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Abstract: In this paper we consider a version of the capacitated vehicle routing problem (CVRP) where
travel times are assumed to be uncertain and statistically correlated (CVRP-SCT). In particular we suppose
that travel times follow a multivariate probability distribution whose first and second moments are known.
The main purpose of the CVRP-CST is to plan vehicle routes whose travel times are reliable, in the sense
that observed travel times are not excessively dispersed with respect to their expected value. To this scope we
adopt a mean-variance approach, where routes with high travel time variability are penalized. This leads to a
parametric binary quadratic program for which we propose two alternative set partitioning reformulations and
show how to exploit certain special structure in the correlation matrix when there is correlation only between
adjacent links. For each model, we develop an exact branch-price-and-cut algorithm, where the quadratic
component is dealt with either in the column generation master problem or in its subproblem. We tested
our algorithms on a rich collection of instances derived from well-known datasets. Computational results
show that our algorithms can efficiently solve problem instances with up to 75 customers. Furthermore, the
obtained solutions significantly reduce the time variability when compared with standard CVRP solutions.
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price-and-cut
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1 Introduction

The capacitated vehicle routing problem (CVRP) has been extensively studied in the literature. Given a fleet

of identical capacitated vehicles housed in a single depot and a predefined set of customers, each with a given

demand volume, the CVRP consists of finding a set of routes with minimum transportation cost in such a

way that each customer is visited exactly once and vehicle capacities are not exceed. For recent surveys on

the CVRP and its variants, the reader is referred to Laporte (2009), Baldacci et al. (2012), Toth and Vigo

(2014), and Pecin et al. (2017).

Even though the majority of works on the CVRP assumes deterministic parameters (travel times, de-

mand volumes, customer presence, and others), some of these parameters are affected by a certain degree of

uncertainty in many real-life applications and are unknown when planning the operations. For this reason,

new research focusing on CVRP variants with stochastic parameters developed in the last two decades (see,

e.g., Gendreau et al. 2014, 2016, Oyola et al. 2017).

In this paper we consider a variant of the CVRP where travel times between locations are assumed to

be stochastic. The duration of a vehicle route, which is the sum of the travel times between the visited

locations, is also stochastic and it can be affected by a large variability. In many contexts, however, it may

be desirable to attenuate the dispersion of the route duration around its expected value. For example, if

a customer expects a visit at a given time, it is beneficial to provide service at a time instant close to the

expected one. In this situation, a decision maker might prefer vehicle routes with lower variability at the

expense of a slightly higher expected route duration.

Most of the literature on stochastic vehicle routing problems assumes that random variables are statisti-

cally independent. This assumption conflicts, however, with real-life contexts, where statistical dependence

is rather the norm. With respect to travel times, for example, several empirical studies showed that strong

correlation exists, both positive and negative, among the links in a road network (see, for instance, Nicholson

2015, Seshadri and Srinivasan 2012, Chen et al. 2012, Rachtan et al. 2013, Xing and Zhou 2011). Parent and

LeSage (2010) develop a dynamic model that relates travel times with highway infrastructure and conges-

tion. They found that the forecast travel time variance may be underestimated by up to 75% when neglecting

positive correlation, and overestimated by up to 100% when neglecting negative correlation.

With the goal of suitably accounting for travel time variations, we focus in this work on the CVRP with

stochastic and correlated travel times (CVRP-SCT). We assume that the first and the second moments of

the travel time probability distributions are known and we adopt a mean-variance approach (see Markowitz

1952), i.e., we seek a trade-off between the expected travel time and its variance, where the latter is assumed

to be a measure of the travel time reliability. The resulting model is a parametric binary quadratic program

for which we propose two types of set partitioning (SP) reformulations and develop branch-price-and-cut

algorithms for each type. Furthermore, we exploit the structure of the covariance matrix in the case where

correlation exists only between adjacent links and specialize the proposed models and algorithms. To the

best of our knowledge, we are the first to address this problem setting.

1.1 Literature review

Laporte et al. (1992) study the uncapacitated vehicle routing problem with stochastic travel times. The au-

thors assume a deadline on the route travel time and proposed both a chance-constrained model minimizing

the routing cost, and a stochastic program with simple recourse penalizing the expected tardiness costs. Lam-

bert et al. (1993) develop heuristic algorithms for a similar problem with hard deadlines. Kenyon and Morton

(2003) address the same problem setting as Laporte et al. (1992) and provide two different models in which

the objective is to minimize the latest expected completion time, or its tardiness probability. For the lit-

erature on CVRP with time windows and stochastic travel times, we refer the reader to Errico et al. (2016a,b).

To the best of our knowledge, correlation between travel times received little attention in the stochastic

CVRP literature. However, in the context of the shortest path problem, it has been extensively studied.

According to the method used to quantify travel time variability, the literature can be partitioned into two

main groups: probability-based or variance-based approaches. Among the former group, Fan et al. (2005)
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consider the shortest path problem in stochastic networks with correlated link service levels. The authors

restrict the link and node states to either congested or uncongested and applied conditional probabilities to

address the correlation between the states of adjacent nodes. Nie and Wu (2009) consider the same problem

in a stochastic and time-dependent network, where link travel times are conditional to the state of the tail

node, and hence correlated. They use dynamic programming to solve the resulting problem. Samaranayake

et al. (2011) maximize the probability of arriving on time at a destination given a departure time and a

time budget. The authors develop an algorithm to address the problem when the travel time on each link is

correlated to the upstream neighbors via which the link is reached.

Probability-based approaches usually need a complete knowledge of the link and path travel time distri-

butions, which can be statistically and computationally challenging. Therefore, many researchers considered

variance-based approaches, which only require the knowledge of the probability distribution first and sec-

ond moments. Ji et al. (2011) formulate spatial correlations as variance-covariance matrix and propose a

simulation-based multi-objective genetic algorithm. Chen et al. (2012) address routing optimization under

travel time uncertainty in a network derived from the urban area of Hong Kong. They consider the corre-

lation among travel times of neighboring links, model the problem as a multicriteria shortest path problem,

and propose a solution method based on some dominant conditions. Xing and Zhou (2011) consider the

stochastic shortest path problem in the presence of both independent and correlated travel times. They use

the standard deviation to measure the travel time variability, model the problem as a shortest path prob-

lem with a nonlinear objective function, and propose a Lagrangian-relaxation-based approach. Prakash and

Srinivasan (2016) address the shortest path problem in stochastic networks with correlated travel times and

minimize a weighted combination of the travel time mean and standard deviation. They develop pruning

criteria to eliminate nonoptimal subpaths.

The literature on stochastic CVRPs with correlated travel times is somewhat limited. A CVRP with

stochastic time-dependent travel times is studied by Lecluyse et al. (2009) where travel times are assumed

to follow a lognormal distribution. The author extend the objective of the CVRP to a weighted sum of

expected travel times and their standard deviation and develop a tabu search algorithm where variances are

approximated. Letchford and Nasiri (2015) study a version of the Steiner travelling salesman problem in

which the road traversal costs are both stochastic and correlated. They use the variance-covariance matrix

to represent the correlated uncertain parameters and model the problem as a binary quadratic program.

They propose some mixed-integer linear programming reformulations and use a known state-of-the-art solver

to solve their problem.

In routing optimization under uncertainty, representing variance via variance-covariance matrices often

leads to quadratic combinatorial optimization problems, which are much more challenging than their linear

counterpart (Letchford and Nasiri 2015, Prakash and Srinivasan 2016). The literature on routing optimization

with a quadratic objective function is fairly limited; the quadratic shortest path problem, the quadratic

traveling salesman problem (QTSP) and the quadratic CVRP (QCVRP) are among those that received more

attention (see Fischer and Helmberg 2013, Rostami et al. 2015, 2016, Martinelli and Contardo 2015). In the

QTSP and the QCVRP, the interaction among arcs is modeled by a cost component associated with pairs

of arcs sharing a node. Fischer and Helmberg (2013) use the polyhedral structure of a linearized integer

programming formulation to develop a branch-and-cut algorithm for the QTSP. Martinelli and Contardo

(2015) adapt the linearized integer programming formulation and the valid inequalities proposed by Fischer

and Helmberg (2013) to the QCVRP, and developed metaheuristis to find feasible solutions.

1.2 Contributions

Our main contributions are summarized as follows.

• We aim at accounting for time variability in route planning. To this scope we introduce a new version

of the CVRP where the objective function trades off between the route expected travel time and

its variance. Furthermore, we make a significant step towards more realistic modeling by explicitly

accounting for correlation among travel time probability distributions.
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• We first formulate the resulting problem as a parametric convex binary quadratic program. We then

propose two types of SP reformulations and develop branch-price-and-cut algorithms to solve them.

The first reformulation type yields a column generation master problem with a quadratic objective

function, while the subproblems are classical elementary shortest path problems with resource con-

straints (ESPPRCs). In the second reformulation type, the resulting master problem is a mixed-integer

linear program (MILP), while subproblems are ESPPRCs with a quadratic objective function.

• In several applications, the travel times on adjacent links are highly correlated and the correlation

among non-adjacent arcs can be neglected (Fan et al. 2005, Nie and Wu 2009). To exploit this fact, we

specialize the proposed models and algorithms.

• The second SP reformulation requires the solution of a quadratic ESPPRC subproblem in the column

generation algorithm for which the Bellman optimality principle cannot be applied. We therefore

develop a novel dominance rule for the labeling algorithm to efficiently solve the subproblem for the

adjacent case.

• We perform an extensive computational study. We first build new sets of benchmark instances by suit-

ably modifying well-known datasets from the literature. We then develop two experimental campaigns,

one to test the efficiency of the developed algorithms, the other to assess the quality of the computed

solutions in terms of their travel time variability. We were able to solve instances with up to 32 cus-

tomers for general correlation matrices, and up to 75 customers for the adjacent case. Moreover, with

respect to the classical CVRP, the obtained solutions display routes with significantly less variance, at

the expense of a slight increase in the average travel time.

1.3 Paper structure

The paper is structured as follows. In Section 2, we introduce the CVRP-SCT and present mathematical

models for both the general and the adjacent cases. In Section 3, we provide two different types of SP refor-

mulations. In Section 4, we detail the proposed branch-price-and-cut algorithms. Computational results are

then reported in Section 5. Section 6 briefly draws some conclusion and discusses future research directions.

2 Problem statement

In this section, we define the CVRP-SCT where the travel times are assumed to be random variables from

the class Mm
(µ,C) of m−variate distributions with mean µ and covariance C. In Subsection 2.1, we present a

model for the general case where every pair of link travel times might be correlated. However, in many real

traffic networks, if one link is in a congested situation, it is very likely that neighboring links are also in a

similar situation. In Subsection 2.2, we specialize our model for the adjacent case and propose a linearized

formulation which exploits the covariance structure.

2.1 General case

Let K be a set of identical vehicles with capacity Q. Let G = (V,A) be a graph with node set V =

{0, 1, 2, . . . , n} and arc set A with |A| = m. Each node i ∈ V0 = V \ {0} represents a customer having

a nonnegative demand qi, while node 0 corresponds to a depot. For simplicity, we say that node 0 has a

demand q0 = 0. In A, there exists an arc (i, j) linking node i to node j if the sum of the demands at these

nodes does not exceed Q. A feasible route p corresponds to a circuit (0, v1, . . . , vh−1, vh, 0) in G such that∑h
`=1 qv` ≤ Q and vi 6= vj for all i, j ∈ {1, . . . , h}, i 6= j. Whenever suitable, we also identify p by its arc set

{(0, v1), (v1, v2), . . . , (vh−1, vh), (vh, 0)}.

Let tij be a random variable representing the travel time on arc (i, j) with mean µij and standard deviation

σij . Moreover, let ρijrs represent the correlation coefficient between travel times on arcs (i, j), (r, s) ∈ A.

The entry of the covariance matrix C ∈ Rm×m for the pair of arcs (i, j), (r, s) ∈ A is given by

Cijrs =

{
σ2
ij (i, j) = (r, s)

ρijrsσijσrs (i, j) 6= (r, s),
(1)
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where σ2
ij is the variance of the travel time on arc (i, j). Matrix C is symmetric and positive semidefinite.

For a given route p in G, the variance of the travel time on route p is given by σ2
p =

∑
(i,j)∈p

∑
(r,s)∈p Cijrs.

The goal of the CVRP-SCT is to find a set of |K| feasible routes where both the total expected travel

times and the total variance are minimized such that each customer is visited exactly once. Note that, even

though the travel times of different routes are statistically dependent, it turns out that the total variance can

be computed independently for each vehicle. In fact, from the practical point of view, the goal is to penalize

the time dispersion (variance) of each route around its mean value, as interactions among different routes do

not affect the level of the provided service. For each vehicle k ∈ Kand each arc (i, j) ∈ A, we define a binary

variable xkij which is equal to 1 if arc (i, j) is traversed by vehicle k, and 0 otherwise. The superscript k is

needed here because only the arcs traversed by the same vehicle contribute to the variance of the route taken

by this vehicle.

Let δ+(i) = {(i, j) ∈ A} and δ−(i) = {(j, i) ∈ A} denote the sets of outgoing and incoming arcs to node i,

respectively. Furthermore, let γ(S) be the minimum number of vehicles required to serve the customers

in subset S ⊆ V0 according to their demands. Then the CVRP-SCT can be formulated as the following

bi-objective integer program:

P: min

{∑
k∈K

∑
(i,j)∈A µijx

k
ij∑

k∈K
∑

(i,j)∈A
∑

(r,s)∈A Cijrsxkijxkrs
(2)

s.t.
∑
k∈K

∑
(i,j)∈δ+(i) x

k
ij = 1 ∀ i ∈ V0 (3)∑

(0,j)∈δ+(0) x
k
0j = 1, ∀ k ∈ K (4)∑

(i,j)∈δ+(i) x
k
ij −

∑
(j,i)∈δ−(i) x

k
ji = 0, ∀ k ∈ K, i ∈ V0 (5)∑

(i,0)∈δ−(0) x
k
i0 = 1, ∀ k ∈ K (6)∑

k∈K
∑
i/∈S
∑
j∈S:(i,j)∈A x

k
ij ≥ γ(S), ∀S ⊆ V0 (7)

xkij ∈ {0, 1}, ∀ k ∈ K, (i, j) ∈ A, (8)

where the objective function (2) minimizes simultaneously the total expected travel time and the total

variance. Constraints (3) state that each customer must be visited exactly once. Constraints (4) to (6)

ensure that each vehicle is used exactly once and that flow conservation is satisfied at each customer node.

The capacity inequalities (7) impose vehicle capacity on each route and ensure that all routes are connected

to the depot. Finally, the binary requirements (8) restrict the domain of the variables.

A feasible solution x̂ is said mean-variance efficient (see, e.g., Markowitz 1952) if there exists no other

feasible solution x such that

(µx ≤ µ x̂ and xTC x < x̂TC x̂) or (xTC x ≤ x̂TC x̂ and µx < µ x̂).

In other words, no solution is at least as good as x̂ for both objectives and strictly better for at least one.

One of the widely-used methods for bi-objective optimization is the weighted sum method (see, e.g., Zadeh

1963), which replaces the two objective functions by a weighted sum of them. Here, we use the following

convex combination of the total travel time mean and the total travel time variance to compute a single

mean-variance efficient solution:

Pα: min (1− α)
∑
k∈K

∑
(i,j)∈A µijx

k
ij + α

∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A Cijrsxkijxkrs

s.t. (3)− (8).

for some α ∈ [0, 1].

Note that since the covariance matrix C is positive semidefinite, problem Pα is a convex binary quadratic

program for any given α ∈ [0, 1[. Moreover, for α 6= 1, we can define a new parameter δ = α/(1 − α) as a

“risk factor,” and we can rewrite the objective function as the conic combination of the sums of the travel

time means and variances, which is known as a risk-averse objective function in the literature (Prakash and
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Srinivasan 2016). This factor shows the amount of decrease in the total mean travel time that is equivalent,

in terms of utility, to a unit decrease in the total travel time variance.

To be concise in the sequel, we introduce for a given α ∈ [0, 1[ the following parameters:

Cαijrs = α Cijrs, ∀ (i, j), (r, s) ∈ A,
µαij = (1− α)µij , ∀ (i, j) ∈ A,
µ̃αij = (µαij + Cαijij), ∀ (i, j) ∈ A.

2.2 Correlation only between adjacent links

In this section, we consider a special case of the CVRP-SCT where the correlation coefficient between the

travel times of any pair of non adjacent arcs is assumed to be zero. This implies a sparse covariance matrix

where Cijrs = 0 for all non adjacent arcs (i, j), (r, s) ∈ A. To exploit the covariance structure, we also

assume that Ci00j = 0 for all adjacent arcs (i, 0), (0, j) ∈ A. Note that, if Ci00j 6= 0 for some adjacent arcs

(i, 0), (0, j) ∈ A, one can still use the general model Pα described in Section 2.1. Given the fact that in any

feasible solution of the CVRP-SCT, all the routes are elementary, we need to count the covariance for adjacent

arc pairs only if these arcs are traversed consecutively. Hence, for a given route p = (0, v1, . . . , vh−1, vh) with

vh = 0, the variance of the travel time on route p can be computed as

σ2
p =

∑
(i,j)∈p

∑
(r,s)∈p Cijrs =

∑h−2
i=0 2 Ci,i+1,i+1,i+2. (9)

According to (9), we only need to take into account the covariance for arcs (i, j), (r, s) ∈ A if j ∈ V0,

j = r and these arcs are traversed by some vehicle. Since every pair of consecutive arcs (i, j), (j, s), j ∈ V0,

can only be traversed by the same vehicle, we replace the three-index variables xkij , (i, j) ∈ A, k ∈ K, by

two-index variables xij indicating the presence of arc (i, j) in the computed optimal solution. Accordingly,

we can rewrite Pα as follows:

P adjα : min
∑

(i,j)∈A µ̃
α
ijxij +

∑
j∈V0

∑
(i,j)∈A

∑
(j,l)∈A 2 Cαijjlxijxjl (10)

s.t.
∑

(i,j)∈δ+(i) xij = 1, ∀ i ∈ V0 (11)∑
(i,j)∈δ−(j) xij = 1, ∀ j ∈ V0 (12)∑
(0,j)∈δ+(0) x0j = K (13)∑
(i,0)∈δ−(0) xi0 = K (14)∑
i/∈S
∑
j∈S:(i,j)∈A xij ≥ γ(S), ∀S ⊆ V0 (15)

xij ∈ {0, 1}, ∀ (i, j) ∈ A. (16)

The objective function (10) minimizes a convex combination of the total expected travel time and the total

variance. Note that, because we only use a single expression xijxjl (xjlxij is omitted) for each arc pair

(i, j), (j, l) ∈ A, the objective coefficients Cαijjl are multiplied by 2. Constraints (11) and (12) ensure that

exactly one arc enters and leaves each node associated with a customer, respectively. Constraints (13) and (14)

impose the degree requirements for the depot. The capacity inequalities (15) play the same role as (7).

Model P adjα is again a convex binary quadratic program. However, in comparison with Pα, it has much

less variables and constraints with a sparse objective function. We can exploit the sparsity of this function

by linearizing expressions xijxjl for all arcs (i, j), (j, l) ∈ A to produce the following MILP:

P adjLα : min
∑

(i,j)∈A µ̃
α
ijxij +

∑
j∈V0

∑
(i,j)∈A

∑
(j,l)∈A 2 Cαijjlyijl

s.t. (11)− (16)∑
(l,i)∈δ−(i) ylij = xij , ∀ (i, j) ∈ A with i 6= 0 (17)∑
(j,l)∈δ+(j) yijl = xij , ∀ (i, j) ∈ A with j 6= 0 (18)

yijl ≥ 0, ∀ (i, j), (j, l) ∈ A with j ∈ V0, (19)
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where yijl, (i, j), (j, l) ∈ A with j ∈ V0, are new nonnegative variables that are set equal to xijxjl through

constraints (17) and (18). These constraints may be seen as a kind of flow conservation constraints for each

arc (i, j) ∈ A: the sum of the flows into (i, j), i 6= 0 via arcs (l, i) has to be equal to the sum of the flows out

of (i, j) via arcs (j, l). Moreover, constraints (17) and (18) imply

yijl ≥ xij + xjl, yijl ≤ xij , and yijl ≤ xjl, ∀ (i, j), (j, l) ∈ A, (20)

as stated in the following theorem.

Theorem 1 Model P adjLα is a valid reformulation of P adjα and constraints (17) and (18) imply the standard

linearization constraints (20).

Proof. See Appendix A.

3 Set partitioning reformulations

In this section, we propose two types of SP reformulations for each model Pα, P adjα , and P adjLα described in

Section 2. Each SP formulation is obtained by applying the Dantzig-Wolfe decomposition principle (Dantzig

and Wolfe 1960) on the corresponding model and contains an exponential number of binary variables, each

associated with a feasible route. In the SP formulations of type I, in addition to binary route variables, we

also keep the original arc-flow variables and the corresponding variance term in the objective function. In

this case, the cost of associated to route variables only accounts for the expected travel time. In the SP

formulations of type II, we only consider binary route variables as in the classical SP formulation of the

CVRP introduced by Balinski and Quandt (1964), and the cost associated to route variables is a function of

the mean and the variance of its travel time.

3.1 Set partitioning reformulations of type I

Consider first Pα. Let Rk be the set of all feasible routes for vehicle k ∈ K. For each route r ∈ Rk, let

µαr =
∑

(i,j)∈p µ
α
ij represent the expected travel time on route p. Furthermore, for each customer i ∈ V0 (resp.

arc (i, j) ∈ A), let aip (resp. bijp) be a binary parameter that takes value 1 if route p visits customer i (resp.

traverses arc (i, j)) and 0 otherwise. For each vehicle k ∈ K and route p ∈ Rk, we define a binary variable

zkp that is equal to 1 if vehicle k uses route p and 0 otherwise.

Model Pα can then be reformulated as the following binary quadratic program:

SP1α: min
∑
k∈K

∑
p∈Rk µαp z

k
p +

∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A Cαijrsxkijxkrs (21)

s.t.
∑
k∈K

∑
p∈Rk aipz

k
p = 1, ∀ i ∈ V0 (22)∑

p∈Rk bijpz
k
p = xkij , ∀ k ∈ K, (i, j) ∈ A (23)∑

p∈Rk zkp = 1, ∀ k ∈ K (24)

zkp ∈ {0, 1}, ∀k ∈ K, p ∈ Rk (25)

xkij ∈ {0, 1}, ∀ k ∈ K, (i, j) ∈ A. (26)

For a given value of α, the first term of the objective function (21) minimizes the total expected travel time,

while the second term minimizes the total variance. Constraints (22) ensure that each customer is visited

once. Constraints (23) link the original arc-flow variables xkij to the new route variables zkp . Constraints (24)

impose to select only one route for each vehicle. Finally, binary requirements on the variables are expressed

through (25) and (26).

Note that if Cijrs ≥ 0 for all arc pairs (i, j), (r, s) ∈ A, then one can replace the equality sign in con-

straints (23) by a less-than-or-equal sign because, for any feasible z-solution, there always exists a feasible

x-solution for which these inequalities are tight. Note also that the binary requirements (25) and (26) can
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be replaced by integrality requirements because of constraints (22). Hence, the variables zkp and xkij do not

have to be upper bounded in a continuous relaxation. Similar remarks apply to the models presented below.

For the SP reformulations of P adjα and P adjLα , let us denote by R the set of all feasible routes. Each route

p ∈ R has an associated expected travel time µ̃αp =
∑

(i,j)∈p µ̃
α
ij . For each route p ∈ R, we define a binary

variable zp which equals 1 if and only if route p is selected in a solution.

Using this notation, model P adjα can be reformulated as the following SP model with a quadratic objective

function:

SP1adjα : min
∑
p∈R µ̃

α
p zp +

∑
j∈V0

∑
(i,j)∈A

∑
(j,l)∈A 2 Cαijrsxijxjl (27)

s.t.
∑
p∈R aipzp = 1, ∀i ∈ V0 (28)∑
p∈R bijpzp = xij , ∀(i, j) ∈ A (29)∑
p∈R zp = |K| (30)

zp ∈ {0, 1}, ∀p ∈ R (31)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (32)

The objective function (27) and constraints (28)–(32) play the same role as (21) and (22)–(26), but for the

adjacent case.

In a similar way, model P adjLα can be reformulated as follows:

min
∑
p∈R µ̃

α
p zp +

∑
j∈V0

∑
(i,j)∈A

∑
(j,l)∈A 2 Cαijjlyijl

s.t. (17)− (19), (28)− (32).

Projecting out the variables xij results in the following SP formulation:

SP1adjLα : min
∑
p∈R µ̃

α
p zp +

∑
j∈V0

∑
(i,j)∈A

∑
(j,l)∈A 2 Cαijjlyijl (33)

s.t. (19), (28), (30)− (32)∑
(l,i)∈δ+(i) ylij −

∑
p∈R bijpzp = 0, ∀(i, j) ∈ A with i 6= 0 (34)∑

(j,l)∈δ−(j) yijl −
∑
p∈R bijpzp = 0, ∀(i, j) ∈ A with j 6= 0, (35)

where constraints (34) and (35) link the linearization variables yijl directly to the routing variables zp.

3.2 Set partitioning reformulations of type II

For type II, all three models Pα, P adjα and P adjLα can yield the same SP reformulation that we expose here.

Let R be the set of feasible routes. For each route p ∈ R, let µαp and vαp be its travel time mean and variance,

respectively, i.e.,

µαp =
∑

(i,j)∈p µ
α
ij

vαp =
∑

(i,j)∈p
∑

(r,s)∈p Cαijrs.

Moreover, for each route p ∈ R, let cαp = µαp +vαp be its cost and define a binary variable zp which takes value

1 if route p is chosen and 0 otherwise.

The models Pα, P adjα and P adjLα can be reformulated as the following SP model:

SP2α: min
∑
p∈R

cαp zp (36)

s.t. (28), (30), (31),

where the objective function minimizes the total routing costs that are now function of the travel time

variance. This reformulation is valid for both the general and the adjacent case. Nevertheless, in the

following, we use it only for the adjacent case because the best algorithm we designed for the general case is
not able to solve large enough instances.
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4 Branch-price-and-cut algorithms for solving the SP reformulations

To solve the SP reformulations described in Section 3, we develop branch-price-and-cut algorithms (see

Barnhart et al. 1998, Desaulniers et al. 1998, Lübbecke and Desrosiers 2005). Such an algorithm is a branch-

and-bound algorithm where the lower bounds are computed by column generation and cuts are added to

tighten the continuous relaxations (also called the master problems) encountered throughout the search tree.

Column generation is an iterative procedure which solves at each iteration a restricted master problem (RMP),

i.e., the master problem restricted to a relatively small subset of the variables, and one or several subproblems.

Solving the RMP provides a primal and a corresponding dual solution. By using information available in the

dual solution, the role of the subproblems is to verify the optimality of the primal solution with respect to

the complete master problem and, if it is not optimal, to provide additional columns (variables) to add to the

RMP. In this case, the RMP is updated with these new columns and a new iteration is started. Otherwise, the

algorithm stops and the current primal solution yields a lower bound for the current branch-and-bound node.

For the proposed SP reformulations, the master problems correspond to the continuous relaxations of

models SP1α, SP1adjα , SP1adjLα , and SP2α, where we relax the upper bounds on all z and x variables as

discussed in Section 3.1. The subproblems serve to generate only the z variables. The other variables, that

is, the x and y variables, are not generated dynamically; they are all included in all RMPs.

Below, we first describe the subproblems arising for each reformulation type and how they are solved.

Then, we discuss some acceleration strategies, the cuts that we apply, and the branching strategies used to

derive integer solutions.

4.1 Subproblems for the type I SP reformulations

In this section, we discuss the subproblems arising from SP1α, SP1adjα and SP1adjLα . Let us consider first

the continuous relaxation of SP1α restricted to a subset of the routes in ∪k∈KRk. This RMP is a linearly

constrained convex quadratic program that can be solved by a commercial software package. Let (z̄, x̄) be an

optimal solution of this RMP. To find the associated reduced costs, let us write down the Lagrangian function

Lα(z, x, π, λ, ν, θ) =
∑
k∈K

∑
p∈Rk

µαp z
k
p +

∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A

Cαijrsxkijxkrs

−
∑
i∈V0

πi(
∑
k∈K

∑
p∈Rk

aipz
k
p − 1)−

∑
k∈K

∑
(i,j)∈A

λkij(
∑
p∈Rk

bijpz
k
p − xkij)

−
∑
k∈K

βk(
∑
p∈Rk

zkp − 1)−
∑
k∈K

∑
p∈Rk

νkp z
k
p −

∑
k∈K

∑
(i,j)∈A

θkijx
k
ij .

where π, λ, β, ν, and θ are the Lagrangian vectors associated with constraints (22)–(24), z ≥ 0, and x ≥ 0,

respectively.

The stationarity conditions with respect to z and x write as:

µαp −
∑
i∈V0

πiaip −
∑

(i,j)∈A

λkijbijp − βk − νkp = 0, ∀k ∈ K, p ∈ Rk (37)

λkij − θkij +
∑

(r,s)∈A

2 Cαijrsxkrs = 0, ∀k ∈ K, (i, j) ∈ A. (38)

As a consequence of (38), we can substitute λkij by θkij −
∑

(r,s)∈A 2 Cαijrs xkrs for each k ∈ K, (i, j) ∈ A and

rearrange the Lagrangian function to give:

Lα(z, x, π, λ, ν, θ) =∑
k∈K

∑
p∈Rk

(
µαp −

∑
i∈V0

πiaip −
∑

(i,j)∈A

θkijbijp +
∑

(i,j)∈A

∑
(r,s)∈A

2 bijpCαijrsxkrs − βk − νkp
)
zkp

−
∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A

Cαijrsxkijxkrs +
∑
i∈V0

πi +
∑
k∈K

βk.



Les Cahiers du GERAD G–2017–109 9

Taking into account (37) and (38), the Lagrangian dual problem is given by

max
∑
i∈V0

πi +
∑
k∈K

βk −
∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A

Cαijrsxkijxkrs

s.t. µαp −
∑
i∈V0

πiaip −
∑

(i,j)∈A

θkijbijp +
∑

(i,j)∈A

∑
(r,s)∈A

2 bijpCαijrsxkrs − βk − νkp = 0,

∀k ∈ K, p ∈ Rk

xkij ≥ 0, θkij ≥ 0, ∀(i, j) ∈ A, k ∈ K
νkp ≥ 0, ∀k ∈ K, p ∈ Rk.

Observe that, for k ∈ K and p ∈ Rk, the variables νkp ≥ 0 and ζkp =
∑

(i,j)∈A θ
k
ijbijp ≥ 0 play the role of slack

variables and can thus be removed to yield:

Dα: max
∑
i∈V0

πi +
∑
k∈K

βk −
∑
k∈K

∑
(i,j)∈A

∑
(r,s)∈A

Cαijrsxkijxkrs (39)

s.t. µαp −
∑
i∈V0

πiaip +
∑

(i,j)∈A

∑
(r,s)∈A

2 bijpCαijrsxkrs − βk ≥ 0, ∀k ∈ K, p ∈ Rk (40)

xkij ≥ 0, ∀(i, j) ∈ A, k ∈ K. (41)

At a given column generation iteration, denote by Qk ⊆ Rk the subset of routes already generated for

vehicle k ∈ K, i.e., those for which there exists a route variable in the current RMP. Let us consider the

solution (z̄, x̄) to the master problem of SP1α which is built as follows: zkp = 0 for all routes p ∈ Rk \ Qk,

k ∈ K, that have not been generated yet; all the other variables are set to their value in the primal solution

computed for the current RMP. Verifying if (z̄, x̄) is also optimal for the complete master problem entails

searching a route for which the corresponding constraint (40) is violated. The reduced cost µ̂αpk of a route

p ∈ Rk, k ∈ K, can thus be expressed as

µ̂αpk = µαp −
∑
i∈V0

πiaip +
∑

(i,j)∈A

∑
(r,s)∈A

2 bijpCαijrsx̄krs − βk =
∑

(i,j)∈p

(
µαij − πi +

∑
(r,s)∈A

2 Cαijrsx̄krs
)
− βk, (42)

with π0 = 0.

For each vehicle k ∈ K, there is one subproblem that consists of minimizing (42) over the set of feasible

routes Rk. It corresponds to an ESPPRC defined on network G, where the cost of arc (i, j) ∈ A is equal to

µαij−πi+
∑

(r,s)∈A 2 Cαijrsx̄krs. A single resource, namely, a load resource, is required to enforce vehicle capacity.

A similar process can be applied to determine the subproblem arising from model SP1adjα . In this case,

there is a single subproblem which is also an ESPPRC but with different arc costs. For SP1adjLα , the master

problem is linear and there is a single ESPPRC subproblem that can be derived directly from the reduced

cost of a variable in a linear program (see Lübbecke and Desrosiers 2005). For the sake of conciseness, we do

not provide the arc costs for these subproblems.

The ESPPRC subproblems can be solved using a standard labeling algorithm (see, e.g., Feillet et al. 2004,

Irnich and Desaulniers 2005).

4.2 Subproblem for the type II SP reformulation

Consider the linear master problem arising from SP2α and denote by πi, i ∈ V0, and β the dual variables

associated with constraints (28) and (30), respectively. At a given column generation iteration, let Q ⊆ R
be the subset of feasible routes already generated. Furthermore, let z̄ be a solution to the master problem

derived from the optimal solution computed for the current RMP, that is, all variables not yet generated are

set to 0. This solution is optimal for the complete master problem if and only if there exist no routes with a

negative reduced cost. The reduced cost ĉαp of a route p ∈ R is:

ĉαp = cαp −
∑
i∈V0

πiaip − β =
∑

(i,j)∈p

c̃αij +
∑

(i,j)∈p

∑
(r,s)∈p

(r,s)6=(i,j)

Cαijrs, (43)
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where

c̃αij =

{
µ̃αij − β if i = 0
µ̃αij − πi otherwise

∀(i, j) ∈ A. (44)

The subproblem consists of minimizing (43) over the set of feasible routes. In this case, it corresponds

to an ESPPRC with a quadratic objective function. Note that, even without the elementarity and resource

constraints, this subproblem is strongly NP-hard as shown by Rostami et al. (2015). Therefore, its complexity

is not solely due to the ESPPRC structure but also to the quadratic objective function, which is nonadditive

and invalidates the Bellman optimality principle. To solve this complex subproblem, we developed labeling

algorithms but none of them were efficient for the general case. Therefore, in what follows, we only present

a labeling algorithm for the adjacent case as no computational results for the type II SP reformulation will

be reported for the general case.

4.2.1 A labeling algorithm for the adjacent case

We consider the network G with the arc costs (44). Feasible routes are represented by paths in G which start

and end at node 0. This node is, therefore, considered as the source and the sink node of G.

In a labeling algorithm (see Irnich and Desaulniers 2005), partial paths starting from the source node

are represented by a vector of information (the state) called a label. This label is attached to the partial

path end node. The algorithm starts with an initial label attached to the source node and extends the labels

(partial paths) along the arcs using extension functions until reaching the sink node. To avoid enumerating

all feasible partial paths, those ending at the same node are compared using a dominance rule, and partial

paths that cannot yield to an optimal source-to-sink path are discarded. Let us specialize this algorithm for

our subproblem.

Let p = (0, v1, . . . , vh−1, vh = i) be a partial route (path) ending at node i ∈ V . We denote by

V (p) and A(p) the set of nodes and arcs in p, respectively. Route p is represented by a label E(p) =

(Z(p), L(p),M1(p), . . . ,Mn(p), N(p)) whose components are defined as follows.

• Z(p): Incomplete reduced cost of route p. According to (43), the reduced cost of partial route p is not

well defined because of the quadratic term which depends on arcs to be traversed in an extension of p

towards the sink node. Therefore, we define its incomplete reduced cost as:

Z(p) =
∑

(k,l)∈A(p)

c̃αkl +
∑

(k,l)∈A(p)

∑
(l,s)∈A(p)

2 Cαklls ; (45)

• L(p): Cumulated load in route p;

• M l(p): Binary value indicating whether customer node l ∈ V0 can still be visited in an extension of

route p. A node l ∈ V0 cannot be visited anymore if L(p)+ql > Q or l ∈ V (p). In this case, M l(p) = 1 ;

• N(p) = vh−1: Next-to-last node in route p.

In the initial label E0, all components are set to 0.

Label E(p) can be extended along an arc (i, j) ∈ A if M j(p) = 0. If this is the case, the extension

produces a route p̄ = (0, v1, . . . , vh−1, vh = i, vh+1 = j) represented by a new label E(p̄) = (Z(p̄), L(p̄),

M1(p̄), . . . ,Mn(p̄), N(p̄)) whose components are computed using the following extension functions:

Z(p̄) =

{
Z(p) + c̃αij if i = 0

Z(p) + c̃αij + 2 CαN(p)iij otherwise,

L(p̄) = L(p) + qj ,

M l(p̄) =

{
1 if L(p̄) + ql > Q or l ∈ V (p̄)

0 otherwise
∀l ∈ V0,

N(p̄) = i.
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Note that, if j = 0, then Z(p̄) is equal to the complete reduced cost (43) of route p.

To avoid enumerating all feasible routes, dominance is performed as follows. Let p and p′ be two feasible

partial routes ending at the same node i ∈ V and represented by the labels E(p) = (Z(p), L(p),M1(p), . . . ,

Mn(p), N(p)) and E(p′) = (Z(p′), L(p′),M1(p′), . . . ,Mn(p′), N(p′)), respectively. Label E(p) is said to

dominate label E(p′) if

C1: any feasible extension of p′ along a sequence of arcs is also feasible for p, and

C2: for any such extension χ = (w0 = i, w1, . . . , wg), Z(p ⊕ χ) ≤ Z(p′ ⊕ χ) holds, where Z(p ⊕ χ) (resp.

Z(p′ ⊕ χ)) is the incomplete reduced cost of the path p⊕ χ (resp. p′ ⊕ χ) resulting from the extension

of p (resp. p′).

Given the exponential number of feasible extensions, conditions C1 and C2 cannot be easily verified. We

rather propose the following sufficient conditions. For a partial route p ending at node i ∈ V , we first find

the arcs (i, j) ∈ A that are the most and less correlated with (N(p), i) and record the following values:

f−(p, i) = min
(i,j)∈δ+(i):Mj(p)=0

{CαN(p)iij}, (46)

f+(p, i) = max
(i,j)∈δ+(i):Mj(p)=0

{CαN(p)iij}. (47)

The sufficient conditions of the dominance rule are stated in the following theorem.

Theorem 2 Given two partial routes p and p′ ending at the same node i ∈ V and represented by the labels

E(p) = (Z(p), L(p),M1(p), . . . ,Mn(p), N(p)) and E(p′) = (Z(p′), L(p′),M1(p′), . . . ,Mn(p′), N(p′)), respec-

tively. Label E(p) dominates label E(p′) if

Z(p) + 2f+(p, i) ≤ Z(p′) + 2f−(p′, i), (48)

L(p) ≤ L(p′), (49)

M l(p) ≤M l(p′), ∀l ∈ V0. (50)

Proof. See Appendix B.

Note that, when N(p) = N(p′), the condition (48) can be replaced by Z(p) ≤ Z(p′). This is correct
because in any common extension, the unknown contribution of the quadratic term to the reduced cost

would be the same.

In the labeling algorithm, dominated labels are discarded unless two labels dominate each other. In this

case, one of the labels is kept.

4.3 Route relaxation, rounded capacity cuts, and branching

In this section, we present the ng−route relaxation as an acceleration technique, the rounded capacity cuts

applied to strengthen the continuous relaxations in the branch-and-bound search tree, and the branching

strategies to derive integer solutions.

Solving the ESPPRC subproblems is the most time-consuming part of the proposed branch-price-and-cut

algorithms. To reduce the computational time spent solving the subproblems, we use the ng−route relaxation

introduced by Baldacci et al. (2011). For each node i ∈ V , let Vi ⊂ V be a subset of nodes with a priori

fixed size (set to 10 in our experiments) that contains node i and its “closest” neighbors. In an ng−route, a

customer i ∈ V0 may be visited more than once if between any two visits to i at least one node j ∈ V such

that i /∈ Vj is visited. With this relaxation, the parameters aip and bijp are not binary anymore. They rather

counts the number of times that node i and arc (i, j) are traversed in route p, yielding weaker lower bounds.

Nevertheless, using this ng-route relaxation accelerates the overall solution process.
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To strengthen the continuous relaxations encountered in the search tree, we generate rounded capacity

cuts (see Naddef and Rinaldi 2001) dynamically. More precisely, we consider the inequalities (7) and (15) for

the general case and the adjacent case, respectively, where γ(S) is replaced by the lower bound d
∑
i∈S qi/Qe.

Then, we replace the corresponding x variables using (23) and (29) and add them to corresponding master

problem whenever they are violated. Since the separation of these inequalities is known to be strongly NP-

hard (see, e.g., Naddef and Rinaldi 2001), we use the separation heuristic package of Lysgaard (2003) for our

computational experiments.

To derive integer solutions, we branch on the total flow on an arc in A which is not incident to node 0.

The total flow is computed by vehicle in model SP1α, that is, for each subproblem. When the arc flow is

fractional for several arcs, we branch on the flow on an arc e ∈ A which is not incident to node 0 and whose

total flow is the closest to 0.5. On one branch, the flow on e is set to 0 by simply removing e from A in

all subproblems. On the other branch, the flow on e is set to 1 by removing from A all the other arcs with

the same tail or head node as e. The columns of the current master problem are then updated accordingly.

Finally, the enumeration process applies a best-first search strategy to explore the search tree.

5 Computational results

In this section, we present our computational experiments to evaluate empirically the performance of the

proposed algorithms for both the general and the adjacent cases. Moreover, we analyze the efficiency of our

proposed parametric models in finding efficient solutions in terms of both the expected travel time and the

variance. For simplification, we denote by BPC-SP1α, BPC-SP1adjα , BPC-SP1adjLα , and BPC-SP2α the

branch-price-and-cut algorithms applied to models SP1α, SP1adjα , SP1adjLα , and SP2α, respectively.

In our experiments we tested our algorithms for different choices of α ∈ {0.05, 0.1, 0.3, 0.5}. All the

algorithms were coded in C/C++ using CPLEX 12.6 as a solver for the linear and convex quadratic programs

and the GENCOL 4.5 library for the implementation of the branch-price-and-cut algorithms. The experiments

were performed on a machine running Linux Intel Xeon(R) CPU E3-1270 (2 quad core CPUs with 3.60 GHz)

with 64 gigabytes of RAM. We considered a time limit of 5 hours to solve each instance in the general case

and 2 hours in the adjacent case.

In the following, we describe our test instances in Section 5.1. Then, for the covariance matrices with

non-negative entries, we analyze the performance of the proposed algorithms and investigate the effectiveness

of our proposed models in terms of the expected travel times and the variance in Sections 5.2 and 5.3, respec-

tively. In Section 5.4, we evaluate the algorithms and the solutions in the presence of negative correlations.

5.1 Test instances

To evaluate and compare the proposed algorithms, we used five groups of CVRP-SCT instances that were

created by adapting well-known instances from the literature for the CVRP. Two groups of instances are

derived from the A and P CVRP instances originally proposed by Augerat et al. (1998) (and available

at http://vrp.atd-lab.inf.puc-rio.br/index.php/en/new-instances), where in group A, the customers and the

depot are randomly positioned while in group P , they are randomly clustered. The other three groups

of instances are derived from the instances of Solomon (1987) for the VRP with time windows (VRPTW)

from which we discarded the time windows. In these instances, the geographical locations of the customers

are: Clustered (C), Random (R) and a mixed of Random and Clustered (RC). Each instance contains 100

customers that are distributed in a 100 × 100 square. As common in the literature, we consider instances

with reduced size n < 100 obtained from the original instances by considering only their first n customers.

The three groups contain the instances of various sizes derived from the C101, RC101, and R101 VRPTW

instances, respectively. The other VRPTW instances in classes C1, R1, and RC1 were not considered because

deleting the time windows make them identical to C101, R101, or RC101. For these instances, we set the

number of vehicles |K| to d
∑
i∈V0

qi/Qe.
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For all test instances, we generated the expected travel times and the covariance matrix as follows. For

each arc (i, j) ∈ A, we set the expected travel time µij = cij , where cij is the cost of arc (i, j) given in the

classical instances. To generate the positive semidefinite covariance matrix C, we perform the following steps:

• First, we generate the standard deviations of the arc travel times. For each arc (i, j) ∈ A, we set

σij = cvij × µij , where cvij is a random coefficient of variation (the ratio of the standard deviation to

the mean, which provides a measurement of the relative dispersion) for this arc which is drawn from a

uniform distribution in the range [0.01, 0.2]. Let M ∈ Rm be the vector of these standard deviations.

• Second, we randomly generate a symmetric matrix D ∈ [0, 1]m×m of non-negative correlation coeffi-

cients. To this end, we first randomly generate an m× n full rank matrix Ẽ from a normal distribution

with a relatively large positive mean and a small standard deviation whose rows and columns corre-

spond to the arcs and the customers, respectively. Any generated negative number is discarded and

replaced by another random value. Let E be the matrix resulting from normalizing the rows of Ẽ to

have length one. We then set D to E ET which is a positive semidefinite matrix and its entries lie

in [0, 1] because each row of E has length one. To generate a covariance matrix with some negative

entries, we multiply by -1 each generated random number Ẽei, e ∈ A and i ∈ V0, with probability 5%,

resulting in a matrix D with all entries in [−1, 1]. For the adjacent case, we set Ẽei = 0 for all arcs

e ∈ A and nodes i ∈ V0 such that e /∈ (δ+(i) ∪ δ−(i)).

• Finally, we set C = (MMT )◦D where ◦ is the “Hadamard product” operation. Note that, since MMT

is a rank one matrix, and hence positive semidefinite, the resulting covariance matrix C is a positive

semidefinite matrix too.

For the sake of conciseness, we will refer to the instances in groups A and P as the AP instances and

those in the C101, RC101 and R101 as the CRCR instances.

5.2 Algorithmic performance

We conducted computational experiments to evaluate the performance of the proposed branch-price-and-

cut algorithms considering only non-negative correlations. Summary computational results are reported in

Section 5.2.1 for the general case and in Section 5.2.2 for the adjacent case. Detailed results can be found in

the paper supplement.

5.2.1 The general case

For the general case, we ran experiments with BPC-SP1α on the CRCR instances with sizes ranging from

15 to 32 customers. Average results are reported in Table 1. In this table, each row gives the average results

for the four values of α ∈ {0.05, 0.1, 0.3, 0.5}, the average being computed only on the instances solved to

optimality within the time limit. The first three columns indicate the instance group (Group), the number of

customers (n), and the number of required vehicles (|K|). The next five columns give the average integrality

gaps in percentage (Gap1, and Gap2) before and after applying rounded capacity cuts, the average CPU time

in seconds at the root node of the search tree (RT ), the average total time in seconds to solve the instances to

optimality (TT ), and the average number of explored nodes (Nodes). The last column specifies the number

of instances solved within the time limit (Opt).

We can observe from these results that the lower bounds obtained at the root node are improved sig-

nificantly by adding rounded capacity cuts. On average, the rounded capacity cuts decrease the integrality

gap by 31%, which, in turn, implies smaller search trees. However, the time spent to solve the relaxation at

the root node regardless of the number of added rounded capacity cuts (which are only a few) is relatively

large and increases with the number of customers. Overall, the algorithm can solve instances with up to 32

customers within the 5-hour time limit. Moreover, the clustered C101 instances appear to be easier to solve

than the RC101 and R101 instances. Indeed, the algorithm could solve to optimality 78.5%, 68.7%, and

68.7% of the tested instances in the groups C101, RC101, and R101, respectively.
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Table 1: Summary results of BPC-SP1α on the RCRC instances

Instance BPC-SP1α

Group n |K| Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt

C101 15 2 11.7 2.9 10.1 108.5 28 4
C101 20 2 2.4 2.4 60.9 231.8 11 4
C101 23 3 2.8 1.8 230.6 2342.3 106 3
C101 25 3 3.4 1.8 297.0 2883.0 65 3
C101 28 3 3.4 2.2 932.7 6919.3 64 4
C101 30 3 4.3 2.5 1186.8 10752.0 71 3
C101 32 3 3.9 0.6 3056.3 17169.1 69 1

RC101 15 2 1.8 1.3 14.1 59.0 15 4
RC101 20 3 4.9 2.5 100.2 608.2 59 4
RC101 23 3 3.1 1.9 222.4 1885.4 73 4
RC101 25 3 2.0 1.1 361.2 2169.6 57 3
RC101 28 4 8.7 0.5 642.3 11551.1 363 1
RC101 30 4 6.6 0.4 1523.4 9753.5 130 2
RC101 32 4 4.2 0.3 2323.9 13603.0 131 1

R101 15 2 1.9 1.9 17.9 397.1 88 4
R101 20 2 3.0 2.8 83.3 1914.2 73 4
R101 23 2 2.6 2.3 265.1 3871.6 54 4
R101 25 2 2.8 1.7 480.1 5757.4 46 4
R101 28 2 1.3 0.9 1297.7 5129.4 14 3
R101 30 3 - - - - - 0
R101 32 3 - - - - - 0

5.2.2 The adjacent case

In this section, we compare the performances of the three algorithms BPC-SP1adjα , BPC-SP1adjLα , and BPC-

SP2α for the adjacent case. To do this comparison, we ran tests on CRCR instances involving between 20

and 65 customers and on AP instances with up to 75 customers.

We first observe that, generally speaking, BPC-SP1adjα is not very efficient. This can be easily inferred

by inspecting Table 2 which reports aggregated results by group of instances obtained by BPC-SP1adjα , and

BPC-SP1adjLα . In Table 2, the first two columns indicate the instance group (Group) and the total number

of instances in this group (Total). For each algorithm, the description of the columns is the same as in

Table 1. Again, the reported average results are computed over the instances solved to optimality within

the time limit. As we can observe from these results, BPC-SP1adjLα clearly outperforms BPC-SP1adjα on all

groups of instances. Overall, BPC-SP1adjLα could solve 186 out of the 232 instances within the time limit

while BPC-SP1adjα was able to solve only 70 of them. One possible reason for such a superiority is that the

linear programming (LP) relaxations of SP1adjLα provide stronger bounds and are solved more quickly than

the continuous relaxations of SP1adjα .

Table 2: Aggregated results obtained by BPC-SP1adjα and BPC-SP1adjLα in the adjacent case

Instance BPC-SP1adjα BPC-SP1adjLα

Group Total Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt

C101 32 2.9 0.5 463.5 2297.9 36 16 1.9 0.1 89.6 375.3 10 28
RC101 32 3.9 0.6 453.1 1657.8 39 20 2.5 0.0 39.0 39.7 1 24
R101 32 2.7 2.3 155.9 1448.0 61 13 1.2 0.8 27.2 264.3 40 26

A 76 3.0 1.3 369.2 4364.8 229 9 3.2 1.4 41.0 1480.6 2383 62
P 60 0.9 0.6 1.1 17.2 72 12 1.7 1.1 47.7 649.9 1098 46

Total 232 70 186

Next, we analyze more in depth the behavior of BPC-SP1adjLα and BPC-SP2α. The results are reported in

Tables 3 and 4 for the CRCR instances and the AP instances, respectively. The meaning of the columns is the

same as in Table 1. Each row in these tables gives the average results on the 4 values of α ∈ {0.05, 0.1, 0.3, 0.5},
except for the solved rows which provide, by instance group and overall, the percentage of instances solved

within the time limit. By inspecting these tables, we can observe that BPC-SP2α generally outperforms
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Table 3: Comparison of the algorithms on the CRCR instances in the adjacent case

Instance BPC-SP1adjLα BPC-SP2α

Group n |K| Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt

C101 20 2 0.0 0.0 5.8 5.8 1 4 0.0 0.0 22.9 23.1 1 4
C101 25 3 1.1 0.0 6.5 7.4 1 4 0.9 0.0 7.8 8.6 1 4
C101 30 3 2.0 0.0 14.6 16.4 1 4 1.8 0.0 6.3 8.7 1 4
C101 35 4 3.9 0.6 27.7 237.5 63 4 3.8 0.4 3.6 37.0 40 4
C101 40 4 3.9 0.2 49.8 1981.6 7 4 3.8 0.2 7.3 71.1 5 4
C101 50 5 1.9 0.0 138.6 153.1 1 2 1.7 0.0 21.0 42.0 1 4
C101 60 6 0.8 0.0 386.1 405.6 1 1 0.8 0.1 15.7 58.4 1 4
C101 65 6 - - - - - 0 - - - - - 0

Solved(%) 71.8 87.5

RC101 20 3 1.7 0.0 1.1 1.2 1 4 1.7 0.0 0.7 0.8 1 4
RC101 25 3 0.6 0.0 5.2 5.4 1 4 0.6 0.0 0.8 1.4 1 4
RC101 30 4 6.1 0.0 8.5 8.9 1 4 6.1 0.0 0.9 1.8 1 4
RC101 35 4 3.7 0.0 26.1 27.4 1 4 3.6 0.0 6.0 10.4 1 4
RC101 40 5 2.8 0.0 37.1 38.4 1 4 2.7 0.0 1.7 4.0 1 4
RC101 50 5 0.3 0.0 154.9 155.9 1 4 0.2 0.0 18.4 23.4 1 4
RC101 60 6 - - - - - 0 - - - - - 0
RC101 65 6 - - - - - 0 - - - - - 0

Solved(%) 75.0 75.0

R101 20 2 0.8 0.6 7.7 8.2 5 4 0.8 0.5 55.1 56.0 5 4
R101 25 2 1.4 1.0 33.1 45.2 21 4 1.2 0.6 521.7 583.4 16 4
R101 30 3 0.8 0.6 19.4 283.0 11 4 0.7 0.6 12.9 18.9 9 4
R101 35 3 2.2 1.6 46.5 838.6 145 4 2.0 1.3 72.1 277.5 110 4
R101 40 3 1.6 1.1 102.9 5662.5 51 1 1.9 1.2 79.4 215.4 40 4
R101 50 4 - - - - - 0 2.3 1.1 110.1 607.2 166 4
R101 60 5 - - - - - 0 2.0 1.0 65.7 544.4 27 1
R101 65 5 - - - - - 0 1.5 0.7 155.2 1337.5 65 1

Solved(%) 53.1 81.5

Total solved (%) 66.3 81.3

BPC-SP1adjLα in terms of the number of solved instances and total computing times. In fact, using BPC-

SP2α, we were able to solve CRCR instances with up to 65 customers and AP instances with up to 75

customers. Overall, BPC-SP2α found optimal solutions for 81.3% of the CRCR instances and 79.1% of the

AP instances, while these percentages for BPC-SP1adjLα are 66.3% and 59.4%, respectively. As it can be

observed, the main reason for such a superiority is that the LP relaxation of SP2α is solved much more

quickly than the LP relaxation of SP1adjLα .

5.3 Solution analysis in terms of expected travel time and variance

In this section, we investigate the solutions that can be computed using different choices of α, considering

again only non-negative correlations. For α = 0, the CVRP-SCT reduces to the CVRP, which minimizes the

expected total travel time without considering time variability. This can only be interesting for a planner who

has a risk-neutral behavior when planning the operations. However, by increasing the value of α, the chosen

model can capture the planner’s risk attitude to control time variability and yield different routing solutions.

To solve the instances, we used BPC-SP1α for the general case and BPC-SP2α for the adjacent case.

We report the results only for instances solved to optimality within the time limit for the values of α ∈
{0, 0.05, 0.1, 0.3}. Tables 5 and 6 provide the results on the CRCR instances for the genera and the adjacent

cases, respectively, whereas Table 7 reports the results on the AP instances for the adjacent case. In these

tables, the descriptions of the three first columns are the same as for Table 1. The next two columns show the

total expected travel time (Exp) and the total variance (V ar) of the optimal routes of the CVRP (α = 0).

The next columns represent for each α > 0 the increase in percentage of the expected travel time (↑ Exp)
and the decrease in percentage of the total variance (↓ V ar(%)) with respect to expected travel time and

variance of the optimal routes of the CVRP. We use (Exp(α) − Exp(0))/Exp(α) to compute ↑ Exp, and
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Table 4: Comparison of the algorithms on the AP instances in the adjacent case

Instance BPC-SP1adjLα BPC-SP2α

Group n |K| Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt Gap1(%) Gap2(%) RT (s) TT (s) Nodes Opt

A 32 5 2.5 0.9 10.0 28.7 128 4 2.4 0.9 0.3 8.1 96 4
A 32 6 3.3 0.6 7.2 16.6 46 4 3.1 0.6 0.3 4.7 48 4
A 33 5 4.8 2.4 11.8 403.9 2459 2 4.7 2.8 0.7 3689.9 38727 4
A 35 5 3.4 1.6 18.4 760.6 2092 4 3.2 1.5 1.6 361.5 1771 4
A 36 5 2.7 1.2 21.8 457.4 253 4 2.6 1.2 1.7 44.0 233 4
A 36 6 3.5 2.1 14.7 2616.7 10112 4 3.4 1.9 0.7 705.9 5677 4
A 37 5 6.4 3.0 27.7 1665.8 5214 4 6.3 2.9 1.2 691.5 4748 4
A 38 5 2.3 1.2 33.8 1492.2 1814 4 2.1 1.0 1.6 598.0 1616 4
A 38 6 3.4 1.6 21.2 2540.0 6625 4 3.3 1.3 0.9 773.1 4987 4
A 43 6 1.1 0.6 45.3 1404.8 67 4 0.9 0.5 1.2 17.1 47 4
A 44 6 3.6 0.8 62.5 1906.8 80 4 3.5 0.6 2.4 39.2 26 4
A 44 7 2.6 1.5 48.0 813.3 1733 1 2.4 1.4 1.2 1760.5 7281 2
A 45 7 1.6 0.3 56.3 95.2 42 4 1.5 0.3 1.8 12.4 32 4
A 47 7 3.3 1.1 75.4 1105.5 1387 2 3.7 1.6 2.0 3454.3 4633 4
A 52 7 3.0 2.0 127.8 5948.6 5605 1 2.2 1.3 6.7 3526.6 5341 4
A 53 7 - - - - - 0 2.9 0.8 3.8 184.7 107 1
A 54 9 4.8 1.5 109.3 6850.7 9393 1 4.7 1.3 0.9 461.1 2071 1
A 59 9 - - - - - 0 - - - - - 0
A 60 9 - - - - - 0 2.7 1.2 2.2 2379.6 3044 2

Solved(%) 67.1 81.5

P 15 8 1.6 0.7 0.0 0.1 17 4 1.6 0.7 0.0 0.1 15 4
P 21 8 0.4 0.2 0.3 0.5 9 4 0.3 0.0 0.0 0.2 1 4
P 22 8 - - - - - 0 0.0 0.0 0.0 0.2 1 4
P 39 5 1.9 1.4 37.0 173.8 356 4 1.7 1.3 1.5 34.3 272 4
P 44 5 2.3 1.8 70.4 1774.9 3246 4 2.3 1.7 3.0 375.4 2882 4
P 49 7 1.8 1.3 66.8 1478.0 2105 4 1.8 1.3 0.8 226.2 1759 4
P 49 8 - - - - - 0 - - - - - 0
P 49 10 1.5 1.2 35.8 880.5 1939 2 1.4 1.1 0.2 399.7 8215 4
P 50 10 1.4 0.9 46.9 895.9 1767 4 1.3 0.8 0.2 111.8 1598 4
P 54 7 2.0 0.9 127.1 327.0 107 1 2.1 1.2 1.7 2264.3 6490 2
P 54 8 1.9 1.2 148.8 4318.3 1543 4 1.7 0.9 1.5 136.2 580 4
P 54 10 - - - - - 0 2.4 1.6 0.4 2706.6 26735 2
P 59 10 - - - - - 0 1.6 1.1 0.6 1688.6 10573 4
P 69 10 - - - - - 0 - - - - - 0
P 75 4 - - - - - 0 1.6 0.8 173.3 3711.6 370 2

Solved(%) 51.6 76.7

Total solved (%) 59.4 79.1

(V ar(0)− V ar(α))/V ar(0) to compute ↓ V ar, where Exp(α) and V ar(α) are the expected travel time and

variance of the optimal routes for a given α.

Tables 5 to 7 reveal several interesting facts. For the CRCR instances in the general case, solving the

CVRP-SCT with α = 0.05 can reduce the travel time variance in all three groups C101 (by 69.8%), RC101

(by 35.5%), and R101 (by 54.9%) with respective increase in the total expected travel time of 1.3%, 0.4%

and 3.4%. As expected, by increasing α, we find solutions with smaller variances and higher expected travel

times. Even though the behavior of the algorithm on each group of instances differs, the overall results show

that the CVRP-SCT can yield solutions with a considerably smaller variance at the expense of a slightly

higher expected travel time. One interesting observation is that for the RC101 instances with 15 and 23

customers, the CVRP-SCT optimal routes obtained with α = 0.05 have the same expected total travel time

as the CVRP ones, but much less variance. This indicates that the CVRP has multiple optimal solutions and

solving the CVRP-SCT allows to find one with smaller variance. This interesting result can also be observed

for many instances in the adjacent case (see Tables 6 and 7).

For the CRCR instances in the adjacent case, the overall behavior of the obtained solutions is similar

to the general case for all values of α. For example, for α = 0.05, the average decreased variance and

increased expected travel time of the CVRP-SCT solutions for the three groups C101, RC101, and R101

are (45.1%, 0.3%), (29.1%, 0.03%), and (38.7%, 1.1%), respectively. Note that for the RC101 instances, the
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Table 5: Solution analysis on the CRCR instances in the general case

Instance α = 0 α = 0.05 α = 0.1 α = 0.3 α = 0.5

Group n |K| Exp Var ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%)

C101 15 2 1338.0 3113.3 0.5 51.8 2.5 62.1 8.0 80.7 15.0 85.6
C101 20 2 1596.0 5004.8 0.1 80.7 3.0 90.5 3.0 90.5 5.5 91.7
C101 23 3 1815.0 4931.0 1.6 82.8 1.7 83.2 4.0 86.0 - -
C101 25 3 1882.0 5294.2 2.1 85.3 2.7 90.0 4.2 91.7 - -
C101 28 3 1939.0 2240.5 2.1 61.7 2.1 61.7 4.4 75.0 8.9 85.0
C101 30 3 2026.0 3410.7 1.4 56.3 1.4 56.3 9.6 86.0 - -
Avg. 1.3 69.8 2.2 74.0 5.5 85.0 9.8 87.4

RC101 15 2 1873.0 2573.3 0.0 9.8 1.9 35.8 4.8 46.1 14.8 61.9
RC101 20 3 2841.0 2405.7 0.6 34.8 1.4 44.7 4.2 64.2 9.8 76.3
RC101 23 3 2901.0 2969.0 0.0 39.4 1.1 55.6 5.0 73.6 5.0 73.6
RC101 25 3 2954.0 4014.2 0.9 57.8 1.4 64.0 3.9 72.4 10.2 79.3
Avg. 0.4 35.5 1.5 50.0 4.5 64.1 9.9 72.7

R101 15 2 2495.0 49515.3 4.6 65.3 18.9 79.3 44.1 91.0 44.1 91.0
R101 20 2 2810.0 29681.8 2.9 53.6 15.4 71.8 30.1 80.2 30.1 80.2
R101 23 2 3055.0 32861.1 2.8 55.5 9.6 63.2 21.8 74.8 34.5 80.0
R101 25 2 3362.0 38311.3 3.2 45.3 19.5 68.2 30.7 79.2 39.8 82.5
Avg. 3.4 54.9 15.9 70.6 31.7 81.3 37.1 83.4

Table 6: Solution analysis on the CRCR instances in the adjacent case

Instance α = 0 α = 0.05 α = 0.1 α = 0.3 α = 0.5

Group n |K| Exp Var ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%)

C101 20 2 1596.0 309.8 0.1 12.9 0.1 12.9 0.1 12.9 0.1 12.9
C101 25 3 1882.0 2248.2 0.6 66.0 1.6 80.2 3.5 87.8 4.0 88.2
C101 30 3 2026.0 1481.7 0.3 49.7 0.4 52.4 2.5 65.3 6.9 75.9
C101 35 4 2757.0 2439.1 0.7 68.5 0.9 72.4 2.2 78.5 3.4 81.0
C101 40 4 3299.0 1699.6 0.2 44.5 0.8 57.8 2.0 68.3 2.9 71.7
C101 50 5 3602.0 1342.5 0.0 22.7 0.0 22.7 1.8 54.2 5.2 65.3
C101 60 6 4671.0 2711.4 0.2 51.3 0.2 51.3 2.4 69.4 2.8 70.4
Avg. 0.3 45.1 0.6 49.9 2.1 62.3 3.6 66.5

RC101 20 3 2841.0 1096.7 0.0 27.0 0.0 27.0 2.4 51.8 6.8 73.9
RC101 25 3 2954.0 1184.2 0.2 13.1 0.5 25.1 1.9 49.6 4.2 60.5
RC101 30 4 4167.0 743.6 0.0 0.0 0.0 0.0 0.0 0.0 3.7 33.8
RC101 35 4 4710.0 3668.1 0.0 58.4 0.1 60.0 2.8 78.5 4.1 80.7
RC101 40 5 5156.0 1446.5 0.0 35.4 0.0 36.4 0.7 47.2 3.1 59.7
RC101 50 5 5195.0 2414.5 0.0 40.5 0.0 40.5 0.7 47.0 7.3 74.0
Avg. 0.0 29.1 0.1 31.5 1.4 45.7 4.9 63.7

R101 20 2 2810.0 7962.8 0.0 41.8 2.9 55.6 7.5 67.7 21.4 77.0
R101 25 2 3362.0 8446.3 0.5 35.9 3.2 49.4 3.2 49.4 29.4 77.4
R101 30 3 3594.0 10194.7 0.6 51.4 0.6 51.4 13.6 79.1 19.5 83.4
R101 35 3 4088.0 7195.2 0.3 7.9 3.5 33.3 13.0 58.7 20.5 69.4
R101 40 3 4615.0 11637.7 1.5 38.6 3.7 49.0 13.5 68.0 30.7 81.8
R101 50 4 5287.0 10945.6 3.5 56.6 3.5 56.6 8.3 68.9 18.4 79.4
Avg. 1.1 38.7 2.9 49.2 9.8 65.3 23.3 78.1

routes computed for α = 0.05 exhibit the same total expected travel time as in the CVRP in 5 of the 6

instances with an average reduction of 32% of the total variance. Moreover, in the RC101 instance with 30

customers, the total travel time mean and variance of the CVRP-SCT solutions are the same as those of

the corresponding CVRP solutions for α = 0.05, 0.1, 0.3, but differ when α = 0.5. In this case, the expected

travel time increases by 3.7% while the variance decreases by 33.8%.

For the AP instances, we observe that, for 10 of the 14 A instances and 10 of the 11 P instances, the

CVRP-SCT solution computed with α = 0.05 has the same total expected travel time as its corresponding

CVRP solution, but much less total variance. This highlights the impact of using the CVRP-SCT to find

alternative optimal routes with much less variance. The average increase of the total expected travel time
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Table 7: Solution analysis on the AP instances in the adjacent case

Instance α = 0 α = 0.05 α = 0.1 α = 0.3 α = 0.5

Group n |K| Exp Var ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%) ↑ Exp(%) ↓ V ar(%)

A 32 5 661.0 119.7 0.0 23.4 0.0 23.4 0.0 23.4 3.8 54.3
A 32 6 742.0 251.6 0.3 58.4 0.3 58.4 0.7 63.2 2.0 69.2
A 33 5 778.0 210.8 0.0 22.3 0.0 22.3 2.0 67.4 4.8 81.6
A 35 5 799.0 192.0 0.0 32.3 0.0 32.3 1.5 53.1 4.2 68.7
A 36 5 669.0 211.1 0.0 27.5 0.4 44.5 2.0 61.6 2.0 61.6
A 36 6 949.0 211.0 0.0 25.1 0.3 45.0 0.7 56.4 2.4 70.6
A 37 5 730.0 194.2 0.0 42.7 0.1 52.0 1.1 66.9 2.0 74.2
A 38 5 822.0 266.3 0.5 47.7 0.5 47.7 2.1 62.7 3.4 71.7
A 38 6 831.0 248.2 0.0 23.0 0.5 39.9 1.8 67.3 2.4 69.7
A 43 6 937.0 160.7 0.0 41.7 0.0 41.7 0.0 41.7 1.6 52.3
A 44 6 944.0 223.8 0.1 27.3 0.5 57.6 0.5 57.6 0.7 59.4
A 45 7 914.0 180.8 0.0 18.3 0.3 49.8 1.4 67.5 1.5 68.6
A 47 7 1073.0 315.0 0.0 47.9 0.1 52.7 0.8 61.0 3.6 78.4
A 52 7 1010.0 185.5 0.1 36.1 0.1 36.1 0.5 44.7 2.4 58.2

0.1 33.8 0.2 43.1 1.1 56.7 2.6 67.0

P 15 8 450.0 14.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 27.2
P 21 8 603.0 107.3 0.0 32.6 0.2 47.5 0.5 58.7 1.5 64.3
P 22 8 529.0 28.4 0.0 42.3 0.0 42.3 0.0 42.3 0.0 42.3
P 39 5 458.0 77.4 0.0 0.0 0.2 12.9 1.3 34.9 4.6 63.3
P 44 5 510.0 77.9 0.0 20.5 0.0 20.5 0.6 33.4 2.5 48.8
P 49 7 554.0 86.2 0.0 32.5 0.0 32.5 0.4 47.6 2.5 66.1
P 49 8 631.0 109.1 0.0 45.8 0.0 45.8 0.0 46.7 1.7 65.1
P 49 10 696.0 88.9 0.1 59.6 0.1 59.6 0.3 65.2 0.7 68.6
P 50 10 741.0 68.0 0.0 23.5 0.0 23.5 0.1 35.3 1.5 54.4
P 54 8 576.0 105.7 0.0 49.2 0.0 49.2 0.0 49.2 1.7 65.3
P 59 10 744.0 101.9 0.0 29.4 0.0 29.4 0.9 54.0 2.0 65.8

0.0 30.4 0.0 33.0 0.4 42.4 1.8 57.3

and decrease of the total variance with respect to the CVRP optimal solutions for the A instances are

(0.07%, 33.8%), (0.22%, 43.1%), (1.08%, 56.7%), and (2.63%, 67.0%) when α = 0.05, α = 0.1, α = 0.3,

and α = 0.5, respectively. For the group P, we get (0.01%, 30.4%), (0.04%, 33.0%), (0.4%, 42.4%), and

(1.8%, 57.3%) for α = 0.05, α = 0.1, α = 0.3, and α = 0.5, respectively. We observe again that larger α

values yield solutions with much less variability.

Overall, the results of Tables 5 to 7 indicate the flexibility offered by the CVRP-SCT to compute routes

with different values of the total expected travel time and variance, which in turn allows the planner to
choose routes according to his risk attitude. Moreover, our results show that, in many cases, the CVRP-SCT

provides solutions with the same total expected travel time as the CVRP solutions, but with considerably

less variance.

5.4 Effects of negative correlations

In this section, we investigate the effects of negative correlation coefficients on the performance of the al-

gorithms and the properties of the solutions. As mentioned in Section 1, it is possible to have negative

correlations between the travel times. For example, negative correlation can occur when there is a bottleneck

in one link that restricts the flow in the downstream links. The vehicles on the downstream links can then

travel at full speed.

Our computational experiments show that negative correlation coefficients affect the performance of all

the algorithms in a similar way. Therefore, here, we only present the results produced by BPC-SP2α in the

adjacent case for a reduced number of instances, namely, the C101 and A instances. Tables 8 and 9 reports

the results for α = 0.1 and α = 0.3, respectively. The first three columns of these tables give the instance

information. The columns ↑ Exp and ↓ V ar provide the increased expected travel time and the decreased

variance of the CVRP-SCT solution compared to the CVRP one. The remaining columns give the same

statistics as in Table 1.
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Table 8: Results with negative correlations in the adjacent case for α = 0.1

Instance

Group n |K| ↑ Exp(%) ↓ V ar(%) Gap1(%) Gap2(%) RT (s) TT (s) Nodes

C101 20 2 0.1 12.9 0.0 0.0 6.3 6.4 1
C101 25 3 1.6 82.5 1.3 0.0 2.3 5.4 1
C101 30 3 0.4 52.9 1.4 0.0 12.9 15.4 1
C101 35 4 0.9 73.5 3.7 0.7 4.6 674.4 65
C101 40 4 0.8 58.5 4.8 0.0 13.2 478.1 1
C101 50 5 0.8 49.2 1.9 0.0 166.7 1360.9 1
C101 60 6 0.2 53.4 0.9 0.0 1899.7 4979.2 1
Avg. 0.7 54.7 2.0 0.1 300.1 1074.2 10

A 31 5 0.3 55.2 2.7 0.8 1.0 8.0 17
A 32 5 0.0 30.1 1.8 0.8 0.4 12.2 131
A 32 6 0.3 64.8 3.8 0.8 0.3 17.8 223
A 33 5 0.3 33.2 5.3 3.6 0.7 6427.9 61183
A 35 5 0.0 32.3 3.0 1.2 1.5 597.2 2323
A 36 5 0.1 44.5 2.5 1.1 2.6 61.5 277
A 36 6 0.3 46.9 3.6 1.7 0.9 1747.0 11669
A 37 5 0.1 54.1 6.3 3.0 1.3 1892.3 9925
A 38 5 0.5 52.2 2.7 1.5 2.1 1253.9 2161
A 38 6 0.5 43.1 4.1 2.2 1.1 1947.4 9457
A 43 6 0.0 44.2 0.8 0.5 1.5 28.5 87
A 44 6 0.4 56.7 3.6 1.0 2.9 165.1 239
A 45 7 0.3 52.0 1.7 0.5 1.8 24.9 59
A 47 7 0.2 64.1 3.1 1.1 1.6 1023.8 1781

Avg. 0.2 48.1 3.2 1.4 1.4 1086.2 7109

Table 9: Results with negative correlations in the adjacent case for α = 0.3

Instance

Group n |K| ↑ Exp(%) ↓ V ar(%) Gap1(%) Gap2(%) RT (s) TT (s) Nodes

C101 20 2 0.1 12.9 0.0 0.0 16.0 16.1 1
C101 25 3 3.5 89.0 0.8 0.0 20.5 53.3 1
C101 30 3 2.5 66.4 2.4 0.0 157.3 1299.8 1
Avg. 2.0 56.1 1.1 0.0 64.6 456.4 1

A 31 5 1.8 69.6 3.4 2.5 1.1 92.8 379
A 32 5 0.5 39.3 2.5 0.9 0.5 6.8 25
A 32 6 1.1 75.9 2.5 0.7 0.4 6.0 31
A 33 5 2.0 71.6 4.6 1.9 0.9 184.4 1155
A 35 5 1.5 53.1 3.2 1.9 2.2 1919.3 2795
A 36 5 2.2 70.6 2.3 1.6 3.0 279.3 341
A 36 6 1.2 64.5 3.3 2.0 1.1 1105.9 2129
A 37 5 1.1 69.0 6.5 3.1 1.5 2251.5 5121
A 38 5 2.1 67.2 2.2 0.9 3.8 385.8 53
A 38 6 1.7 67.3 2.5 0.6 1.7 53.8 39
A 43 6 0.0 44.2 0.4 0.0 1.6 7.4 1
A 44 6 0.5 59.4 3.4 0.3 4.0 147.1 17
A 45 7 1.4 69.7 1.2 0.2 2.8 18.8 7
A 47 7 0.6 68.3 3.5 1.2 3.4 4130.8 861

Avg. 1.3 63.6 3.0 1.27 2.0 756.4 925

As we can see from columns 4 and 5, the computed CVRP-SCT solutions exhibit significantly less travel

time variance than the corresponding CVRP solutions, without increasing much the travel time mean, simi-

larly to the positive-only correlation case. For example, for α = 0.1, the average expected travel time increase

and variance decrease of the CVRP-SCT solutions with respect to the CVRP solutions are 0.68% and 54.7%

for the C101 instances, and 0.23% and 48.1% for the A instances against (0.57%, 49.9%) and (0.22%, 43.1%)

for the case with only non-negative correlations. On the other hand, from the algorithmic performance point

of view, we observe that the instances allowing negative correlations are more difficult to solve. This can

be inferred by comparing the columns TT in Tables 8 and 9 with the corresponding ones in Tables 19, 22,
and 23. They indicate an increase of the total computing time by average factors of 41.5 and 7.5 for the
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C101 instances with α = 0.1 and α = 0.3, respectively, and of 0.9 and 4.2 for the A instances with α = 0.1

and α = 0.3, respectively. In particular, when α = 0.3, BPC-SP2α was unable to solve within the time limit

C101 instances with more than 30 customers, while instances with up to 60 customers where solved in less

than three minutes when considering only non-negative correlations.

6 Conclusions

In this paper, we studied the CVRP-SCT, where correlations between arc travel times are represented by

a variance-covariance matrix. To reduce time variability, we introduced a mean-variance approach and

considered two cases, namely, the general case where travel time correlation can be observed between any pair

of arcs, and the adjacent case where correlation occurs only between adjacent arcs. Exploiting the structure

of the covariance matrix in the latter case leads to more tractable models. We proposed two types of set

partitioning formulations and developed branch-price-and-cut algorithms to solve them. Our computational

experiments demonstrated the efficiency of the proposed algorithms, especially in the adjacent case, for which

we succeeded to solve instances with up to 75 customers. Moreover, we showed that solving the CVRP-SCT

can yield routes with a total expected travel time slightly larger than the one of the routes computed by

solving the CVRP, but with significantly less variance.

Several future research avenues stemming from this work can be considered. One that we hope to consider

in a near future is to design a heuristic that can tackle efficiently larger instances of the CVRP-SCT. In

particular, we believe that the proposed branch-price-and-cut algorithm can be turned into an efficient

approximation algorithm by suitably selecting a subset of the covariance coefficients to take into account.

A Proof of Theorem 1

We have to prove that for any feasible solution (x̂, ŷ) of P adjLα

ŷijl = x̂ij x̂jl, ∀ (i, j), (j, l) ∈ A with j ∈ V0 (A1)

and that (x̂, ŷ) satisfies (20).

First note that the feasibility of x̂ for P adjLα implies that
∑

(j,l)∈δ+(j) xjl = 1 for each customer j ∈ V0.

Now consider the value ŷijr for an arc pair (i, j), (j, r) ∈ A with j ∈ V0. The constraint (18) associated with

(i, j) together with the nonnegativity restriction ŷijr ≥ 0 of (19) enforce ŷijr ≤ x̂ij . Similarly, constraint (17)

for (i, j) and ŷijr ≥ 0 enforce ŷijr ≤ x̂jr. Consequently,

ŷijr ≤ min {x̂ij , x̂jr}, (A2)

that is, ŷijr = 0 if either x̂ij = 0 or x̂jr = 0. In addition, if we subtract constraint
∑

(j,l)∈δ+(j) x̂jl = 1 from

equation (18) associated with (i, j), we obtain∑
(j,l)∈δ+(j)

(ŷijl − x̂jl) = x̂ij − 1. (A3)

From (A2) applied to any pair of arcs (i, j), (j, l) with j ∈ V0, we deduce that ŷijl − x̂jl ≤ 0 and, thus,

ŷijr − x̂jr ≥
∑

(j,l)∈δ+(j)(ŷijl − x̂jl). Combining this inequality with (A3) yields

ŷijr ≥ x̂ij + x̂jr − 1, (A4)

giving us that ŷijr = 1 if x̂ij = x̂jr = 1. Finally, (A2) and (A4) imply ŷijr = x̂ij x̂jr.
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B Proof of Theorem 2

From (49), (50) and the extension functions of the M and L components of a label, condition C1 can be

easily proved. Now, we need to show that condition C2 is also satisfied for a given extension χ = (w0 =

i, w1, . . . , wg = j) ending at node j ∈ V where V (χ) and A(χ) denote its node and arc sets, respectively.

We find

Z(p⊕ χ) =
∑

(k,l)∈A(p⊕χ)

c̃αkl +
∑

(k,l)∈A(p⊕χ)

∑
(l,s)∈A(p⊕χ)

2 Cαklls

=
∑

(k,l)∈A(p)

c̃αkl +
∑

(k,l)∈A(p)

∑
(l,s)∈A(p)

2 Cαklls +
∑

(k,l)∈A(χ)

c̃αkl +
∑

(k,l)∈A(χ)

∑
(l,s)∈A(χ)

2 Cαklls + 2 CαN(p)iiw1

≤ Z(p) +
∑

(k,l)∈A(χ)

c̃αkl +
∑

(k,l)∈A(χ)

∑
(l,s)∈A(χ)

2 Cαklls + 2f+(p, i)

≤ Z(p′) +
∑

(k,l)∈A(χ)

c̃αkl +
∑

(k,l)∈A(χ)

∑
(l,s)∈A(χ)

2 Cαklls + 2f−(p′, i)

≤ Z(p′) +
∑

(k,l)∈A(χ)

c̃αkl +
∑

(k,l)∈A(χ)

∑
(l,s)∈A(χ)

2 Cαklls + 2 CαN(p′)iiw1

= Z(p′ ⊕ χ),

where the first inequality follows from the definition of f+(p, i) in (46), the second from (48), and the third

from the definition of f−(p′, i) in (47). Since both conditions C1 and C2 are met, E(p) dominates E(p′).

Supplementary results

Tables 10 to 25 provide detailed results obtained by BPC-SP1α, BPC-SP1adjLα and BPC-SP2α when the

covariance matrix C has only non-negative entries. Tables 26 and 27 report results obtained by BPC-MP2α
when the covariance matrix allows negative entries. The meaning of each column is as follows:

Group Group (C101, R101, RC101, A or P) of the instance,
n Number of customers,
|K| Number of vehicles,
α Weight used in the objective function convex combination
z Cost of the best feasible solution found,

Exp Total expected travel time of the solution,
V ar Total variance of the solution,

Gap1(%) Integrality gap in percentage before adding the rounded capacity cuts,
Gap2(%) Integrality gap in percentage after adding the rounded capacity cuts,
RT (s) CPU time in seconds at the root node of the search tree,
Nodes Number of nodes explored in the search tree,
TT (s) Total time in seconds,

OptGap(%) Optimality gap in percentage.

Furthermore, we use the following notation:

TL: Time limit reached,

- : Information is not available.
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Table 10: Computational results of BPC-SP1α on the C101 instances in the general case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

C101 15 2 0.05 1352.81 1345.0 1501.3 11.158 0.646 5.8 5 16.8 0.000
C101 15 2 0.1 1352.93 1372.0 1181.3 13.116 1.757 11.1 25 61.8 0.000
C101 15 2 0.3 1197.89 1454.0 600.3 12.199 3.017 10.8 25 94.4 0.000
C101 15 2 0.5 1010.65 1574.0 447.3 10.327 6.271 12.7 59 261.0 0.000

C101 20 2 0.05 1566.49 1598.0 967.8 1.299 1.299 51.8 11 200.4 0.000
C101 20 2 0.1 1527.98 1645.0 474.8 2.220 2.220 60.3 11 203.1 0.000
C101 20 2 0.3 1293.94 1645.0 474.8 1.972 1.972 65.4 13 257.2 0.000
C101 20 2 0.5 1052.90 1688.0 417.8 3.932 3.932 66.0 11 266.4 0.000

C101 23 3 0.05 1794.10 1844.0 846.0 1.646 0.470 165.4 25 610.9 0.000
C101 23 3 0.1 1744.00 1846.0 826.0 1.919 1.078 186.9 45 897.9 0.000
C101 23 3 0.3 1530.70 1891.0 690.0 4.802 3.728 339.6 249 5518.1 0.000
C101 23 3 0.5 - - - - - 349.6 241 TL -

C101 25 3 0.05 1864.71 1922.0 776.2 2.537 0.936 218.2 63 1977.5 0.000
C101 25 3 0.1 1794.62 1935.0 531.2 2.518 1.071 257.3 39 1667.4 0.000
C101 25 3 0.3 1507.26 1965.0 439.2 5.088 3.391 415.4 95 5004.2 0.000
C101 25 3 0.5 - - - - - 449.0 188 TL -

C101 28 3 0.05 1924.82 1981.0 857.5 1.806 0.648 488.6 63 3920.5 0.000
C101 28 3 0.1 1868.65 1981.0 857.5 1.815 1.149 720.6 29 3235.0 0.000
C101 28 3 0.3 1587.45 2028.0 559.5 3.865 3.151 1255.5 65 8208.7 0.000
C101 28 3 0.5 1231.75 2128.0 335.5 5.957 4.039 1266.0 101 12313.1 0.000

C101 30 3 0.05 2025.83 2054.0 1490.7 2.608 1.532 816.6 49 4434.4 0.000
C101 30 3 0.1 1997.67 2054.0 1490.7 4.111 2.487 1191.2 85 10783.8 0.000
C101 30 3 0.3 1712.01 2241.0 477.7 6.287 3.510 1552.7 79 17037.7 0.000
C101 30 3 0.5 - - - - - 1945.1 42 TL -

C101 32 3 0.05 - 0.0 0.0 - - 1951.8 100 TL -
C101 32 3 0.1 2430.69 2545.0 1401.9 3.900 0.640 3056.3 69 17169.1 0.000
C101 32 3 0.3 - - - - - 4027.8 27 TL -
C101 32 3 0.5 - - - - - 5159.5 20 TL -
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Table 11: Computational results of BPC-SP1α on the RC101 instances in the general case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

RC101 15 2 0.05 1895.41 1873.0 2321.3 0.304 0.304 9.0 9 20.9 0.000
RC101 15 2 0.1 1884.13 1910.0 1651.3 0.526 0.526 9.7 7 17.0 0.000
RC101 15 2 0.3 1793.79 1968.0 1387.3 2.271 1.594 18.0 25 84.5 0.000
RC101 15 2 0.5 1589.65 2199.0 980.3 4.028 2.832 19.6 21 113.6 0.000

RC101 20 3 0.05 2792.53 2857.0 1567.7 3.148 0.809 66.1 39 271.0 0.000
RC101 20 3 0.1 2726.87 2882.0 1330.7 4.081 1.596 92.1 67 492.9 0.000
RC101 20 3 0.3 2334.71 2966.0 861.7 5.305 3.149 112.0 65 568.3 0.000
RC101 20 3 0.5 1860.85 3151.0 570.7 7.142 4.537 130.8 67 1100.8 0.000

RC101 23 3 0.05 2845.85 2901.0 1798.0 1.709 0.370 187.1 37 828.4 0.000
RC101 23 3 0.1 2772.30 2934.0 1317.0 1.891 0.532 167.2 65 1140.1 0.000
RC101 23 3 0.3 2372.60 3053.0 785.0 3.587 2.357 199.4 83 1917.3 0.000
RC101 23 3 0.5 1919.00 3053.0 785.0 5.015 4.312 336.1 107 3655.9 0.000

RC101 25 3 0.05 2916.71 2981.0 1695.2 0.990 0.360 223.2 51 1561.0 0.000
RC101 25 3 0.1 2841.62 2997.0 1443.2 1.241 0.664 388.7 41 1552.1 0.000
RC101 25 3 0.3 2483.96 3074.0 1107.2 3.720 2.343 471.7 79 3395.7 0.000
RC101 25 3 0.5 2060.60 3291.0 830.2 6.855 3.775 666.5 247 TL 0.126

RC101 28 4 0.05 4051.67 4171.0 1784.4 8.681 0.482 642.3 363 11551.1 0.000
RC101 28 4 0.1 3932.34 4171.0 1784.4 9.144 0.998 916.8 472 TL 0.021
RC101 28 4 0.3 - - - - - 1899.7 178 TL -
RC101 28 4 0.5 - - - - - 2124.6 139 TL -

RC101 30 4 0.05 4042.48 4167.0 1676.6 6.189 0.271 1338.6 99 7180.1 0.000
RC101 30 4 0.1 3917.96 4167.0 1676.6 6.959 0.561 1708.3 161 12326.8 0.000
RC101 30 4 0.3 - - - - - 2372.8 165 TL -
RC101 30 4 0.5 - - - - - 3328.8 81 TL -

RC101 32 4 0.05 4053.94 4168.0 1886.8 4.243 0.261 2323.9 131 13603.0 0.000
RC101 32 4 0.1 3939.88 4168.0 1886.8 4.564 0.539 1523.0 133 TL 0.019
RC101 32 4 0.3 - - - - - 3741.7 29 TL -
RC101 32 4 0.5 - - - - - 5823.8 12 TL -

Table 12: Computational results of BPC-SP1α on the R101 instances in the general case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

R101 15 2 0.05 3343.41 2614.0 17202.3 3.425 3.425 15.1 247 1061.4 0.000
R101 15 2 0.1 3796.43 3077.0 10271.3 2.058 2.058 17.6 77 363.6 0.000
R101 15 2 0.3 4459.69 4462.0 4454.3 1.207 1.207 19.0 19 105.8 0.000
R101 15 2 0.5 4458.15 4462.0 4454.3 0.941 0.941 19.9 9 57.7 0.000

R101 20 2 0.05 3437.59 2893.0 13784.8 1.643 1.643 70.6 41 556.8 0.000
R101 20 2 0.1 3825.58 3321.0 8366.8 3.188 2.696 76.7 113 2321.9 0.000
R101 20 2 0.3 4580.54 4019.0 5890.8 3.402 3.036 90.2 89 3007.0 0.000
R101 20 2 0.5 4954.90 4019.0 5890.8 3.861 3.861 95.6 51 1771.1 0.000

R101 23 2 0.05 3718.20 3144.0 14628.1 1.719 1.719 214.6 23 1148.6 0.000
R101 23 2 0.1 4249.61 3379.0 12085.1 3.867 3.428 236.7 139 9237.0 0.000
R101 23 2 0.3 5221.13 3905.0 8292.1 2.495 1.974 262.9 41 3510.9 0.000
R101 23 2 0.5 5611.05 4661.0 6561.1 2.209 2.209 346.3 15 1589.8 0.000

R101 25 2 0.05 4348.96 3474.0 20973.3 2.220 1.613 370.2 45 3720.7 0.000
R101 25 2 0.1 4977.83 4178.0 12176.3 3.005 1.400 453.3 85 9454.0 0.000
R101 25 2 0.3 5783.59 4852.0 7957.3 2.958 1.329 516.1 31 5181.6 0.000
R101 25 2 0.5 6149.15 5585.0 6713.3 3.115 2.335 580.8 23 4673.3 0.000

R101 28 2 0.05 4591.93 3995.0 15933.6 1.719 0.756 983.7 17 3486.9 0.000
R101 28 2 0.1 5158.76 4071.0 14948.6 0.390 0.390 1253.2 5 2046.1 0.000
R101 28 2 0.3 - - - - - 1382.7 43 TL -
R101 28 2 0.5 7356.30 5699.0 9013.6 1.941 1.654 1656.1 21 9855.2 0.000
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Table 13: Computational results of BPC-SP1adjLα on the C101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

C101 20 2 0.05 1531.59 1598.0 269.8 0.000 0.000 6.1 1 6.1 0.000
C101 20 2 0.1 1465.18 1598.0 269.8 0.000 0.000 6.6 1 6.6 0.000
C101 20 2 0.3 1199.54 1598.0 269.8 0.000 0.000 4.5 1 4.5 0.000
C101 20 2 0.5 933.90 1598.0 269.8 0.000 0.000 5.8 1 5.8 0.000

C101 25 3 0.05 1837.56 1894.0 765.2 1.680 0.038 6.8 3 8.5 0.000
C101 25 3 0.1 1766.32 1913.0 446.2 1.542 0.000 6.4 1 7.4 0.000
C101 25 3 0.3 1448.26 1951.0 275.2 0.726 0.000 6.2 1 6.9 0.000
C101 25 3 0.5 1112.60 1960.0 265.2 0.255 0.000 6.5 1 6.8 0.000

C101 30 3 0.05 1967.68 2032.0 745.7 1.072 0.000 14.6 1 15.8 0.000
C101 30 3 0.1 1902.07 2035.0 705.7 1.435 0.000 15.1 1 17.8 0.000
C101 30 3 0.3 1608.71 2078.0 513.7 2.451 0.000 14.7 1 16.7 0.000
C101 30 3 0.5 1265.85 2175.0 356.7 3.140 0.000 14.0 1 15.2 0.000

C101 35 4 0.05 2676.61 2777.0 769.1 3.657 0.817 27.6 83 70.5 0.000
C101 35 4 0.1 2572.11 2783.0 674.1 3.675 0.726 27.3 55 782.7 0.000
C101 35 4 0.3 2131.23 2820.0 524.1 3.933 0.045 30.3 5 35.8 0.000
C101 35 4 0.5 1659.05 2855.0 463.1 4.222 0.904 25.5 109 61.1 0.000

C101 40 4 0.05 3186.93 3305.0 943.6 4.863 0.095 53.8 5 2687.2 0.000
C101 40 4 0.1 3064.16 3325.0 716.6 4.761 0.000 50.9 1 2406.1 0.000
C101 40 4 0.3 2518.78 3367.0 539.6 3.590 0.361 48.5 15 2776.8 0.000
C101 40 4 0.5 1940.30 3399.0 481.6 2.347 0.358 46.0 9 56.3 0.000

C101 50 5 0.05 - - - - - 149.2 1 TL -
C101 50 5 0.1 3345.55 3602.0 1037.5 1.992 0.000 143.1 1 160.3 0.000
C101 50 5 0.3 2751.25 3667.0 614.5 1.790 0.000 134.2 1 145.8 0.000
C101 50 5 0.5 - - - - - 165.3 2 TL -

C101 60 6 0.05 - - - - - 7249.7 1 TL -
C101 60 6 0.1 - - - - - 7232.7 1 TL -
C101 60 6 0.3 3599.02 4786.0 829.4 0.754 0.000 386.1 1 405.6 0.000
C101 60 6 0.5 - - - - - 372.4 2 TL -
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Table 14: Computational results of BPC-SP1adjLα on the RC101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

RC101 20 3 0.05 2739.93 2842.0 800.7 2.021 0.000 1.0 1 1.1 0.000
RC101 20 3 0.1 2637.87 2842.0 800.7 2.165 0.000 1.1 1 1.2 0.000
RC101 20 3 0.3 2195.61 2910.0 528.7 1.912 0.011 1.3 3 1.4 0.000
RC101 20 3 0.5 1666.85 3047.0 286.7 0.725 0.000 1.0 1 1.1 0.000

RC101 25 3 0.05 2862.51 2959.0 1029.2 0.649 0.000 5.1 1 5.2 0.000
RC101 25 3 0.1 2759.92 2968.0 887.2 0.636 0.000 5.6 1 5.8 0.000
RC101 25 3 0.3 2287.56 3012.0 597.2 0.634 0.000 5.0 1 5.1 0.000
RC101 25 3 0.5 1775.60 3083.0 468.2 0.585 0.000 5.2 1 5.3 0.000

RC101 30 4 0.05 3995.83 4167.0 743.6 5.852 0.000 8.5 1 8.8 0.000
RC101 30 4 0.1 3824.66 4167.0 743.6 5.684 0.000 8.5 1 8.8 0.000
RC101 30 4 0.3 3139.98 4167.0 743.6 6.065 0.000 9.3 1 9.6 0.000
RC101 30 4 0.5 2409.80 4327.0 492.6 6.823 0.000 7.8 1 8.3 0.000

RC101 35 4 0.05 4550.85 4710.0 1527.1 3.480 0.000 25.4 1 26.5 0.000
RC101 35 4 0.1 4390.31 4715.0 1468.1 3.669 0.000 25.7 1 26.4 0.000
RC101 35 4 0.3 3630.63 4848.0 790.1 3.415 0.000 26.3 1 28.1 0.000
RC101 35 4 0.5 2808.05 4909.0 707.1 4.087 0.000 26.9 1 28.4 0.000

RC101 40 5 0.05 4944.92 5156.0 934.5 2.350 0.000 37.0 1 38.1 0.000
RC101 40 5 0.1 4733.25 5157.0 919.5 2.385 0.000 39.6 1 40.4 0.000
RC101 40 5 0.3 3863.45 5192.0 763.5 2.686 0.000 36.1 1 37.3 0.000
RC101 40 5 0.5 2953.25 5323.0 583.5 3.642 0.017 35.6 3 37.9 0.000

RC101 50 5 0.05 5007.02 5195.0 1435.5 0.197 0.000 151.9 1 152.6 0.000
RC101 50 5 0.1 4819.05 5195.0 1435.5 0.108 0.000 167.7 1 168.7 0.000
RC101 50 5 0.3 4047.35 5234.0 1278.5 0.487 0.000 152.1 1 154.1 0.000
RC101 50 5 0.5 3116.75 5606.0 627.5 0.247 0.000 147.8 1 148.3 0.000

Table 15: Computational results of BPC-SP1adjLα on the R101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

R101 20 2 0.05 2901.24 2810.0 4634.8 1.294 0.849 7.8 11 9.0 0.000
R101 20 2 0.1 2956.88 2893.0 3531.8 0.758 0.433 7.5 3 7.7 0.000
R101 20 2 0.3 2898.14 3038.0 2571.8 0.000 0.000 6.9 1 6.9 0.000
R101 20 2 0.5 2704.40 3576.0 1832.8 1.250 0.931 8.4 7 9.2 0.000

R101 25 2 0.05 3479.82 3378.0 5414.3 1.574 1.228 27.4 37 49.2 0.000
R101 25 2 0.1 3553.83 3474.0 4272.3 0.802 0.552 28.9 7 38.7 0.000
R101 25 2 0.3 3713.49 3474.0 4272.3 2.033 1.432 39.1 31 53.8 0.000
R101 25 2 0.5 3335.15 4763.0 1907.3 1.174 0.694 36.9 9 39.1 0.000

R101 30 3 0.05 3682.93 3616.0 4954.7 1.203 1.143 18.7 21 403.5 0.000
R101 30 3 0.1 3749.87 3616.0 4954.7 1.509 1.322 19.1 21 523.4 0.000
R101 30 3 0.3 3550.11 4158.0 2131.7 0.430 0.018 19.2 3 184.2 0.000
R101 30 3 0.5 3078.85 4463.0 1694.7 0.000 0.000 20.8 1 20.8 0.000

R101 35 3 0.05 4225.41 4099.0 6627.2 2.316 1.698 45.8 181 1066.4 0.000
R101 35 3 0.1 4291.62 4235.0 4801.2 2.497 1.673 46.9 107 2047.8 0.000
R101 35 3 0.3 4179.76 4699.0 2968.2 2.265 1.803 45.1 229 147.8 0.000
R101 35 3 0.5 3669.60 5139.0 2200.2 1.760 1.281 48.3 65 92.3 0.000

R101 40 3 0.05 4808.78 4686.0 7141.7 1.619 1.120 102.9 51 5662.5 0.000
R101 40 3 0.1 - - - - - 117.2 12 TL -
R101 40 3 0.3 - - - - - 115.1 1 TL -
R101 40 3 0.5 - - - - - 117.8 1 TL -

R101 50 4 0.05 - - - - - 295.3 6 TL -
R101 50 4 0.1 - - - - - 281.6 14 TL -
R101 50 4 0.3 5060.98 5857.0 3203.6 2.251 0.908 275.0 14 TL 0.259
R101 50 4 0.5 4366.30 6478.0 2254.6 2.066 0.992 276.3 44 TL 0.122
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Table 16: Computational results of BPC-SP1adjLα on the A instances with n ≤ 38 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

A 31 5 0.05 752.78 786.0 121.6 3.801 2.788 8.9 1199 192.5 0.000
A 31 5 0.1 719.56 786.0 121.6 2.694 0.768 8.9 21 16.9 0.000
A 31 5 0.3 584.58 798.0 86.6 3.549 2.257 7.8 417 69.3 0.000
A 31 5 0.5 435.30 820.0 50.6 3.442 0.166 7.3 5 8.7 0.000

A 32 5 0.05 632.53 661.0 91.7 2.809 1.105 11.2 61 22.7 0.000
A 32 5 0.1 604.07 661.0 91.7 1.885 0.414 10.3 15 13.6 0.000
A 32 5 0.3 490.21 661.0 91.7 2.562 1.115 9.6 63 19.9 0.000
A 32 5 0.5 370.85 687.0 54.7 3.546 1.790 9.8 421 67.8 0.000

A 32 6 0.05 712.03 744.0 104.6 2.955 0.711 8.9 67 21.5 0.000
A 32 6 0.1 680.06 744.0 104.6 3.889 0.713 7.5 63 20.6 0.000
A 32 6 0.3 550.68 747.0 92.6 2.835 0.674 7.3 41 15.4 0.000
A 32 6 0.5 417.30 757.0 77.6 2.415 0.378 6.7 17 9.8 0.000

A 33 5 0.05 747.29 778.0 163.8 4.587 2.175 15.4 1213 218.7 0.000
A 33 5 0.1 716.58 - - 5.235 3.806 13.2 29918 7200.4 0.624
A 33 5 0.3 576.44 794.0 68.8 4.736 2.171 12.2 2417 393.4 0.000
A 33 5 0.5 427.90 817.0 38.8 4.894 2.568 11.5 2501 414.5 0.000

A 35 5 0.05 765.55 799.0 130.0 2.984 1.525 19.7 649 210.2 0.000
A 35 5 0.1 732.10 799.0 130.0 3.007 1.216 18.7 2195 847.0 0.000
A 35 5 0.3 594.70 811.0 90.0 3.469 1.989 19.4 2603 844.9 0.000
A 35 5 0.5 447.00 834.0 60.0 4.030 1.841 16.9 1375 503.7 0.000

A 36 5 0.05 643.20 669.0 153.1 2.644 1.614 23.5 215 2558.5 0.000
A 36 5 0.1 616.51 672.0 117.1 2.598 1.301 21.8 441 226.3 0.000
A 36 5 0.3 502.43 683.0 81.1 2.707 1.122 21.7 103 1333.0 0.000
A 36 5 0.5 382.05 683.0 81.1 2.827 1.224 21.7 29 43.9 0.000

A 36 6 0.05 909.45 949.0 158.0 3.417 1.992 18.8 1855 466.2 0.000
A 36 6 0.1 868.40 952.0 116.0 3.666 2.011 14.8 18465 4826.3 0.000
A 36 6 0.3 696.80 956.0 92.0 3.380 1.896 14.2 2405 534.4 0.000
A 36 6 0.5 517.00 972.0 62.0 3.298 2.431 14.9 1113 279.7 0.000

A 37 5 0.05 699.06 730.0 111.2 5.895 2.662 26.3 863 257.1 0.000
A 37 5 0.1 667.22 731.0 93.2 6.314 2.987 29.1 8353 2736.4 0.000
A 37 5 0.3 535.86 738.0 64.2 6.362 3.124 27.3 2815 795.4 0.000
A 37 5 0.5 397.60 745.0 50.2 6.441 2.991 25.3 1337 394.8 0.000

A 38 5 0.05 791.66 826.0 139.3 1.988 0.468 33.3 13 45.2 0.000
A 38 5 0.1 757.33 826.0 139.3 2.712 1.741 34.1 3577 1661.5 0.000
A 38 5 0.3 617.79 840.0 99.3 2.425 0.972 33.9 95 2605.9 0.000
A 38 5 0.5 463.15 851.0 75.3 1.321 0.528 33.0 7 39.8 0.000

A 38 6 0.05 799.01 831.0 191.2 2.423 0.954 23.9 95 58.6 0.000
A 38 6 0.1 766.42 835.0 149.2 4.230 2.322 21.4 13197 5037.2 0.000
A 38 6 0.3 616.56 846.0 81.2 2.725 0.823 22.0 87 55.0 0.000
A 38 6 0.5 463.10 851.0 75.2 2.479 0.840 20.2 21 30.7 0.000
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Table 17: Computational results of BPC-SP1adjLα on the A instances with n ≥ 43 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

A 43 6 0.05 894.83 937.0 93.7 1.070 0.675 54.5 19 3668.5 0.000
A 43 6 0.1 852.67 937.0 93.7 0.827 0.526 46.1 87 2739.2 0.000
A 43 6 0.3 684.01 937.0 93.7 0.802 0.208 46.6 3 50.9 0.000
A 43 6 0.5 514.35 952.0 76.7 1.881 1.108 42.4 92 89.9 0.000

A 44 6 0.05 905.89 945.0 162.8 3.394 0.098 67.4 3 82.2 0.000
A 44 6 0.1 863.58 949.0 94.8 3.561 0.716 66.0 37 3653.1 0.000
A 44 6 0.3 692.74 949.0 94.8 3.260 0.208 60.4 9 79.9 0.000
A 44 6 0.5 520.90 951.0 90.8 4.021 1.678 57.6 239 241.0 0.000

A 44 7 0.05 1095.84 1147.0 123.7 2.393 1.473 49.4 3749 1782.1 0.000
A 44 7 0.1 1044.67 - - 2.504 1.713 50.8 14906 TL 0.587
A 44 7 0.3 832.51 - - 2.569 1.688 52.1 15090 TL 0.164
A 44 7 0.5 611.35 1168.0 54.7 2.577 1.530 48.0 1733 813.3 0.000

A 45 7 0.05 875.69 914.0 147.8 1.087 0.000 63.0 1 66.2 0.000
A 45 7 0.1 834.38 917.0 90.8 1.749 0.530 57.3 79 128.0 0.000
A 45 7 0.3 666.54 927.0 58.8 1.402 0.144 57.2 9 67.3 0.000
A 45 7 0.5 492.40 928.0 56.8 1.506 0.000 53.5 1 57.6 0.000

A 47 7 0.05 1027.55 - - 3.987 1.666 81.6 3021 TL 0.013
A 47 7 0.1 981.50 1074.0 149.0 3.323 1.051 75.4 1387 1105.5 0.000
A 47 7 0.3 794.30 - - - - 75.1 9575 TL -
A 47 7 0.5 590.50 - - 4.596 2.400 70.0 9051 TL 0.067

A 52 7 0.05 966.38 - - - - 135.6 20 TL -
A 52 7 0.1 921.75 - - - - 127.5 18 TL -
A 52 7 0.3 741.25 - - - - 130.0 90 TL -
A 52 7 0.5 556.25 1035.0 77.5 3.025 2.015 127.8 5605 5948.6 0.000

A 53 7 0.05 - - - - - 175.2 4259 TL -
A 53 7 0.1 - - - - - 153.8 6196 TL -
A 53 7 0.3 849.38 - - - - 130.7 94 TL -
A 53 7 0.5 622.30 - - 3.094 0.911 143.4 116 TL 0.152

A 54 9 0.05 1026.38 - - 4.914 1.652 89.1 9246 TL 0.205
A 54 9 0.1 982.75 - - - - 113.0 10972 TL -
A 54 9 0.3 781.75 - - 7.079 4.005 112.7 9178 TL 2.450
A 54 9 0.5 574.25 1095.0 53.5 4.836 1.547 109.3 9393 6850.7 0.000
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Table 18: Computational results of BPC-SP1adjLα on the P instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

P 15 8 0.05 428.24 450.0 14.7 1.509 0.540 0.0 9 0.1 0.000
P 15 8 0.1 406.47 450.0 14.7 1.498 0.519 0.0 13 0.1 0.000
P 15 8 0.3 319.41 450.0 14.7 1.698 0.757 0.0 13 0.1 0.000
P 15 8 0.5 231.85 453.0 10.7 1.905 1.090 0.0 29 0.1 0.000

P 21 8 0.05 576.46 603.0 72.3 0.179 0.063 0.3 5 0.4 0.000
P 21 8 0.1 549.23 604.0 56.3 0.000 0.000 0.3 1 0.3 0.000
P 21 8 0.3 437.49 606.0 44.3 0.000 0.000 0.3 1 0.3 0.000
P 21 8 0.5 325.15 612.0 38.3 1.562 0.931 0.3 33 1.1 0.000

P 39 5 0.05 438.97 458.0 77.4 1.862 1.368 44.4 293 168.9 0.000
P 39 5 0.1 419.84 459.0 67.4 1.689 1.020 37.9 243 129.6 0.000
P 39 5 0.3 339.92 464.0 50.4 1.877 1.652 36.3 471 206.4 0.000
P 39 5 0.5 254.20 480.0 28.4 2.279 2.026 36.0 469 229.4 0.000

P 44 5 0.05 487.59 510.0 61.9 2.111 1.343 81.4 557 3676.2 0.000
P 44 5 0.1 465.19 510.0 61.9 1.852 1.458 72.7 3737 1887.2 0.000
P 44 5 0.3 374.67 513.0 51.9 2.357 1.620 67.7 1967 1115.0 0.000
P 44 5 0.5 281.45 523.0 39.9 3.307 2.597 68.3 3543 2210.3 0.000

P 49 7 0.05 529.21 554.0 58.2 1.799 1.421 67.4 1103 3273.2 0.000
P 49 7 0.1 504.42 554.0 58.2 1.826 1.249 68.4 2425 1628.5 0.000
P 49 7 0.3 402.76 556.0 45.2 1.807 1.460 70.2 1975 1498.2 0.000
P 49 7 0.5 298.60 568.0 29.2 1.875 1.428 60.3 1595 1156.7 0.000

P 49 8 0.05 602.40 - - - - 70.6 9999 TL -
P 49 8 0.1 573.81 - - - - 54.7 9406 TL -
P 49 8 0.3 459.13 - - - - 54.5 9350 TL -
P 49 8 0.5 340.05 - - - - 50.5 8775 TL -

P 49 10 0.05 663.94 697.0 35.9 1.138 0.893 38.4 551 223.4 0.000
P 49 10 0.1 630.89 - - 1.470 1.161 39.1 15178 TL 0.040
P 49 10 0.3 497.87 698.0 30.9 1.302 1.019 37.8 1747 734.0 0.000
P 49 10 0.5 364.45 701.0 27.9 1.611 1.318 33.8 2131 1026.9 0.000

P 50 10 0.05 706.55 741.0 52.0 1.309 0.862 49.4 387 214.2 0.000
P 50 10 0.1 672.10 741.0 52.0 1.455 1.023 49.8 3371 1671.3 0.000
P 50 10 0.3 532.60 742.0 44.0 1.398 0.879 44.5 255 156.7 0.000
P 50 10 0.5 391.50 752.0 31.0 1.316 0.752 43.6 73 84.4 0.000

P 54 7 0.05 545.89 570.0 87.7 2.490 1.601 140.3 5631 6881.2 0.000
P 54 7 0.1 517.87 - - - - 141.1 5780 TL -
P 54 7 0.3 414.01 - - 3.005 2.163 129.3 5885 TL 0.594
P 54 7 0.5 303.35 582.0 24.7 2.019 0.938 127.1 107 327.0 0.000

P 54 8 0.05 549.88 - - 1.995 1.414 175.7 1986 TL 0.016
P 54 8 0.1 523.77 576.0 53.7 1.675 1.002 155.6 1903 TL 0.000
P 54 8 0.3 419.31 576.0 53.7 1.892 1.204 139.6 1213 1584.8 0.000
P 54 8 0.5 311.35 586.0 36.7 2.268 1.459 144.6 1155 1445.2 0.000

P 54 10 0.05 - - - - - 73.6 11887 TL -
P 54 10 0.1 673.84 - - - - 73.6 9418 TL -
P 54 10 0.3 499.12 - - - - 63.7 8982 TL -
P 54 10 0.5 365.20 - - 2.924 2.113 54.3 9893 TL 0.516
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Table 19: Computational results of BPC-SP2α on the C101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

C101 20 2 0.05 1531.59 1598.0 269.8 0.000 0.000 3.7 1 3.8 0.000
C101 20 2 0.1 1465.18 1598.0 269.8 0.000 0.000 9.7 1 9.8 0.000
C101 20 2 0.3 1199.54 1598.0 269.8 0.000 0.000 68.7 1 68.9 0.000
C101 20 2 0.5 933.90 1598.0 269.8 0.000 0.000 9.6 1 9.7 0.000

C101 25 3 0.05 1837.56 1894.0 765.2 1.644 0.000 1.4 1 2.2 0.000
C101 25 3 0.1 1766.32 1913.0 446.2 1.459 0.000 1.7 1 2.9 0.000
C101 25 3 0.3 1448.26 1951.0 275.2 0.647 0.000 3.2 1 4.3 0.000
C101 25 3 0.5 1112.60 1960.0 265.2 0.000 0.000 24.9 1 25.1 0.000

C101 30 3 0.05 1967.68 2032.0 745.7 1.030 0.000 5.3 1 7.6 0.000
C101 30 3 0.1 1902.07 2035.0 705.7 1.370 0.000 5.2 1 6.4 0.000
C101 30 3 0.3 1608.71 2078.0 513.7 2.157 0.000 5.7 1 8.7 0.000
C101 30 3 0.5 1265.85 2175.0 356.7 2.780 0.000 9.1 1 12.0 0.000

C101 35 4 0.05 2676.60 2777.0 769.1 3.634 0.729 3.8 77 60.1 0.000
C101 35 4 0.1 2572.11 2783.0 674.1 3.644 0.242 2.8 11 11.9 0.000
C101 35 4 0.3 2131.23 2820.0 524.1 3.876 0.047 4.2 7 19.1 0.000
C101 35 4 0.5 1659.05 2855.0 463.1 4.044 0.525 3.7 67 57.1 0.000

C101 40 4 0.05 3186.93 3305.0 943.6 4.858 0.105 6.2 5 19.0 0.000
C101 40 4 0.1 3064.16 3325.0 716.6 4.749 0.000 5.2 1 14.3 0.000
C101 40 4 0.3 2518.78 3367.0 539.6 3.577 0.185 6.2 9 159.2 0.000
C101 40 4 0.5 1940.30 3399.0 481.6 2.111 0.670 11.5 5 91.8 0.000

C101 50 5 0.05 3473.78 3602.0 1037.5 1.692 0.000 13.0 1 26.4 0.000
C101 50 5 0.1 3345.55 3602.0 1037.5 1.931 0.000 15.0 1 35.7 0.000
C101 50 5 0.3 2751.25 3667.0 614.5 1.658 0.000 30.1 1 59.2 0.000
C101 50 5 0.5 2132.25 3798.0 466.5 1.579 0.000 25.8 1 46.7 0.000

C101 60 6 0.05 4511.07 4679.0 1320.4 0.844 0.000 5.7 1 20.5 0.000
C101 60 6 0.1 4343.14 4679.0 1320.4 0.828 0.210 7.5 3 30.2 0.000
C101 60 6 0.3 3599.02 4786.0 829.4 0.563 0.000 29.4 1 107.6 0.000
C101 60 6 0.5 2804.20 4805.0 803.4 1.017 0.000 20.3 1 75.2 0.000
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Table 20: Computational results of BPC-SP2α on the RC101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

RC101 20 3 0.05 2739.94 2842.0 800.7 2.021 0.000 0.4 1 0.5 0.000
RC101 20 3 0.1 2637.87 2842.0 800.7 2.165 0.000 0.4 1 0.6 0.000
RC101 20 3 0.3 2195.61 2910.0 528.7 1.900 0.000 0.9 1 1.2 0.000
RC101 20 3 0.5 1666.85 3047.0 286.7 0.710 0.000 0.9 1 1.0 0.000

RC101 25 3 0.05 2862.51 2959.0 1029.2 0.647 0.000 0.7 1 1.7 0.000
RC101 25 3 0.1 2759.92 2968.0 887.2 0.617 0.000 0.7 1 1.1 0.000
RC101 25 3 0.3 2287.56 3012.0 597.2 0.624 0.000 0.9 1 1.2 0.000
RC101 25 3 0.5 1775.60 3083.0 468.2 0.547 0.000 1.1 1 1.4 0.000

RC101 30 4 0.05 3995.83 4167.0 743.6 5.846 0.000 0.7 1 1.4 0.000
RC101 30 4 0.1 3824.66 4167.0 743.6 5.677 0.000 0.7 1 1.4 0.000
RC101 30 4 0.3 3139.98 4167.0 743.6 6.024 0.000 1.0 1 2.0 0.000
RC101 30 4 0.5 2409.80 4327.0 492.6 6.773 0.000 1.3 1 2.3 0.000

RC101 35 4 0.05 4550.86 4710.0 1527.1 3.466 0.000 1.9 1 3.1 0.000
RC101 35 4 0.1 4390.31 4715.0 1468.1 3.632 0.000 2.1 1 3.6 0.000
RC101 35 4 0.3 3630.63 4848.0 790.1 3.337 0.000 12.9 1 17.5 0.000
RC101 35 4 0.5 2808.05 4909.0 707.1 3.972 0.000 7.2 1 17.4 0.000

RC101 40 5 0.05 4944.93 5156.0 934.5 2.348 0.000 1.2 1 3.8 0.000
RC101 40 5 0.1 4733.25 5157.0 919.5 2.384 0.000 1.2 1 3.9 0.000
RC101 40 5 0.3 3863.45 5192.0 763.5 2.642 0.000 2.2 1 4.2 0.000
RC101 40 5 0.5 2953.25 5323.0 583.5 3.516 0.000 2.1 1 4.1 0.000

RC101 50 5 0.05 5007.02 5195.0 1435.5 0.165 0.000 3.7 1 8.1 0.000
RC101 50 5 0.1 4819.05 5195.0 1435.5 0.044 0.000 4.3 1 9.5 0.000
RC101 50 5 0.3 4047.35 5234.0 1278.5 0.440 0.000 55.7 1 61.7 0.000
RC101 50 5 0.5 3116.75 5606.0 627.5 0.229 0.000 9.7 1 14.2 0.000
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Table 21: Computational results of BPC-SP2α on the R101 instances in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

R101 20 2 0.05 2901.24 2810.0 4634.8 1.294 0.849 17.3 11 19.5 0.000
R101 20 2 0.1 2956.88 2893.0 3531.8 0.758 0.433 35.1 3 35.5 0.000
R101 20 2 0.3 2898.14 3038.0 2571.8 0.000 0.000 139.7 1 139.8 0.000
R101 20 2 0.5 2704.40 3576.0 1832.8 1.065 0.743 28.2 5 29.1 0.000

R101 25 2 0.05 3479.82 3378.0 5414.3 1.556 1.124 156.4 45 368.0 0.000
R101 25 2 0.1 3553.83 3474.0 4272.3 0.653 0.236 83.9 5 107.9 0.000
R101 25 2 0.3 3713.49 3474.0 4272.3 1.680 0.969 1001.2 11 1010.0 0.000
R101 25 2 0.5 3335.15 4763.0 1907.3 0.787 0.060 845.3 3 847.7 0.000

R101 30 3 0.05 3682.93 3616.0 4954.7 1.158 1.100 4.9 19 13.9 0.000
R101 30 3 0.1 3749.87 3616.0 4954.7 1.359 1.113 6.4 17 18.9 0.000
R101 30 3 0.3 3550.11 4158.0 2131.7 0.368 0.000 17.8 1 19.6 0.000
R101 30 3 0.5 3078.85 4463.0 1694.7 0.000 0.000 22.5 1 23.0 0.000

R101 35 3 0.05 4225.41 4099.0 6627.2 2.271 1.610 29.6 189 139.7 0.000
R101 35 3 0.1 4291.62 4235.0 4801.2 2.351 1.371 18.1 35 47.8 0.000
R101 35 3 0.3 4179.76 4699.0 2968.2 2.117 1.552 33.8 193 312.9 0.000
R101 35 3 0.5 3669.60 5139.0 2200.2 1.366 0.763 206.8 25 609.5 0.000

R101 40 3 0.05 4808.78 4686.0 7141.7 1.588 1.082 71.3 43 130.9 0.000
R101 40 3 0.1 4906.67 4792.0 5938.7 1.716 1.123 65.7 39 157.9 0.000
R101 40 3 0.3 4850.71 5335.0 3720.7 1.801 1.130 95.5 41 226.9 0.000
R101 40 3 0.5 4387.85 6656.0 2119.7 2.506 1.645 85.1 37 345.9 0.000

R101 50 4 0.05 5444.28 5481.0 4746.6 2.998 1.693 27.6 579 1561.1 0.000
R101 50 4 0.1 5407.56 5481.0 4746.6 2.213 1.111 42.1 27 258.5 0.000
R101 50 4 0.3 5058.68 5768.0 3403.6 1.991 0.671 47.6 23 195.4 0.000
R101 50 4 0.5 4366.30 6478.0 2254.6 1.801 0.735 323.1 37 413.8 0.000

R101 60 5 0.05 5864.22 - - 3.047 1.698 32.8 1379 TL 0.410
R101 60 5 0.1 5883.15 - - 3.136 1.688 41.6 363 TL 0.646
R101 60 5 0.3 5499.55 6349.0 3517.5 2.048 1.044 65.7 27 544.4 0.000
R101 60 5 0.5 4829.75 6979.0 2680.5 2.159 0.994 56.2 104 TL 0.010

R101 65 5 0.05 - - - - - 87.3 1480 TL -
R101 65 5 0.1 - - - - - 58.5 456 TL -
R101 65 5 0.3 6105.50 7076.0 3841.0 1.733 1.024 221.3 397 TL 0.022
R101 65 5 0.5 5356.00 7516.0 3196.0 1.464 0.690 155.2 65 1337.5 0.000
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Table 22: Computational results of BPC-SP2α on the A instances with n ≤ 38 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

A 31 5 0.05 752.78 786.0 121.6 2.579 1.964 0.7 587 69.8 0.000
A 31 5 0.1 719.56 786.0 121.6 2.676 0.754 0.6 17 5.7 0.000
A 31 5 0.3 584.58 798.0 86.6 3.465 0.702 1.0 43 9.4 0.000
A 31 5 0.5 435.30 820.0 50.6 3.287 0.000 1.4 1 2.4 0.000

A 32 5 0.05 632.53 661.0 91.7 1.824 0.583 0.3 79 6.9 0.000
A 32 5 0.1 604.07 661.0 91.7 1.838 0.394 0.3 19 2.8 0.000
A 32 5 0.3 490.21 661.0 91.7 2.446 0.992 0.4 65 7.5 0.000
A 32 5 0.5 370.85 687.0 54.7 3.310 1.638 0.4 283 19.3 0.000

A 32 6 0.05 712.03 744.0 104.6 4.221 0.863 0.2 401 24.9 0.000
A 32 6 0.1 680.06 744.0 104.6 3.841 0.689 0.3 65 5.7 0.000
A 32 6 0.3 550.68 747.0 92.6 2.693 0.658 0.3 51 5.3 0.000
A 32 6 0.5 417.30 757.0 77.6 2.000 0.240 0.3 11 2.0 0.000

A 33 5 0.05 747.29 778.0 163.8 4.995 3.063 0.7 47435 4088.3 0.000
A 33 5 0.1 716.58 778.0 163.8 4.980 3.538 0.7 75106 7200.8 0.000
A 33 5 0.3 576.44 794.0 68.8 4.480 1.982 0.7 2855 224.7 0.000
A 33 5 0.5 427.90 817.0 38.8 4.373 2.155 0.9 1841 133.4 0.000

A 35 5 0.05 765.55 799.0 130.0 2.896 1.215 1.2 3171 514.6 0.000
A 35 5 0.1 732.10 799.0 130.0 2.952 1.191 1.6 2393 462.9 0.000
A 35 5 0.3 594.70 811.0 90.0 3.222 1.809 1.7 1265 278.3 0.000
A 35 5 0.5 447.00 834.0 60.0 3.764 1.624 1.4 1033 241.9 0.000

A 36 5 0.05 643.20 669.0 153.1 2.465 1.185 1.4 415 68.7 0.000
A 36 5 0.1 616.51 672.0 117.1 2.578 1.302 1.6 385 65.7 0.000
A 36 5 0.3 502.43 683.0 81.1 2.573 0.944 1.7 75 19.2 0.000
A 36 5 0.5 382.05 683.0 81.1 2.550 1.390 1.9 87 25.6 0.000

A 36 6 0.05 909.45 949.0 158.0 3.741 1.732 0.7 15579 1816.6 0.000
A 36 6 0.1 868.40 952.0 116.0 3.623 1.744 0.8 10051 1180.3 0.000
A 36 6 0.3 696.80 956.0 92.0 3.308 1.971 0.6 1975 330.9 0.000
A 36 6 0.5 517.00 972.0 62.0 3.038 2.067 0.5 631 132.0 0.000

A 37 5 0.05 699.06 730.0 111.2 6.242 2.928 1.1 13569 1886.2 0.000
A 37 5 0.1 667.22 731.0 93.2 6.293 2.975 1.1 7747 1095.1 0.000
A 37 5 0.3 535.86 738.0 64.2 6.252 3.034 1.4 2465 409.9 0.000
A 37 5 0.5 397.60 745.0 50.2 6.245 2.568 1.4 1035 165.9 0.000

A 38 5 0.05 791.66 826.0 139.3 2.969 2.091 1.4 18109 5485.7 0.000
A 38 5 0.1 757.33 826.0 139.3 2.552 1.511 1.5 3215 1178.5 0.000
A 38 5 0.3 617.79 840.0 99.3 2.129 0.694 1.6 31 28.7 0.000
A 38 5 0.5 463.15 851.0 75.3 1.041 0.359 1.7 5 6.3 0.000

A 38 6 0.05 799.01 831.0 191.2 4.152 2.327 0.7 18673 2723.0 0.000
A 38 6 0.1 766.42 835.0 149.2 4.171 2.267 0.8 9957 1539.7 0.000
A 38 6 0.3 616.56 846.0 81.2 2.638 0.453 0.8 31 9.3 0.000
A 38 6 0.5 463.10 851.0 75.2 2.151 0.236 1.0 3 3.6 0.000
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Table 23: Computational results of BPC-SP2α on the A instances with n ≥ 43 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

A 43 6 0.05 894.83 937.0 93.7 0.953 0.740 1.1 229 43.0 0.000
A 43 6 0.1 852.67 937.0 93.7 0.790 0.479 1.1 73 19.6 0.000
A 43 6 0.3 684.01 937.0 93.7 0.557 0.161 1.2 3 5.3 0.000
A 43 6 0.5 514.35 952.0 76.7 1.618 0.862 1.3 41 23.9 0.000

A 44 6 0.05 905.89 945.0 162.8 3.902 0.635 2.2 93 59.2 0.000
A 44 6 0.1 863.58 949.0 94.8 3.509 0.652 2.2 29 37.2 0.000
A 44 6 0.3 692.74 949.0 94.8 3.110 0.400 2.5 11 26.2 0.000
A 44 6 0.5 520.90 951.0 90.8 3.724 0.619 2.5 35 56.4 0.000

A 44 7 0.05 1095.84 - - 2.369 1.466 0.9 34949 7202.6 0.287
A 44 7 0.1 1044.67 - - 2.340 1.589 0.9 33073 7202.4 0.284
A 44 7 0.3 832.51 1162.0 63.7 2.450 1.565 1.3 13865 3360.0 0.000
A 44 7 0.5 611.35 1168.0 54.7 2.310 1.281 1.2 697 161.0 0.000

A 45 7 0.05 875.69 914.0 147.8 1.905 0.528 1.9 163 47.5 0.000
A 45 7 0.1 834.38 917.0 90.8 1.684 0.516 1.3 61 17.9 0.000
A 45 7 0.3 666.54 927.0 58.8 1.189 0.130 2.4 5 7.7 0.000
A 45 7 0.5 492.40 928.0 56.8 1.395 0.000 2.3 1 6.2 0.000

A 47 7 0.05 1027.55 1073.0 164.0 3.136 0.883 1.5 1753 589.0 0.000
A 47 7 0.1 981.50 1074.0 149.0 3.259 1.227 1.5 2873 1139.7 0.000
A 47 7 0.3 794.30 1082.0 123.0 4.098 1.942 2.3 9782 7203.3 0.000
A 47 7 0.5 590.50 1113.0 68.0 4.174 1.853 2.9 3005 4334.4 0.000

A 52 7 0.05 966.38 - - 2.002 1.257 4.7 9534 TL 0.151
A 52 7 0.1 921.75 1011.0 118.5 1.973 1.152 5.2 8929 4875.6 0.000
A 52 7 0.3 741.25 1015.0 102.5 2.210 1.263 5.9 1491 1184.3 0.000
A 52 7 0.5 556.25 1035.0 77.5 2.815 1.730 10.6 2017 3171.0 0.000

A 53 7 0.05 - - - - - 3.5 11823 TL -
A 53 7 0.1 - - - - - 3.2 9759 TL -
A 53 7 0.3 849.38 - - 4.076 2.300 4.3 5763 TL 0.278
A 53 7 0.5 622.30 1190.0 54.6 2.903 0.835 3.8 107 184.7 0.000

A 54 9 0.05 1026.38 - - 4.589 1.346 0.8 35224 TL 0.310
A 54 9 0.1 982.75 - - 5.097 1.966 0.9 32459 TL 0.762
A 54 9 0.3 781.75 - - 4.729 1.635 0.9 24407 TL 0.048
A 54 9 0.5 574.25 1095.0 53.5 4.680 1.300 0.9 2071 461.1 0.000

A 60 9 0.05 997.70 - - 4.391 2.968 3.0 15841 TL 1.763
A 60 9 0.1 943.61 - - 3.597 2.108 1.9 14606 TL 0.856
A 60 9 0.3 749.03 1043.0 63.1 2.978 1.289 2.5 5483 4135.3 0.000
A 60 9 0.5 553.05 1043.0 63.1 2.499 1.069 2.0 606 623.9 0.000
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Table 24: Computational results of BPC-SP2α on the P instances with n ≤ 49 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

P 15 8 0.05 428.24 450.0 14.7 1.461 0.481 0.0 13 0.1 0.000
P 15 8 0.1 406.47 450.0 14.7 1.498 0.519 0.0 13 0.1 0.000
P 15 8 0.3 319.41 450.0 14.7 1.698 0.757 0.0 11 0.1 0.000
P 15 8 0.5 231.85 453.0 10.7 1.830 1.090 0.0 25 0.1 0.000

P 21 8 0.05 576.46 603.0 72.3 0.000 0.000 0.0 1 0.2 0.000
P 21 8 0.1 549.23 604.0 56.3 0.000 0.000 0.0 1 0.2 0.000
P 21 8 0.3 437.49 606.0 44.3 0.000 0.000 0.0 1 0.2 0.000
P 21 8 0.5 325.15 612.0 38.3 1.167 0.103 0.0 3 0.2 0.000

P 22 8 0.05 503.37 529.0 16.4 0.000 0.000 0.0 1 0.2 0.000
P 22 8 0.1 477.74 529.0 16.4 0.000 0.000 0.0 1 0.2 0.000
P 22 8 0.3 375.22 529.0 16.4 0.000 0.000 0.0 1 0.2 0.000
P 22 8 0.5 272.70 529.0 16.4 0.000 0.000 0.0 1 0.2 0.000

P 39 5 0.05 438.97 458.0 77.4 1.600 1.204 1.3 625 52.2 0.000
P 39 5 0.1 419.84 459.0 67.4 1.667 0.957 1.4 227 24.7 0.000
P 39 5 0.3 339.92 464.0 50.4 1.724 1.387 1.4 403 53.5 0.000
P 39 5 0.5 254.20 480.0 28.4 1.911 1.738 1.7 231 34.2 0.000

P 44 5 0.05 487.59 510.0 61.9 1.789 1.402 2.8 4617 567.0 0.000
P 44 5 0.1 465.19 510.0 61.9 1.816 1.425 2.9 3441 391.4 0.000
P 44 5 0.3 374.67 513.0 51.9 2.253 1.601 3.0 1365 239.7 0.000
P 44 5 0.5 281.45 523.0 39.9 3.138 2.237 3.3 3283 479.3 0.000

P 49 7 0.05 529.21 554.0 58.2 1.761 1.161 0.8 2913 334.0 0.000
P 49 7 0.1 504.42 554.0 58.2 1.807 1.214 0.8 2137 254.6 0.000
P 49 7 0.3 402.76 556.0 45.2 1.798 1.602 0.9 1575 238.8 0.000
P 49 7 0.5 298.60 568.0 29.2 1.792 1.359 0.9 1189 156.7 0.000

P 49 8 0.05 602.40 - - 3.028 2.423 0.5 48380 7203.9 0.665
P 49 8 0.1 573.81 - - 3.120 2.454 0.5 46327 7203.7 0.548
P 49 8 0.3 459.13 - - 3.768 3.033 0.5 35257 7203.8 0.649
P 49 8 0.5 340.05 - - 4.373 3.544 0.6 29269 7203.7 0.892

P 49 10 0.05 663.94 697.0 35.9 1.506 1.210 0.3 58189 2840.9 0.000
P 49 10 0.1 630.89 697.0 35.9 1.427 1.121 0.2 15527 744.6 0.000
P 49 10 0.3 497.87 698.0 30.9 1.197 0.819 0.2 719 44.8 0.000
P 49 10 0.5 364.45 701.0 27.9 1.511 1.161 0.2 1089 64.8 0.000
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Table 25: Computational results of BPC-SP2α on the P instances with n ≥ 50 in the adjacent case

Instance Solution Root node Branch-and-bound

Group n |K| α z Exp V ar Gap1(%) Gap2(%) RT (s) Nodes TT (s) OptGap(%)

P 50 10 0.05 706.55 741.0 52.0 1.428 0.969 0.3 8169 618.5 0.000
P 50 10 0.1 672.10 741.0 52.0 1.409 0.964 0.2 3105 209.0 0.000
P 50 10 0.3 532.60 742.0 44.0 1.188 0.758 0.2 143 19.8 0.000
P 50 10 0.5 391.50 752.0 31.0 1.044 0.501 0.2 41 9.4 0.000

P 54 7 0.05 545.89 - - 3.057 2.411 1.6 29454 TL 1.083
P 54 7 0.1 517.87 - - 2.543 1.697 1.6 26632 TL 0.256
P 54 7 0.3 414.01 580.0 26.7 2.521 1.665 1.6 12931 4498.5 0.000
P 54 7 0.5 303.35 582.0 24.7 1.748 0.661 1.8 49 30.1 0.000

P 54 8 0.05 549.88 576.0 53.7 1.723 1.343 1.3 12495 2523.1 0.000
P 54 8 0.1 523.77 576.0 53.7 1.633 0.695 1.5 589 120.1 0.000
P 54 8 0.3 419.31 576.0 53.7 1.698 0.976 1.4 625 161.7 0.000
P 54 8 0.5 311.35 586.0 36.7 2.027 1.104 1.4 519 143.1 0.000

P 54 10 0.05 - - - - - 0.4 82836 TL -
P 54 10 0.1 673.84 - - 9.571 9.185 0.4 84071 TL 7.605
P 54 10 0.3 499.12 700.0 30.4 2.401 1.799 0.4 49543 5038.1 0.000
P 54 10 0.5 365.20 702.0 28.4 2.377 1.452 0.4 3927 375.0 0.000

P 59 10 0.05 710.39 744.0 71.9 1.357 0.748 0.5 10575 1571.5 0.000
P 59 10 0.1 676.79 744.0 71.9 1.388 0.825 0.5 7255 1122.9 0.000
P 59 10 0.3 539.77 751.0 46.9 1.693 1.262 0.6 17117 2850.5 0.000
P 59 10 0.5 396.95 759.0 34.9 1.981 1.383 0.7 10665 1658.2 0.000

P 69 10 0.05 - - - - - 1.7 25424 TL -
P 69 10 0.1 - - - - - 1.7 25424 TL -
P 69 10 0.3 - - - - - 1.5 19634 TL -
P 69 10 0.5 440.45 - - 2.217 1.774 2.3 16137 TL 0.230

P 75 4 0.05 - - - - - 99.7 1174 TL -
P 75 4 0.1 - - - - - 99.7 1174 TL -
P 75 4 0.3 438.33 597.0 68.1 1.308 0.774 180.5 329 3485.9 0.000
P 75 4 0.5 330.55 601.0 60.1 1.825 0.851 166.2 411 3937.3 0.000

Table 26: Computational results of BPC-MP2α on the C101 instances in the adjacent case with negative correlations

Instance root node B-and-B

name n k α BF Exp V ar Gap1(%) Gap2(%) rt(s) nodes tt(s) OptGap(%)

C101 20 2 0.1 1465.18 1598.0 269.8 0.000 0.000 6.3 1 6.4 0.000
C101 20 2 0.3 1199.54 1598.0 269.8 0.000 0.000 16.0 1 16.1 0.000

C101 25 3 0.1 1760.12 1912.0 393.2 1.307 0.000 2.3 1 5.4 0.000
C101 25 3 0.3 1439.86 1951.0 247.2 0.754 0.000 20.5 1 53.3 0.000

C101 30 3 0.1 1901.27 2035.0 697.7 1.374 0.000 12.9 1 15.4 0.000
C101 30 3 0.3 1603.91 2078.0 497.7 2.372 0.000 157.3 1 1299.8 0.000

C101 35 4 0.1 2567.61 2781.0 647.1 3.722 0.727 4.6 65 674.4 0.000
C101 35 4 0.3 - - - - - 1466.1 1 TL -

C101 40 4 0.1 3062.96 3325.0 704.6 4.833 0.000 13.2 1 478.1 0.000
C101 40 4 0.3 - - - - - TL 1 TL -

C101 50 5 0.1 3336.95 3632.0 681.5 1.941 0.000 166.7 1 1360.9 0.000
C101 50 5 0.3 - - - - - TL 1 TL -

C101 60 6 0.1 4337.34 4679.0 1262.4 0.855 0.000 1899.7 1 4979.2 0.000
C101 60 6 0.3 - - - - - TL 1 TL -
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Table 27: Computational results of BPC-MP2α on the P instances in the adjacent case with negative correlations

Instance root node B-and-B

name n k α BF Exp V ar Gap1(%) Gap2(%) rt(s) nodes tt(s) OptGap(%)

A 31 5 0.1 719.56 786.0 121.6 2.744 0.763 1.0 17 8.0 0.000
A 31 5 0.3 583.38 798.0 82.6 3.432 2.483 1.1 379 92.8 0.000

A 32 5 0.1 603.27 661.0 83.7 1.833 0.774 0.4 131 12.2 0.000
A 32 5 0.3 486.61 664.0 72.7 2.498 0.857 0.5 25 6.8 0.000

A 32 6 0.1 678.46 744.0 88.6 3.781 0.766 0.3 223 17.8 0.000
A 32 6 0.3 543.18 750.0 60.6 2.450 0.686 0.4 31 6.0 0.000

A 33 5 0.1 716.08 780.0 140.8 5.350 3.596 0.7 61183 6427.9 0.000
A 33 5 0.3 573.74 794.0 59.8 4.578 1.887 0.9 1155 184.4 0.000

A 35 5 0.1 732.10 799.0 130.0 2.956 1.210 1.5 2323 597.2 0.000
A 35 5 0.3 594.70 811.0 90.0 3.231 1.929 2.2 2795 1919.3 0.000

A 36 5 0.1 614.71 670.0 117.1 2.484 1.147 2.6 277 61.5 0.000
A 36 5 0.3 497.43 684.0 62.1 2.336 1.650 3.0 341 279.3 0.000

A 36 6 0.1 868.00 952.0 112.0 3.625 1.741 0.9 11669 1747.0 0.000
A 36 6 0.3 695.20 961.0 75.0 3.260 1.982 1.1 2129 1105.9 0.000

A 37 5 0.1 666.82 731.0 89.2 6.265 3.024 1.3 9925 1892.3 0.000
A 37 5 0.3 534.66 738.0 60.2 6.535 3.096 1.5 5121 2251.5 0.000

A 38 5 0.1 756.13 826.0 127.3 2.671 1.529 2.1 2161 1253.9 0.000
A 38 5 0.3 614.19 840.0 87.3 2.213 0.852 3.8 53 385.8 0.000

A 38 6 0.1 765.62 835.0 141.2 4.062 2.173 1.1 9457 1947.4 0.000
A 38 6 0.3 615.86 845.0 81.2 2.522 0.644 1.7 39 53.8 0.000

A 43 6 0.1 852.27 937.0 89.7 0.770 0.497 1.5 87 28.5 0.000
A 43 6 0.3 682.81 937.0 89.7 0.411 -0.000 1.6 1 7.4 0.000

A 44 6 0.1 862.88 948.0 96.8 3.552 0.994 2.9 239 165.1 0.000
A 44 6 0.3 691.54 949.0 90.8 3.358 0.272 4.0 17 147.1 0.000

A 45 7 0.1 833.98 917.0 86.8 1.671 0.523 1.8 59 24.9 0.000
A 45 7 0.3 665.34 927.0 54.8 1.225 0.192 2.8 7 18.8 0.000

A 47 7 0.1 978.80 1075.0 113.0 3.122 1.087 1.6 1781 1023.8 0.000
A 47 7 0.3 786.00 1080.0 100.0 3.490 1.233 3.4 861 4130.8 0.000
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