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Abstract: Within state-of-the-art optimization solvers such as IBM–CPLEX the ability to solve both convex
and nonconvex Mixed-Integer Quadratic Programming (MIQP) problems to proven optimality goes back few
years, but still presents unclear aspects. We are interested in understanding whether for solving an MIQP
problem it is favorable to linearize its quadratic part or not. Our approach employs Machine Learning
techniques to learn a classifier that predicts, for a given MIQP instance, the most suitable resolution method
within IBM–CPLEX’s algorithmic framework. We aim as well at gaining methodological insights about the
instances’ features leading this discrimination. Together with a new generated dataset, we examine part of
CPLEX internal testbed and discuss different scenarios to integrate learning and optimization processes. By
defining novel measures, we interpret learning results and evaluate the quality of the tested classifiers from
the optimization point of view.
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1 Introduction

The tight integration and development of discrete optimization and machine learning (ML) is a recent but

already fruitful research theme. The aim of this combination is twofold: on the one side, various are the

discrete optimization settings that could benefit from a ML-based heuristic approach; on the other side, ML

algorithms themselves could benefit from choices of discrete type, which have been until now disregarded.

We focus on the former direction, that one could call “learning for optimization”: we believe that learning

algorithms could provide new predictive tools to improve the current way decision-making is performed. Es-

pecially in those situations where the state-of-the-art choices follow a heuristic-based approach, ML predictive

capabilities could be exploited in order to gain significant methodological insights.

Although a number of fresh applications of ML in discrete optimization is recently appearing, one could

identify two main topics in this thread of research. On the one side, ML-based approaches are proposed for

the branch-and-bound scheme for solving Mixed-Integer Linear Programming (MILP) problems (see [21] for

a survey on the theme); on the other side, predictions are leveraged to deal with the solvers’ computational

aspects and their configuration (see, e.g., the work of [16] and [17]).

Shifting from those two main ideas and positioning ourselves somehow in between, we tackle a new

application of ML in discrete optimization. In particular, in the area of Mixed-Integer Nonlinear Programming

(MINLP) we consider Mixed-Integer Quadratic Programming (MIQP), which stands by itself as a prominent

class of problems: not only quadratic programs are of interest for modeling diverse practical applications (see,

e.g., [2], [5]), they also represent a theoretical ground for a first extension of MILP algorithms into MINLP

ones.

Within state-of-the-art optimization solvers such as IBM-CPLEX [8], the ability to solve both convex and

nonconvex MIQPs to proven optimality goes back few years (see, e.g., [3]), but resolution methods for this

class of problems still present unclear aspects. We are interested in understanding whether it is favorable to

linearize the quadratic part of an MIQP or not, in order to solve it most efficiently. Currently, the decision

linearize vs. not linearize can be specified by CPLEX users via the linearization switch parameter, but it is

not so clear when this switch should be turned on or off in order to benefit the resolution process. The idea

that perhaps MIQPs should be solved in an intelligent and adapted way was firstly suggested in [10], and

naturally calls for a predictive machinery, given the fact that the theoretical and computational knowledge

of their resolution methods does not seem fully understood yet.

We interpret the question linearize vs. not linearize as a classification one, and tackle it with a ML

approach. Our aim is to learn a classifier predicting for a given MIQP the most suited resolution method

within CPLEX’s framework, and possibly gain methodological insights about the problems features leading

to this prediction. The developed framework takes care of all learning-related aspects - such as dataset

generation, features design and labeling procedure definition, and we discuss different scenarios to integrate

learning and optimization processes. We do not forget the peculiar optimization point of view in the devel-

opment and in the evaluation of our procedure, and define novel measures to interpret the learning results

in optimization terms.

2 Optimization background

We consider general MIQP problems, i.e., optimization problems in which a quadratic objective function

is minimized over a set of linear constraints, and (a share of) bounded variables are required to be binary.

Formally, an MIQP can be written as

min
1

2
xTQx+ cTx (1)

Ax = b (2)

xj ∈ {0, 1} ∀ j ∈ I (3)

l ≤ x ≤ u, (4)
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where Q = {qij}i,j=1,...,n ∈ Rn×n is a real symmetric matrix that together with c ∈ Rn defines the objective

function (1), while the set of linear constraints (2) is formed by the matrix A ∈ Rm×n and the right hand

side vector b ∈ Rm. Variables x ∈ Rn are bounded by lower and upper bounds l, u ∈ Rn in (4), and

I ⊆ N = {1, . . . , n} in (3) is the set of indices of variables that are required to be binary. We say the problem

is pure (binary) when I = N , and mixed otherwise. Note that we do not consider the continuous case, i.e.,

the case of I = ∅. We refer to an MIQP relaxation as the continuous version of the same problem, where

integrality requirements (3) are dropped.

The complexity class of MIQP problems is that of NP-hardness: clearly, MILP is contained in MIQP

as the special case in which no quadratic term is present, and continuous Quadratic Programming (QP)

problems are in general NP-hard as well [24], [3].

2.1 Solving MIQPs with CPLEX

Depending on its relaxation being convex or nonconvex, and on the types of variables involved, an MIQP

can be tackled in different ways. We briefly go through the alternative algorithmic scenarios to solve MIQPs,

focusing on the specific framework provided by the IBM-CPLEX commercial solver. An extensive report can

be found in [3].

Convex problems. A relaxed MIQP is convex if and only if the matrix Q is positive semi-definite (Q � 0). In

this case, the MIQP can be solved exploiting the mature technology for convex MINLP problems (see [4] for

a comprehensive overview). In particular, in both pure and mixed cases, convex MIQPs can be solved by the

nonlinear programming-based branch and bound (NLP B&B) [15], a natural extension of the integer linear

B&B scheme [19] in which a QP is solved at each node of the tree (and the root node corresponds to the

relaxed MIQP). Another common resolution approach for convex problems is that of Outer Approximation

algorithms [9], which are however not implemented in CPLEX for MIQPs.

Nonconvex problems. When the relaxed MIQP is not convex, i.e., Q � 0 is indefinite, more sophisticated

resolution techniques are required, and variables’ types come to play an import role. If all variables are

binary, the nonconvex MIQP can be easily transformed into a convex one by means of augmenting the main

diagonal of matrix Q. Exploiting the fact that xj = x2j for xj ∈ {0, 1}, xTQx can be replaced by

xT (Q+ ρIn)x− ρeTx, (5)

where Q + ρIn � 0 for some suitable ρ > 0, In denotes the n × n identity matrix and e the nth vector

with all ones.

Alternatively, instead of performing a convexification, the binary nonconvex MIQP can be linearized and

transformed into a MILP. Again using the fact that xj = x2j for xj ∈ {0, 1}, diagonal quadratic terms qiix
2
i

are rewritten as qiixi, while bilinear terms qijxixj are replaced with the so-called McCormick inequalities [23]:

a new variable yij ≥ 0 is added to represent the product xixj , together with linear constraints

xi + xj − 1 ≤ yij if qij > 0, or yij ≤ xi, yij ≤ xj if qij < 0, (6)

enforcing that yij = xixj at all possible binary realizations. In this way, the size of the problem formulation

grows in number of variables and constraints, but the resulting model can be solved with standard MILP

techniques, i.e., exploiting the power of largely more mature algorithms and software.

For mixed nonconvex MIQPs, applying the above tricks to convexify or linearize is not straightforward, and

CPLEX relies on the so-called Spatial branch and bound (see, e.g., [1]) to solve these problems to global opti-

mality. Note that a number of different possibilities can be explored in order to perform linearization and con-

vexification. However, the full discussion of such methods (as of those related to general nonconvex MIQPs)

is not within the scope of this paper. For more details, we refer the reader to [3] and the references therein.
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3 Linearize vs. not linearize

In light of the algorithmic scenarios above, one could rightly assume that the linearization approach discussed

for pure nonconvex problems could be beneficial for the convex case as well. Indeed, in the binary case the

linearization step reduces the MIQP into a MILP, while in the mixed convex case, one could linearize all

bilinear products qijxixj between a binary xi ∈ {0, 1} and a bounded continuous variable lj ≤ xj ≤ uj with

a generalization of the McCormick inequalities. Note however that nonzero products between two continuous

variables cannot be linearized, and will eventually remain in the formulation, so that a mixed convex MIQP

could still be quadratic after linearization, and hence solved with a NLP B&B.

As it is reported in [3], the linearization approach does not dominate in theory the non-linearization one,

and as it is pointed out in [11], the decision to linearize is not clear-cut when one considers a wide variety

of problems. In this sense, the question linearize vs. not linearize qualifies as a good quest for learning

techniques. Our goal is to exploit ML predictive machinery to understand, for a given MIQP instance,

whether it is favorable to linearize its quadratic part or not. In particular, we aim at learning an offline

classifier to answer the question linearize vs. not linearize, predicting in an instance-specific way the most

suited resolution approach within the CPLEX context. We restrict our focus to three problem types only

(namely, pure convex, mixed convex and pure nonconvex ). The mixed nonconvex case constitutes a different

scenario, due to the very different setup of Spatial branch and bound, and should be treated separately. In

our three cases of interest, currently, the solver provides the user the possibility to switch the linearization

on or off by means of the preprocessing parameter qtolin. The default strategy employed by CPLEX is to

always perform linearization.

We would also like to exploit the classifier to gain some methodological insights about which features

of the problems influence the decision-making the most. The offline and supervised nature of the chosen

paradigm seems suited for the task. Indeed, we believe that (some of) the reasons leading to an algorithmic

discrimination might be linked to the formulation characteristics and the early stages of the optimization

of an MIQP problem, and could hence be detected by a learning algorithm if enough relevant information

is provided in terms of features. We summarize in what follows the main steps that are undertaken in the

development of our method, leaving the details for the next section.

3.1 Development overview

The whole development process can be divided into four main phases:

1. Dataset generation: a dataset bigger than the traditional optimization ones is crucial to implement and

test a meaningful learning procedure. Our first step consists in the definition of a generator of MIQP

instances, spanning across various combinations of structural and optimization parameters.

2. Features design: we proceed by identifying a set of relevant features, describing the mathematical

characteristics of an MIQP instance as well as its prospective behavior with respect to the alternative

resolution methods (linearize and not linearize).

3. Labels definition: in order to provide for each MIQP the correct answer to the question linearize vs.

not linearize, rigorous procedures are defined to discard inconsistent and unsolved instances; running

time is the ultimate compared measure to assess the label for the problem.

4. Learning experiments: we test traditional classifiers like kernelized Support Vector Machines as well as

more interpretable algorithms such as ensemble methods based on Decision Trees.

4 Methodological details

We now go through the development steps sketched above more in details, discussing how the dataset is

generated, and features and labels defined.
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4.1 Dataset generation

To build complete MIQP instances, data generation comprises two separate steps. First, real symmetric

matrices Q are generated by the MATLAB function sprandsym [22], to which desired size n, density d and

eigenvalues λi, i = 1, . . . , n are specified. The final distribution of entries qij is nonuniform. Rank and

definiteness/indefiniteness of Q are indirectly specified by the spectrum definition, which becomes a crucial

step to ensure the creation of heterogeneous instances. We uniformly drawn the rank k ∈ [2, n]. Maximum

and minimum eigenvalues are uniformly drawn from prescribed magnitude ranges related to n, and the

remaining k− 2 nonzero eigenvalues are uniformly generated in [λmin, λmax]. The quadratic data obtained in

this way can then be completed or not with the definition of the linear vector c, again uniformly generated

and with density d.

Second, the objective function is completed with optimization data: binary and continuous variables

are added in various proportion, depending on Q being positive semi-definite or indefinite, and finally a

constraints set is defined. This second generation block is implemented with Python and CPLEX respective

API. In particular, we monitor the addition of the following types of constraints:

• a single cardinality constraint, of the form 0 ≤
∑

j∈I xj ≤ r, with r < |I| varying;

• a standard simplex constraint, of the form
∑

j /∈I xj = 1, xj ≥ 0;

• a set of η multi-dimensional knapsack constraints of the form
∑

j∈I wijxj ≤ fi, for i = 1, . . . , η. We

follow the procedure described in [26] to generate weights wij and capacity coefficients fi, without

correlating them to the objective function.

Combinations of constraints types can appear inside a generated MIQP instance, depending on the variables

types, which are in turn conditioned by the definiteness/indefiniteness of Q. Table 1 summarizes the various

possibilities; the empty constraint set could be established for all MIQP types, while only mixed convex

instances could contain all kinds of constraints.

Table 1: Constraint set possible composition with respect to problem types. Constraints can be chosen among cardinality (c),
simplex (s) or multi-dimensional knapsack (mk) ones.

c s mk c+s c+mk s+mk all

01 conv X X X
01 nonc X X X
mix conv X X X X X X X

Table 2: Overview and brief description of the complete features set.

# Group name Features general description

Static features
2 Generic problem type Size n of the problem, proportion of binary variables on total
2 Constraints matrix composition Density w.r.t. different types of variables, magnitudes of nnz coefficients
6 Quadratic matrix composition Variables with nnz coefficients on diagonal w.r.t. different types, ratio of

magnitudes of nnz diagonal coefficients, appearance of nnz bilinear terms
(continuous · continuous) and (binary · continuous)

7 Spectrum description Shares of positive and negative eigenvalues, value of smallest nnz eigenvalue,
ratio of eigenvalues magnitudes, trace and spectral norm of Q

4 Other properties of Q Density, rank and determinant of Q, a measure of “diagonal dominance”

Dynamic features
2 Root node information Difference of lower bounds and resolution times at the root node, between

methods linearize and not linearize

4.2 Features design

A (raw) formulation like the one in (1)–(4) cannot be fed directly as input to a learning algorithm, so we

need to define and extract features representing what we think are the important pieces of information that



Les Cahiers du GERAD G–2017–106 5

could lead the discrimination between the methods we want to compare. In this phase of features design,

we reinterpret few ideas from the recent works [18] and [17], since to the best of our knowledge the learning

paradigm has never been exploited before for MIQPs.

We depict an MIQP instance in its mathematical, optimization and computational properties, by means

of a set of 23 hand-crafted features. The main group consists of static features, describing the instance in

terms of variables, constraints and quadratic objective function; they are efficiently extracted via Python

libraries and the solver’s API before any solving (pre)process takes place, and are intrinsic to the problem

formulation. An overview and brief description of the entire features set is given in Table 2.

4.3 Labels definition

Given our question linearize vs. not linearize, we need to provide for each MIQP the answer corresponding

to the better performing approach. We take into account the possibility of a tie between the two methods,

and we therefore assign one among three labels {L,NL,T}.

Following optimization best practices to deal with the solver’s performance variability [20], each instance

is run five times, with different random seeds. We enforce a timelimit of 1h for each run, and collect data on

final upper and lower bounds, resolution times and solver’s solution statuses. We implement three checks to

monitor troublesome instances.

• Solvability check: at least one method L, NL must find an optimal solution (with tolerance) in order

to assign any label; instances that cannot be solved within timelimit by any method for any seed are

discarded.

• Seed consistency check: for each seed, lower and upper bounds of L and NL runs are checked for

inconsistencies, and unstable instances discarded.

• Global consistency check: if every seed gave consistent results individually, we perform a global check

considering the best upper and lower bounds for the two methods. Again, unstable instances are

discarded.

If an MIQP passes all these checks, we can decree the winner between L and NL or assign a tie T. When one

mode is never able to solve an instance, the solving one is the clear winner. Otherwise, if both L and NL
could solve the instance at least once, the performance on each seed is compared and a “seed win” assigned

if 10% significantly better in terms of computing time. We assign a winner between L and NL only if seeds

wins are consistent through the five runs, opting for a tie otherwise.

5 Data, experiments and results

We now analyze the generated dataset and report tested algorithms and settings, considering a share of

CPLEX internal testbed as well. Results are interpreted from the optimization point of view by means of

new measures of quality of the prediction that take into account the solver’s performance.

5.1 Dataset analysis

The generation procedure is run with MATLAB 9.1.0 (R2016b), Python 2.7 and CPLEX 12.6.3 on a Linux

machine, Intel Xeon E5-2637 v4, 3.50 GHz, 16 threads and 128 GB of memory. In order to label the dataset,

we used a grid of 26 machines Intel Xeon X5675, 3.07 GHz (12 threads each) and 96 GB of memory; each

problem is restricted to one thread only. With our generator of instances we produce 2640 different MIQPs;

the size of the problems varies as n ∈ {25, 50, . . . , 200} and the density of Q as d ∈ {0.2, 0.4, . . . , 1}. For

mixed convex MIQPs, the percentage of continuous variables is chosen from {0, 20, . . . , 80}. We discard 340

instances due to solvability or consistency failures, ending up with a dataset D of 2300 problems.

We report in Table 3 the composition of dataset D with respect to problem types and assigned labels.

The dataset is highly unbalanced: the majority of instances is tagged as NL, and only a small share of them
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Table 3: Composition of dataset D. For each type and label we report the total number of instances and their percentage.

L NL T Total %

01 conv 195 600 35 830 0.36
01 nonc 392 312 39 743 0.32
mix conv 11 701 15 727 0.32

Total 598 1613 89 2300
% 0.26 0.70 0.04

as T. Moreover, the NL answer is strongly predominant for mixed convex instances, suggesting that there

could be a clear winner method depending on the type of problem itself.

5.2 Learning experiments and results

Learning experiments are implemented in Python with Scikit-learn [25], and run on a personal computer

with Intel Core i5, 2.3 GHz and 8 GB of memory. We randomly split D into Dtrain and Dtest, a training

and a test sets of, respectively, 1725 (75%) and 575 (25%) instances. Each feature is normalized in [−1, 1],

and two static features (namely, the determinant of Q and the ratio of magnitudes between diagonal and

out-of-diagonal nonzero coefficients of Q) are removed because of scaling issues. Each experiment comprises

a training phase with 5-fold cross validation to grid-search hyper-parameters, and a test phase on the neutral

Dtest. Unbalance of data is taken into account when splitting D and defining folds: general proportions of

labels are maintained in each subset to ensure that even the less numerous case is always represented. We

tested Support Vector Machine (SVM) with RBF kernel [7], together with three ensemble methods based on

Decision Trees, namely, Random Forests (RF) [6], Extremely Randomized Trees (EXT) [14] and Gradient

Tree Boosting (GB) [12]. We opt for this type of learning algorithms because we would like to get results

that are interpretable, particularly in terms of features importance.

As a first experiment, we consider a multiclass scheme, with labels {L,NL,T}, and employ all defined

features (21, given two are removed). Table 4a reports the standard quality measures for classification in

this setting: for all four classifiers we compared accuracy, precision, recall, f1-score (averaged and weighted

by support among classes, to account for class unbalance).

Table 4: Classification measures for different learning settings. The best performing classifiers are boldfaced.

(a) Multiclass - All features

SVM RF EXT GB

Accuracy 85.22 88.87 84.00 87.65
Precision 81.91 85.51 81.26 84.79
Recall 85.22 88.87 84.00 87.65
F1-score 83.16 87.11 82.52 86.19

(b) Binary - All features

SVM RF EXT GB

Accuracy 88.43 91.50 88.79 91.14
Precision 88.32 91.39 88.56 91.04
Recall 88.43 91.50 88.79 91.14
F1-score 87.92 91.33 88.58 91.07

(c) Multiclass - Static features

SVM RF EXT GB

Accuracy 83.48 83.13 81.91 83.13
Precision 80.02 79.81 78.87 79.90
Recall 83.48 83.13 81.91 83.13
F1-score 81.36 81.17 80.28 81.19

(d) Binary - Static features

SVM RF EXT GB

Accuracy 86.80 86.08 85.53 86.62
Precision 86.48 85.69 85.20 86.32
Recall 86.80 86.08 85.53 86.62
F1-score 86.28 85.53 85.30 86.03

In this setting, RF is best performing in all measures, though the other classifiers are following up rather

close. The features importance scores provided by the three ensemble methods algorithms are positive real

numbers, summing up to 1. Overall, and across RF, EXT and GB, the subset of features that appear more

influential for the prediction comprises dynamic features and information on the spectrum of Q (and hence the

convexity or nonconvexity of the problem). An averaged top five list of features includes: difference of lower

bounds found by L and NL after the resolution of the root node, and difference of root resolution times; value of
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the smallest nonzero eigenvalue; a measure of “diagonal dominance”, computed as 1
n

∑n
i=1(|qii|−

∑
j 6=i |qij |);

the spectral norm of Q, i.e., ‖Q‖ = maxi |λi|.

We examine the classifiers’ confusion matrices to better understand their predictions: a major difficulty

seems to be posed by the T class, whose examples are (almost) always misclassified. We assign tie labels

in order to track those problems for which methods are comparable, but ultimately we aim at providing a

reliable classification of those “extreme” cases for which a change in the algorithmic mode produces a change

in the instance being solved or not, so that one could question the relevance of ties with respect to the inquiry

linearize vs. not linearize. We carry out further experiments in a binary setting, and compare them with

the original multiclass one. Moreover, we also test the framework in which classifiers are trained without

dynamic features: albeit this may sound counterintuitive with respect to the discussed features evaluation, it

is useful to understand how the predictions change without them. Especially, from the optimization solver’s

point of view, a scenario in which a prediction can be cast without the need of solving twice the root MIQP,

but instead directly after reading the original instance, looks appealing and indeed more convenient. Table 5
reports the hyperparameters configurations selected by cross-validation for different classifiers, in different

learning settings.

Table 5: Hyperparameters configurations selected by cross-validation, for different classifiers and learning settings.

SVM RF EXT GB
(C, gammma) n estimators n estimators (n estimators, learning rate)

Multiclass - All features (1000000, 0.001) 500 100 (900, 0.1)
Binary - All features (1000000, 0.0001) 100 200 (500, 0.1)
Multiclass - Static features (1000, 0.1) 500 500 (100, 0.1)
Binary - Static features (1000, 0.1) 350 400 (1000, 0.01)

Binary and All features setting. We remove all tie cases from Dtrain and Dtest, and we rescale the data

accordingly. New binary classifiers are trained, for which we report results in Table 4b. All measures are

overall improved, and again RF performs as the best algorithm.

Multiclass and Static features setting. As reported in Table 4c, all classification measures slightly de-

teriorate without the information provided by dynamic features, and SVM (with RBF kernel) is the best

performing algorithm now. To understand the differences between these “static” classifiers and their original

counterparts, we compute in how many cases they are both correct or wrong, equal or not, on the instances

of Dtest. Overall, classifiers are coherent in their predictions, even in the ones they misclassify; SVM appears

as the algorithm that deteriorates the least the original (all features) predictions. About features importance

scores, there is no surprise: all scores are slightly bigger than those in the original case, but in a proportional

way. Additional features on the spectrum of Q enter the top five list, to join the static ones that were already

ranked high.

Binary and Static features setting. We finally experiment in a setting simplified in terms of both labels

and features. We use the binary dataset and discard dynamic features to retrain the classifiers, and obtain

results as in Table 4d. Performance is balanced in the improvement brought by the removal of ties, and the

degradation due to the absence of dynamic features. As was in the previous static setting, SVM performs

better, while features importance and predictions are in line with the other tested cases.

5.3 Complementary optimization measures

Until now, we discussed predictors in terms of traditional classification measures and their changes with

respect to different learning scenarios. We now evaluate classifiers in optimization terms: quantifying their

performance with respect to the solver’s strategy is crucial to determine how effective and valuable our

learned approach is for the resolution of MIQPs. Moreover, we look for measurements able to capture the

optimization phenomena we guess are happening and conditioning the classification, in order to make learning

results meaningful from an optimization standpoint.
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We define few “optimization measures” scoring the classifiers with respect to their computational opti-

mization gains, especially in terms of resolution running times. Specifying different values for the qtolin

parameter, we run each instance i of Dtest in three different modes — CPLEX default strategy (DEF), L and

NL — to collect runtimes tiDEF, tiL and tiNL. Each problem is run on one seed only, again with timelimit of

1h, and we consider the multiclass and all features scenario. Instances that are not solved by all modes are

removed, and we remain with 529 problems in Dtest.

For each classifier clf, we associate a vector of predicted times tclf to the vector of its predicted labels yclf :

for every sample i ∈ Dtest, we look at the prediction yiclf and select the corresponding runtime among tiL or tiNL,

choosing their average if a tie was predicted. Similarly, we build best and worst times vectors tbest and tworst,

selecting, respectively, runtimes corresponding to the correct label of the samples and their opposite. Note

that we do not have a vector of labels for DEF, but its times vector corresponds to the tDEF already collected.

Sum of predicted runtimes. We get a first sense of how much faster a predicted resolution method would be

compared to the default one by summing over tclf and looking at the ratios between times sums of clf and

DEF with respect to best and worst strategies. Formally, we compare

σclf :=
∑

i∈Dtest

ticlf (7)

for clf ∈ {SVM, RF, EXT, GB} with σbest, σworst and σDEF. Results are reported in Table 6a: RF proves as

the closest to the best strategy and the farthest from worst. The CPLEX default strategy DEF could take up

to 4 times more time to run MIQPs in Dtest, compared to a trained classifier that selects the most suitable

approach. Note that the real gain in time could be even bigger than what showed by Table 6a, given that

we stopped the test runs at 3600 seconds and did not let them run indefinitely.

Normalized time score. A more sophisticated measure takes into account the shifted geometric mean of tclf
over Dtest,

sgmclf := |Dtest|

√ ∏
i∈Dtest

(ticlf + 0.01)− 0.01, (8)

which is then normalized between best and worst cases as

Nσclf :=
sgmworst − sgmclf

sgmworst − sgmbest
∈ [0, 1]. (9)

The measure is reported in Table 6a: all predictors are very near 1 (as expected, since this score highly

reflects classification performance), while CPLEX default strategy is almost halfway between best and worst

case scenarios.

Going further, we examine the presence of timelimiting cases in the test runs: conferring meaning to

our question, both mode L and NL do indeed reach the limit without finding a solution (38 and 55 times,

respectively), remarking the fact that one method does not dominate the other one. The presence of timelimits

is well reflected in the optimization scores defined above, which are better for classifiers hitting timelimits

less frequently: RF reaches the limit 3 times only, while DEF 39 times. Note that due to variability even best

hits the timelimit once; worst, though, does it in 92 cases.

We compute σclf and Nσclf in the Binary - Static features setting as well. Results in Table 6b are in

line with the previous ones, and the slight deterioration in classification performance that we observed in

Table 4d is also reflected by the scores.

5.4 Preliminary experiments on the CPLEX test set

We now consider a share of CPLEX internal MIQP testbed: we select problems with size n < 500, extract

features and compute labels. We remove troublesome instances and remain with a dataset Ctest of 175
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Table 6: Complementary optimization measures. The best performing classifiers are boldfaced.

(a) Multiclass - All features

SVM RF EXT GB DEF

σclf/σbest 1.49 1.31 1.43 1.35 5.77
σworst/σclf 7.48 8.49 7.81 8.23 1.93
σDEF/σclf 3.88 4.40 4.04 4.26 -

Nσclf 0.98 0.99 0.98 0.99 0.42

(b) Binary - Static features

SVM RF EXT GB DEF

σclf/σbest 1.80 2.04 2.01 1.82 5.81
σworst/σclf 6.23 5.50 5.59 6.19 1.93
σDEF/σclf 3.22 2.85 2.89 3.20 -

Nσclf 0.98 0.98 0.98 0.98 0.43

instances, which is summarized in Table 7. Note that Ctest is unbalanced with respect to problem types

and with respect to the assigned labels. Surprisingly, the majority class is that of ties, followed by L, and

with very few NL cases. We study the dataset and compare it to D, to understand differences in features

distribution. The difference between the two datasets is plain if we consider the fact that while D is built to

represent a variety of mathematical and optimization parameters, Ctest is dominated by the presence of some

very structured combinatorial MIQPs, like Max-Cut and Quadratic Assignment Problems.

Table 7: Composition of dataset Ctest. For each case we report the total number of instances and their percentage.

L NL T Total %

01 conv 12 1 16 29 0.16
01 nonc 40 4 17 61 0.35
mix conv 10 3 72 85 0.49

Total 62 8 105 175
% 0.35 0.05 0.60

We produce some preliminary experiments using Ctest as a test set for the classifiers trained on Dtrain,

although we are aware of the many differences in the two datasets distributions. Given the number of ties,

we work with Ctest in the original learning setting only (Multiclass - All features). As expected, results are

very bad, resembling those of a random predictor. However, looking at confusion matrices it appears clear

that most often misclassification happens in form of a tie case predicted as a NL one.

Nonetheless, scores of complementary optimization measures reported in Table 8 are not discouraging,

showing that even though DEF is the best strategy to tackle instances in Ctest, trained classifiers are not so

far away. In particular, the normalized time score behaves well despite the bad classification performance:

given that Ctest contains mostly ties, albeit the misclassification rate is high, the loss in terms of solver’s

performance is not so dramatic, because the difference of runtimes between methods L and NL is not big in

those comparable cases.

Table 8: Complementary optimization measures for Ctest. The best performing classifier (other than DEF) is boldfaced.

Ctest - Multiclass - All features

SVM RF EXT GB DEF

σclf/σbest 2.55 2.30 1.72 2.91 1.22
σworst/σclf 2.00 2.22 2.96 1.75 4.19
σDEF/σclf 0.48 0.53 0.71 0.42 -

Nσclf 0.75 0.90 0.91 0.74 0.96

6 Conclusions and ongoing research

We propose a learning framework to investigate the question linearize vs. not linearize for MIQP problems.

Classification results are satisfactory and interpretable in terms of features importance. We generate a dataset

containing a variety of problems for which the question is significant, and we define novel scoring measures
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to evaluate classifiers in terms of solver’s efficiency, in order to capture and interpret the optimization point

of view.

In ongoing and future research, we plan to focus on three main directions.

• Analyze other benchmark datasets: the analysis of public optimization libraries containing MIQPs

(e.g., [13]) is crucial to understand how representative the synthetic D is of commonly used instances.

Together with Ctest, new instances can be used to form a more meaningful and comprehensive final

dataset.

• Identify the best learning scenario: in order to successfully integrate the learning framework with the

solver, we need to identify a proper learning setting. We already considered the simplified Binary -

Static features one; it could be interesting to perform static features selection based on their correlation

with dynamic ones.

• Define a custom loss function: the complementary optimization measures that we propose showed

effective in capturing the optimization performance as well as the classification one. We plan to use

these and other intuitions to craft a custom loss (or a scoring) function to train (validate) the learning

algorithm, this time in a way tailored to the solver’s performance on MIQPs.
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