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Abstract: Over the past several years, there has been substantial progress in developing new stochastic
mine planning optimization models and computationally efficient solvers that are capable of managing risk
throughout the entire mineral value chain. Recent models have focused on modelling the economic value of the
products sold to customers, rather than attempting to evaluate the economic value of the individual mining
blocks. This modelling shift permits the integration of many aspects that could not be previously considered,
such as the ability to incorporate non-linear geometallurgical interactions in the processing streams. These
advanced models have consistently shown the ability to generate a higher net present value than traditional
deterministic optimization methods, which is a direct result of risk management. Despite these developments
and consistent value-added results, existing commercial mine planning optimization tools have been reluctant
to incorporate these new concepts in their platforms.

This paper provides an overview of the ongoing development of COSMO Suite, a platform designed to
aid in the dissemination of new stochastic mine planning optimization algorithms, techniques and models to
the mining industry. COSMO Suite provides a graphical user interface to create advanced multi-mine and
multi-process models for mineral value chains, create tailored optimization models and perform risk analyses
on existing mine designs. This software is driven by COSMO Suite Library, a C++ application program-
ming interface that compartmentalizes the process of modelling the mineral value chain, the optimization
objectives and constraints, and the solvers, which allows for the rapid development, testing, benchmarking
and deployment of new stochastic optimization models and algorithms. As a result, users can benefit from
the accelerated knowledge transfer from an academic setting to industrial use.

Keywords: Open pit production scheduling, stochastic optimization, software, development library



 

 

Existing commercial long-term mine planning packages generally employ a combination of heuristic and exact 

optimization techniques to solve real-world deterministic mine design and production scheduling optimization models 

that have been in existence for several decades (Lerchs and Grossmann, 1965; Johnson, 1968; Picard, 1976; Dagdelen, 

1985; Tolwinski and Underwood, 1996; Caccetta and Hill, 2003). As the performance of desktop computers has 

exponentially increased, these tools have gradually been adopted by the mining industry to quickly analyze solutions 

and unlock hidden value in a mining operation. Despite these computational advancements, most commercial tools 

have remained relatively stagnant in their ability to implement modern concepts and solving techniques. As a result, 

some groups have developed their own proprietary, in-house tools (Hoerger et al., 1999; Stone et al., 2007; Menabde 

et al., 2007), however, continued development of these tools is subjected to the cyclic nature of the mining industry 

and the inertia of long-used workflows. 

 

Traditional mine planning tools consider a single model as input to the optimization process, thus do not consider 

the inherent uncertainty in the supply of materials (i.e., geological uncertainty), the technical performance (recoveries, 

throughput rates), and the demand for the final products (metal prices). As a result, traditional optimizers create a 

design that can be severely misleading when the performance of the design is tested with a set of simulations that better 

describe the uncertainty in the value chain (Ravenscroft, 1992; Dimitrakopoulos et al., 2002; Godoy and 

Dimitrakopoulos, 2004; Dimitrakopoulos et al., 2005). This issue is exacerbated by the fact that traditional 

geostatistical estimation techniques tend to smooth out the low- and high-grade materials and do not reproduce the 

spatial characteristics of the deposit. To overcome these severe limitations, stochastic optimization models have been 

developed to integrate geological uncertainty into the mine design and production scheduling process, with a particular 

emphasis on scheduling for open pit mines (Godoy, 2003; Ramazan and Dimitrakopoulos, 2004; Ramazan and 

Dimitrakopoulos, 2013). Using a set of conditional grade simulations (Journel, 1974; David, 1988; Goovaerts, 1997) 

as a group to describe the volumetric and grade uncertainty for a given deposit, these optimizers aim to generate a mine 

design that not only attempts to maximize the net present value (NPV) of the schedule, but also explicitly manages the 

risk of not meeting ore or metal production targets. As a result, these optimizers provide a higher level of confidence 

that production, hence financial, forecasts will be attained, particularly in the early years of production where there is 

a large emphasis on recouping capital investments, during which information about the deposit is limited. Despite 

consistently demonstrating that it is possible to create mine designs with higher NPV and also have substantially less 

risk (Godoy, 2003; Jewbali, 2006; Albor and Dimitrakopoulos, 2010; Benndorf and Dimitrakopoulos, 2013; Leite and 

Dimitrakopoulos, 2014), these developments have not yet been adopted by commercial mine design packages. 

Recently, Minemax (Butler, 2015) provides the ability to perform risk analysis to test the sensitivity of their 

deterministic designs using a set of simulated orebody models. This is a critical step on the road to making stochastic 

mine planning a standard industry practice, however, is still a long way from implementing the aforementioned 

developments. 

 

More recently, stochastic optimizers have been expanded to deal with the global optimization of mining complexes 

(Whittle, 2007; Whittle, 2009). The global optimization of mining complexes aims to simultaneously optimize multi-

mine extraction sequences, which define the distribution of materials over time, the destination policies, which define 

where extracted materials are sent, and the use of the various processing streams for processing, distribution and 

product marketing. This is generally considered to be an extremely difficult optimization problem to solve, particularly 

in conjunction with the scale of open pit production scheduling problems. This difficulty largely due to non-linearities 

in the optimization model, such as stockpiles (Bley et al., 2012; Moreno et al., 2015), grade-recovery curves and the 

complex multi-commodity flow through the various multi-tier processing streams. Stochastic global optimization for 

mining complexes attempts to maximize the NPV of the entire mineral value chain, while simultaneously minimizing 

the impacts of risk in the quantities and qualities of all products generated, from the mines through to the final customer. 

Goodfellow (2014) proposes a new form of multi-element destination policy to be used in lieu of traditional cut-off 

grades; this new destination policy is more appropriate for mining operations with multiple elements or strict product 

quality requirements. Moreover, the author develops a unified modelling approach for mining complexes, and 

considers advanced concepts, such as simultaneously optimizing capital expenditures under uncertainty, which may 

be used to decide on mine production rates and processing expansion decisions. Montiel (2014) investigates the use of 

operating and transportation alternatives to model the flexibility for processing streams to dynamically tune throughput 

rates, recoveries and alternative routings to minimize risk in the value chain. Additionally, this the author considers 

simultaneous open pit and underground mine production scheduling.  



 

 

The development of these stochastic global optimization models has been made possible through the development 

of computationally efficient optimizers, such as metaheuristics. While these algorithms do not guarantee mathematical 

optimality, they are capable of solving large-scale, real-world and non-linear optimization mine planning models 

(Godoy, 2003; Albor and Dimitrakopoulos, 2009; de Freitas Silva et al., 2014; Goodfellow and Dimitrakopoulos, 2015; 

Montiel and Dimitrakopoulos, 2015) in a reasonable amount of time, and are often near-optimal (Lamghari et al., 2012; 

Senecal and Dimitrakopoulos, 2014; Lamghari et al., 2015). Lamghari and Dimitrakopoulos (in this volume) propose 

a hyper-heuristic optimization algorithm that is capable of dynamically tuning itself in order to efficiently solve a wide 

variety of mine production scheduling problems. This approach is extremely interesting for the future of mine planning 

optimization because all previous developments in mine planning optimization over the past several decades, both 

deterministic and stochastic, can be viewed as smaller heuristics to solve the global stochastic optimization problem. 

As a result, future research can focus on the rapid development of these heuristics in the context of an overarching 

solver that automatically learns when to apply the heuristic to maximize its effectiveness. 

 

At the request of COSMO’s mining consortium, a new, modern stochastic mine planning platform has been 

developed to help the industry to move towards a stochastic mine planning framework and to disseminate the rapid 

advances in optimization models and solution techniques. This platform provides access to modern mine planning 

tools for industrial purposes, and may also be used by developers to create their own optimization algorithms that can 

easily and consistently be benchmarked against existing methods. The purpose of this paper is to acquaint readers with 

the basic functionality of the software. First, an overview of COSMO Suite’s graphical user interface (GUI) and some 

of its features is provided. Following this, the backend C++ development library is briefly discussed, followed by 

conclusions. 

 

This section provides an overview of the features of the COSMO Suite GUI. Figure 1 shows the home screen for the 

software. After authenticating the encrypted login credentials, a user may use this window to create, open, duplicate 

or save a project, and also quickly access COMSO’s website. Once a project has been created or opened, it is possible 

to use the menu bar at the top to access all of the modelling, optimization, analysis and visualization features provided 

by the software, which are discussed in the subsequent sections. All of the relevant project parameters, including the 

model of the flow of materials through the mineral value chain, the optimization constraints and objectives, solver 

parameters and risk analysis formatting are stored in a standard, non-proprietary XML file format. While the C++ 

backend that powers the optimization algorithms has been developed specifically to read this format to create the 

relevant data structures (objects), existing software (Lamghari et al., 2012; Senecal and Dimitrakopoulos, 2014) can 

interact with COSMO Suite by modifying the code that reads the parameter files. As a result, it is not necessary to 

completely rewrite existing software to benefit from COSMO Suite’s modelling interface.  

 

Prior to creating the model of the mineral value chain, it is first necessary to specify all of the relevant data sets (groups 

of files) that will be used in the optimization model. Users can input a wide variety of data into the models, such as 

orebody simulations, grade-recovery curves, metal price simulations, among others. Figure 2 shows an example of a 

window with data sets loaded. In this case, the model contains a set of 10 orebody simulations, where each file contains 

a list of blocks, which are defined by their spatial coordinates, material code, mass, copper and gold mass and zone 

codes. In its current form, the software is able to read data sets formatted as tables (space- or tab-delimited), GSLIB 

format and Whittle’s PIL format. Over time, a wide variety of filters will be implemented to be able to read and 

automatically process other file formats.  

 

After the data sets have been loaded, it is then possible to create a model of the various locations in the mineral value 

chain to be considered (e.g., mines, stockpiles, mills, autoclaves, ports and customers). Each location stores a set of 

products (e.g., blocks, stockpile material, concentrate, metal sold to customers) that may be forwarded on to another 

location for further treatment. Value chain locations are classified into two groups: sources (mines) and destinations. 

The primary distinction between these two classes is that sources are, in the present implementation, unable to receive 



 

materials from other locations in the value chain (i.e., aspects such as in-pit dumping are not currently considered). 

Typically, blocks serve as the smallest mining unit for open pit mine production scheduling decisions. Future research 

will investigate the use of irregular grids or a combination with regular grids, which can be used for other advanced 

cases, such as underground stope or bench sequencing. Each product is associated with a set of attributes, which are 

quantities of interest to describe the product (e.g., metal grade and tonnage) or are of use to the optimization model 

(e.g., revenues, costs and total trucking hours to get the mined material). 

 

Each location can be customized with its own name, image and years of active operation, and is assumed to produce 

a set of products that may be forwarded on to other value chain locations. After defining the materials at the various 

locations, the flow of materials inside and between the locations is defined by graphically linking them together in the 

value chain model window. Material will not flow between locations unless this link is defined. Figure 3 shows an 

example of a single copper-gold mining complex, where the mine produces a set of six materials. In this example, the 

sulphides can be sent to a stockpile or the mill directly, however, they cannot be sent to the oxide heap leach because 

they have not been connected. It is often beneficial to create separate “input” materials at a location to model the 

geometallurgical or cost attributes independently. For example, in Figure 3, the mine and stockpile materials received 

by the sulphide mill have been separated in order to provide accurate accounting for reclamation costs for the processed 

stockpiled material in each year. 

 

Attributes are pieces of information of interest that quantify the characteristics of the materials (e.g., tonnage, metal 

content) or are of general interest to the optimization model (e.g., mining costs, total quantities mined, recoveries, 

throughput rates and energy consumption). There are four main types of attributes that can be defined:  

 

i) Data set attributes, which relate to information stored in a file (e.g., block grades). 

ii) User-defined expressions, which may include pre-defined parameters and be used to create customized 

non-linear functions of other attributes. 

iii) Attributes from look-up tables, where an output value (e.g., recovery) is derived from a relational table 

given another input attribute (e.g., grade). 

iv) Optimization attributes, where the optimizer decides the values dynamically (e.g., capital expenditures to 

decide how many trucks to purchase).  

 

Figure 4 shows an example of an expression attribute (sulphide mill profits), which is defined as a function of the 

total gold and copper masses, their respective recoveries derived from grade-recovery curves, and simulated metal 

prices; all input attributes to the expression are referenced directly by their name provided by the modeller. The 

software automatically suggests the names of other relevant attributes as the user types, which substantially expedites 

the process of defining expressions and helps to reduce errors in the model. Finally, it is noted that the GUI serves as 

an important tool for understanding how modern stochastic global optimization models defer substantially from 

existing approaches for open pit planning: by modelling the flow of materials and the non-linear transformations of 

attributes in the processing streams, it can be visually seen that the software focuses on modelling the economic value 

of the products sold at the end of the value chain, rather than the individual blocks located at the mines (sources). 
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Figure 4: Attributes can be fully customized by creating them from user-defined expressions. The interface will automatically make 
suggestions based on what the user is typing. 

 

Conventional mine planning optimization tools typically provide the default objective of maximizing NPV, subject to 

mining, stockpiling, processing and metal production constraints. There is often a need for more advanced objectives 

and constraints that cannot be easily modelled using software, particularly for constraints on secondary elements, which 

can have a drastic effect on the performance of the optimization algorithm used and to the quality of the “optimized” 

solution. COSMO Suite provides a substantial amount of flexibility in creating a customized optimization model, 

including the objectives and constraints, in order to create a solution that satisfies the unique characteristics of the 

value chain being optimized. 

 

After the model of the mineral value chain is complete, it is possible to impose constraints on any attribute in the 

value chain model. A constraint can be defined as being a less-than-or-equal-to, greater-than-or-equal-to or an equality 

constraint, where the bound may be a time-dependent (or simulated) value that is manually entered (e.g., specifying a 

maximum silica-to-magnesia ratio of 1.8), or the bound may be defined by the value of another attribute (e.g., the 

maximum number of trucking hours for a mine, which is a function of the number of trucks that the optimizer has 

decided to purchase). Additionally, it is possible to impose constraints on the amount of annual change for attribute 

values, which may, for example, be used to ensure mining capacities do not fluctuate wildly between periods. It is 

noted that, depending on the optimization technique, these constraints are not necessarily considered as hard constraints 

that can never be violated. In line with existing two-stage stochastic integer programming (SIP) models for mine 

planning with uncertainty (Birge and Louveaux, 1997; Ramazan and Dimitrakopoulos, 2013), constraints on value 

chain model attributes are often considered to be soft constraints, whereby any constraint violation in any scenario will 

be calculated and included as a penalty in the objective function. Optimization models can also incorporate different 

types of scheduling constraints, such as slope angles for open pit mines, which are treated as hard constraints               

(i.e., never violated), in addition to maximum sink rate and smoothness constraints, which are treated as soft constraints 

by penalizing schedules that go excessively deep or do not provide a practical mining shape. Alternatively, future 

versions will provide the ability to incorporate constraints defined in an input file, which will permit the ability to 

model advanced start, finish and relational constraints that are useful for modelling underground production scheduling 

problems. 

 

After the constraints have been defined, it is then possible to model the objective function (Figure 5). Any attribute 

in the value chain model can be directly integrated in the objective function. Typical mine production scheduling 

models aim to maximize the NPV of the schedule, thus some attributes of interest are mining costs, stockpile 

reclamation costs, capital expenditures, processing costs and profits from the sale of the final products. Penalties for 

deviations for any of the value chain and scheduling constraints can also be included in the objective function. The 

impact of these penalties can be controlled through a penalty cost and a risk discount rate. Penalty costs allow the 

modeller to define the desired level of control on the risk profiles to ensure the various constraints are satisfied with 

minimal risk. The risk discount rate is used a tool to ensure that there is a high probability that constraints (e.g., ore 

production targets) are respected at the beginning of the mine life, and riskier material is deferred to later periods in 

the life of mine when more information is available (Benndorf and Dimitrakopoulos, 2013; Ramazan and 

Dimitrakopoulos 2013; Leite and Dimitrakopoulos, 2014). 

 

As existing algorithms are adapted and new algorithms are developed using COSMO Suite Library’s C++ 

application programming interface (API), they can be integrated via the optimization window as additional plug-ins, 

which will allow for a seamless experience, from modelling through risk analysis. A user can select the optimizer they 

wish to use, and calibrate any of the relevant parameters in the plug-in window. An example of this interface is shown 



 

in Figure 6 for the simulated annealing algorithm that comes packaged with COSMO Suite by default. The progress of 

the optimizer can easily be viewed, paused or stopped from this window.  

 

After running the optimization, all results are stored in the project’s working directory, and a risk profile for any 

attribute can be easily visualized (Figure 7) and saved to insert into documents. Many aspects, such as the graph and 

axes titles, font sizes and line styles can be modified, and the settings can be used as a template and applied to other 

risk profiles. Moreover, it is possible to plot the P-10/50/90 values to provide summary statistics, relevant constraints, 

and cumulative profiles to analyze the accumulating impact on risk on key attributes such as the discounted cash flows. 

By integrating this risk profile tool directly in the interface, it allows the user to rapidly analyze the quality of the 

solutions provided by the optimizer and calibrate the critical SIP parameters (penalty costs, risk discount rates) to 

achieve desirable risk profiles and project value.  

 

Finally, COSMO Suite provides an integrated 3-D visualizer (Figure 8) that can be used to view any attribute stored 

on a regular grid, such as grades, tonnages and the optimized production schedule. Data can be filtered based on the 

values of any collocated attribute, which may be used, for example, to only visualize mined blocks in the first year. 

The visualizer also features a simple cross-section tool that allows for mixed cross-sectional and 3-D views (Figure 8). 

 

The backend of COSMO Suite is based on a customized C++ library that has been designed for cross-platform 

portability and efficiency. Similar to the GUI, COSMO Suite Library compartmentalizes the models of the mineral 

value chain, optimization formulation and solvers. All aspects have been designed to be modular and provide flexibility 

for future research through the use of object factory design patterns, which can be used to automatically create new 

types of derived classes from base objects with minimal coding effort. For example, a developer can create new types 

of value chain locations, attributes, decision variable neighbourhoods, solution perturbations and algorithmic 

optimizers – all of which can be automatically registered and integrated into existing algorithms developed on the 

COSMO Suite Library platform. Using this approach, the developer only needs to focus on implementing the new 

features, without being concerned about the interactions between the various objects that occur in the rest of the model. 

Observer design patterns are also used to allow objects to subscribe to events (notifications) raised by other objects 

and adapt appropriately. This provides a powerful mechanism for the model to communicate when changes are made, 

and respond to these changes autonomously, such as when a change in a production schedule would alert all other 

downstream decisions that they need to be updated. This decoupled approach allows objects to be interchangeable, 

thus new ideas (e.g., a game theory-based destination policies, see del Castillo and Dimitrakopoulos, in this volume) 

can be tested and benchmarked against existing concepts (e.g., cut-off grade policies) without having to go through 

the process of identifying and rewriting tightly coupled code (e.g., block extraction sequence changes that force updates 

to destination decisions). Looking ahead, COSMO Suite Library will become a core aspect for developing new, smart 

optimizers that are capable of dynamically self-tuning their parameters and solution strategies (Lamghari and 

Dimitrakopoulos, in this volume) according to the structure of the mineral value chain and optimization formulation.  
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For over a decade, stochastic optimization models and computationally efficient solvers have been developed for mine 

design and production scheduling with uncertainty. Despite growing interest and demand, these technologies have not 

yet been widely adopted and tested in an industrial setting because of the lack of commercial tools. Given the rapid 

developments in the field of stochastic global optimization, which aims to optimize a mineral value chain, from the 

pits through to the customer, there is an increasing need to rapidly disseminate these concepts and technologies for 

practical use. This paper provides a general overview of COSMO Suite, a new tool that provides a means for these 

recent developments to be widely used. This software aims to simplify the process of creating complex models of 

mineral value chains and optimization formulations, calibrating parameters, analyzing risk profiles and visualizing the 

results. The backend C++ development library provides a substantial amount of flexibility, which is a core strategy for 

continued development and support. This software is free for industrial sponsors, and will be available for testing in 

an industrial setting in the very near future. 
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