithm the run time is indeed very

impressive and the Blossom algorithm is clearly preferred over CPLEX for solving matching problems with

more than about 1000 nodes. However, we also see that the run time of Blossom tends to grow faster than

that of the heuristics, hinting that Blossom may not be a realistic choice for large graphs even if the code

could be fixed. It is, however, the best option if optimal matchings are needed.

The relative run time of the heuristics is most easily observed in the plots at the top right and bottom

left. These plots clearly show that Greedy is slower than the other heuristics, particularly for large graphs.

The two heuristics Largest and Sum show the best run time, while the remaining three are slightly slower.

However, even the slowest of the five heuristics runs within 20 seconds on the largest graphs.

Finally, the lower right of the figure shows the run time of the two heuristics that had the best performance,

Sum and Sum*. From this plot, we see that even though both show acceptable run times, Sum is indeed

faster than the version with updates. In fact, Sum is the fastest of all the heuristics tested, and given that it

is also one of the two preferred heuristics regarding quality, we will designate Sum as the best simple heuristic

for solving the Matching Problem when it is not practical to solve the problem optimally.

4 Conclusions

We have compared several algorithms for the solution of the Matching Problem arising, namely, in the

solution of the Capacitated Arc Routing Problem. These include CPLEX applied to a standard integer linear

programming model, the Kolmogorov implementation of the Blossom algorithm, and six new constructive

heuristics. For graphs involving fewer than 4000 nodes, the Blossom algorithm outperforms CPLEX in terms

of computing time. For larger instances, which cannot be solved optimally, the constructive heuristics called

Sum and Sum* consistently outperform the other four.

References
[1] Beardwood, J., Halton, J. H., and Hammersley, J. M. (1959). The shortest path through many points. Proceedings

of the Cambridge Philosophical Society, 55:299–327.

[2] Cook, W. and Rohe, A. (1999). Computing minimum-weight perfect matchings. INFORMS Journal on Comput-
ing, 11:138–148.

[3] Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467.

[4] Frederickson, G. N. (1979). Approximation algorithms for some postman problems. Journal of the Association
for Computing Machinery, 26:538–554.

[5] Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the capacited arc routing problem.
Operations Research, 48:129–135.

[6] Kiilerich, L. and Wøhlk, S. (2017). New large-scale data instances for CARP and variations of CARP. Submitted.

[7] Kolmogorov, V. (2009) http://pub.ist.ac.at/~{}vnk/software.html#blossom5.

[8] Kolmogorov, V. (2009). Blossom V: A new implementation of a minimum cost perfect matching algorithm.
Mathematical Programming Computation, 1:43–67.

[9] Papadimitriou, C. H. (1977). The probabilistic analysis of matching heuristics. Proceedings of the 15th Annual
Allerton Conference on Communication, Control, and Computing, pages 368–378.

http://pub.ist.ac.at/~{}vnk/software.html#blossom5


10 G–2017–11 Les Cahiers du GERAD

[10] Prins, C., Labadi, N., and Reghioui, M. (2009). Tour splitting algorithms for vehicle routing problems. Interna-
tional Journal of Production Research, 47:507–536.

[11] Wattenhofer, M. and Wattenhofer, R. (2004). Fast and simple algorithms for weighted perfect matching. Elec-
tronic Notes in Discrete Mathematics, 17:285–291.

[12] Wøhlk, S. (2008). An approximation algorithm for the capacitated arc routing problem. The Open Operational
Research Journal, 2:8–12.


	Introduction
	Matching heuristics
	Results and analysis
	Test instances
	The optimal cost of matchings
	Cost analysis of heuristics
	Run time analysis of heuristics

	Conclusions

