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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
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Université du Québec à Montréal, as well as the Fonds de recherche du
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

http://dx.doi.org/10.1016/j.dam.2016.09.040




The RW index: A new
distance measure based on
random walks

Eglantine Camby a , b

Gilles Caporossi b

Marcia H. M. Paiva c

Marcelo E. V. Segatto c
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Abstract: Considering a graph as a network of resistances, Klein and Randić [3] proposed the definition of
a distance measure. Indeed, if each edge of the graph represents a resistance of 1Ω, the equivalent resistance
of the graph between each pair of vertices may be used as a distance. Based upon random walks in graphs,
Stephenson and Zelen [4] built a computational model to find the probability that each edge is used. From
a mathematical point of view, both articles are based upon exactly the same model and the link between
random walks and the electrical representation was established by Newman [5] when defining an alternative
to Freeman’s betweenness centrality [9, 10] based upon random walks.

In the present paper, the similitude between these two processes is exploited to propose a new random
walks based distance measure that may be defined as the expected length of a walk between any pair of
vertices. From this new definition, the RW Index is proposed that sums the expected walks lengths between
pairs of vertices exactly in the same way as the Wiener index sums the shortest paths distances or the
Kirchhoff index sums the equivalent resistances. In the same way as the Wiener index [6], vertex and edge
decompositions of the RW and Kirchhoff indices are proposed. Interestingly, we show that even if the random
walks and the resistance distances are based upon a similar mathematical model, they are not equivalent.
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Introduction

Let G = (V,E) be a graph without loops or multiple edges on n = |V | vertices and m = |E| edges. All basic

definitions can be found in [1]. A graph G is said connected if there exists a sequence of edges joining any pair

of vertices, i.e. there exists a geodesic path between any pair of vertices. Connected graphs with minimum

number of edges are called trees. Then, a tree on n vertices has n− 1 edges. We consider in this paper only

connected graphs.

The Wiener index [2], likely the oldest and most popular topological index, was originally defined for

trees as: ∑
(s,t)∈E

ns × nt, (1)

where ns is the number of vertices of the connected component containing s if the edge (s, t) was removed, and

similarly for nt. In trees, the Wiener index corresponds to the sum of distances between pairs of vertices in G:

W (G) =
1

2

∑
s∈V

∑
t∈V

dst =
∑

s<t∈V
dst, (2)

where dst denotes the distance between s and t, i.e. the number of edges in a geodesic path joining s and t.

The definition given in (2) easily extends to general graphs and is commonly used as the definition of the

Wiener index.

The concept of distance is a key feature in the design of molecular descriptors. However, the distance

based upon the geodesic paths has only integer values and inevitably has the same value for a large number

of pairs of vertices. To overcome this weakness, Klein and Randić [3] proposed an alternative way to define

the distance between pairs of vertices. Considering the graph as a network of resistors and each edge being

associated to a resistor of 1Ω, they proposed to consider the equivalent resistance rst between s and t as

the definition of the distance between s and t. Then, analogously to the Wiener index, the sum of the

equivalent resistances among all pairs of vertices corresponds to the Kirchhoff index. In practice, these

equivalent resistances can be computed from the flow conservation used for electric circuits. The latter could

be described as a set of equations characterized by the Laplacian matrix L = D −A where D is a diagonal

matrix of degrees whereas A is the adjacency matrix.

Studying random walks in social networks, Stephenson and Zelen [4] also used a matrix that turns out

to be related to the Laplacian matrix. The analogy between random walks and electric circuits was later

demonstrated formally by Newman [5]. Indeed, considering a unit flow of 1 ampere (1A) between two vertices

s and t, the intensity on a given edge e of the network corresponds to the probability that e is used by a

random walk from s to t.

In this paper, we introduce a new index based on Random Walks, called RW index. Instead of only

considering the shortest paths between pairs of vertices as the Wiener index does, we consider the expected

length of a path based upon the so-defined probabilities in random walks.

In Section 1, we present required background on random walks. In Section 2, we define the expected

distance and the RW index while we compare the latter to the Kirchhoff and the Wiener indices in Section 3.

In Section 4, we propound a decomposition of the RW index based upon edge or vertex centrality measures

and the relation with a similar decomposition of the Wiener [6] and Kirchhoff indices. The values of the RW

index for some families of graphs, conjectures on their bounds and partial results are presented in Section 5

while Section 6 concludes.

1 Background

As explained in the Introduction, the Wiener index of a graph G is usually defined by the sum of distances

between pairs of vertices:

W (G) =
1

2

∑
s∈V

∑
t∈V

dst =
∑

s<t∈V
dst (3)
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This index gives an indication on how pairs of vertices are close. Another similar index is the Kirchhoff index.

Before defining this index, we give some basic tools.

The mathematical aspects involved in the present paper are related to the use of a graph as representation

of an electrical circuit. Suppose a graph G that represents a network of resistors, each edge corresponding

to a unit resistor. If an electrical flow of 1A is sent through the network from vertex s to vertex t, this

flow will be distributed among the circuit in a way that respects both the flow conservation equations and

the electrical properties of the resistors. Indeed, according to the flow conservation rule, the sum of flows

from s is 1 as well as the sum of flows to t and the net flow, i.e. the difference between inflow and outflow,

associated to each other vertex is always 0. These rules are described by the following equations, where iuvst
is the intensity of the flow from u to v when s is the source and t is the sink:∑

(s,k)∈E

iskst = 1 (4)

∑
(t,k)∈E

itkst = −1 (5)

∑
(q,k)∈E

ijkst = 0 ∀q ∈ {1 . . . n} \ {s, t} (6)

The physical representation of the resistor is such that if an intensity iuvst flows through the edge (u, v) from

u to v, the potentials d
(u)
st and d

(v)
st in these vertices will respect the following general equation:

Potential Difference = Resistance × Intensity. (7)

In our case, with the appropriated notation, it means that

d
(u)
st − d

(v)
st = iuvst , (8)

since the edge (u, v) has a resistance of 1Ω. A consequence is that

− 1 6 d
(u)
st − d

(v)
st 6 1 ∀(u, v) ∈ E. (9)

The potential d
(u)
st associated to each vertex u could be computed by the resolution of the system of Equations

(4)–(6) and (8). Actually, this system of equations are represented by a matrix equation, where appears the

Laplacian matrix L:

LV = S, (10)

where V = {d(v)st } is the vector of potentials and S is the net flow vector. Accordingly, S has 0 entries at each

position except s and t where they are 1 and −1 respectively. The problem of computing the flow on each

edge consists in finding the potential vector V in (10). From a technical point of view, since only differences

between potentials are considered, adding a constant to each potential will not affect the realizability of the

system, which has actually an infinity of solutions. Indeed, 0 is always an eigenvalue of L and an associated

eigenvector is the vector V1 whose all of its components are 1. Accordingly, the matrix L is not invertible. A

way to handle this problem and to find a solution in (10) is to consider a similar system by adding 1 to each

entry of L, as used by Klein and Randić [3]. Other methods can be used [7, 5] to solve (10). The obtained

system will then have a unique solution that will also be a solution to the original problem, since the sum of

the lines of matrices L and S are both equal to 0.

From a physical point of view, the equivalent resistance rst between s and t is obtained by (7):

d
(s)
st − d

(t)
st = rst × ist = rst (11)

since the global intensity ist from s to t is 1A.

Now, since we have all tools, we can define the Kirchhoff index [3]: it is the sum of equivalent resistances

among all pairs of vertices in a graph G, i.e.

Kf(G) =
1

2

∑
s∈V

∑
t∈V

rst =
∑

s<t∈V
rst. (12)
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Notice that the equivalent resistance may also be computed using the power dissipation law, which is

described by the following general equation:

Dissipated Power = Potential Difference × Intensity. (13)

The dissipated power Puv
st on an edge (u, v) between s and t is rewritten:

Puv
st = (d

(u)
st − d

(v)
st )× iuvst

by (8)
= (d

(u)
st − d

(v)
st )2. (14)

Since the global dissipated power Pst between s and t is the sum of dissipated powers on each edge, this

global dissipated power is then

Pst =
∑

(u,v)∈E

(d
(u)
st − d

(v)
st )2. (15)

From a high point of view, the latter is also, by (13),

Pst = (d
(s)
st − d

(t)
st )× ist

ist=1
= d

(s)
st − d

(t)
st

by (11)
= rst, (16)

thus the equivalent resistance rst between s and t is defined by d
(s)
st − d

(t)
st , as well as∑

(u,v)∈E

(d
(u)
st − d

(v)
st )2.

2 The expected distance and the RW index

Based upon the same model as the electric one, when viewing the network from the random walks point of

view, we define the expected length d̃st of the walk from s to t as the sum of the weighted lengths of paths

from s to t. Observe that the weight of a path is its probability, i.e. the absolute value of its intensity.

Moreover, the expected length d̃st can be decomposed by the edges, i.e.

d̃st =
∑

(u,v)∈E

|d(u)st − d
(v)
st |. (17)

As expected, the expected distance is actually a distance, as established in the following theorem.

Theorem 1 Let G = (V,E) be a graph. The expected distance is a distance on V .

Proof. By definition in (17), the expected distance is well-defined. Reversing the source and the sink in a

flow is imposed to take opposite potentials. Since the expected distance is defined by means of the absolute

value of difference of potentials, it is symmetric. Separating distance is ensured because the only case where

all potentials are equal is when the source are the sink.

The last property to check is the triangle inequality. Let s, r, t be three vertices in G. We need to prove

that d̃st 6 d̃sr + d̃rt. By the electric property, we know that if f1, respectively f2, is a flow through the

network G from s to r with potentials d
(.)
sr on V , respectively from r to t with potentials d

(.)
rt , then f = f1 +f2

is a flow from s to t with potentials

d
(.)
st = d(.)sr + d

(.)
rt . (18)

Accordingly, we have

d̃st =
∑

(u,v)∈E

|d(u)st − d
(v)
st |

(18)
=

∑
(u,v)∈E

|(d(u)sr + d
(u)
rt )− (d(v)sr + d

(v)
rt )|

=
∑

(u,v)∈E

|(d(u)sr − d(v)sr ) + (d
(u)
rt − d

(v)
rt )|
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6
∑

(u,v)∈E

|d(u)sr − d(v)sr |+
∑

(u,v)∈E

|d(u)rt − d
(v)
rt |

= d̃sr + d̃rt.

Similarly to the Wiener and the Kirchhoff indices, we define the RW index of a graph G as:

RW (G) =
1

2

∑
s∈V

∑
t∈V

d̃st =
∑

s<t∈V
d̃st. (19)

3 Comparison of the Wiener, Kirchhoff, and RW indices

The following theorem establishes a comparison of the Wiener, Kirchhoff, and RW indices for all graphs. In

addition, it yields that these three indices are the same only in the class of trees.

Theorem 2 Let G = (V,E) be a graph, then we have:

Kf(G) 6 W (G) 6 RW (G). (20)

Moreover, the following statements are equivalent:

(i) Kf(G) = W (G),

(ii) W (G) = RW (G),

(iii) Kf(G) = RW (G),

(iv) G is a tree.

Proof. To be self-contained, we proof the first inequality. Let s and t be two vertices of G. From an electric

point of view, the equivalent resistance rst is always the length dst of a shortest path from s to t when there

is only one path between s and t, otherwise the equivalent resistance is strictly smaller than this value dst.

Then, rst 6 dst for every pair of vertices s, t ∈ V . Accordingly, Kf(G) 6 W (G).

Now, we show the second inequality. Since the expected length d̃st is by definition a convex combination

of lengths of paths between s and t, d̃st is always greater than the smallest length of these paths, i.e. d̃st > dst.

Therefore, W (G) 6 RW (G).

We focus on the equivalences. First, we assume that G is a tree. By definition, there exists only one path

between every pair of vertices. Thus, rst = dst = d̃st for every pair of vertices s and t. Accordingly,

Kf(G) = W (G) = RW (G).

The last case is when G contains a cycle. Let C be an arbitrary cycle in G with the ordered vertices v1, . . . , vk.

According to the Kirchhoff’s circuit laws, assuming that vk+1 = v1,

k∑
i=1

ivivi+1
v1v2 = 0,

i.e.

iv1v2v1v2 =

k∑
i=2

ivivi+1
v1v2 .

Moreover, iv1v2v1v2
6= 0 since the edge (v1, v2) is the shortest path between v1 and v2. Accordingly,∑k

i=2 i
vivi+1
v1v2 6= 0, i.e. there exists an edge (u, v) such that iuvv1v2 6= 0. It is necessary that this edge is

from a path from v1 to v2 with non-zero probability. Notice that the length of this path must be greater

than dv1v2 = 1. Thus, there are 2 paths from v1 to v2 with a non-zero probability and with different length,

so dv1v2 < d̃v1v2 , which implies that W (G) < RW (G), since dst 6 d̃st ∀s, t ∈ V . Moreover, by the same

argument, we have that rv1v2 < dv1v2 . Because for every pair of vertices s, t ∈ V , rst 6 dst, we conclude that

Kf(G) < W (G) and then Kf(G) < RW (G).
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4 Vertex and edge decompositions of Wiener, Kirchhoff, and RW in-
dices

4.1 Decompositions of the Wiener index

The computation of the Wiener index may be achieved through two distinct, but related, concepts, that are

the transmission and the edge betweenness [8, 9]. On the one hand, the transmission Tv of the vertex v is

defined as:

Tv =
∑
u∈V

duv. (21)

The vertex decomposition of the Wiener index is naturally:

W (G) =
1

2

∑
v∈V

Tv. (22)

On the other hand, if buv denotes the edge betweenness associated to the edge (u, v), then Caporossi et al. [6]

proved the edge decomposition of the Wiener index, i.e.

W (G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

buv =
∑

(u,v)∈E:u<v

buv. (23)

4.2 Decompositions of the Kirchhoff index

Similarly to the decompositions of the Wiener index through transmission and edge betweenness, one can also

decompose the Kirchhoff index through the related concepts of equivalent resistance and power dissipation.

As stated by Klein and Randić [3], the equivalent resistance between any pair of vertices may be considered

as a distance measure. It is then possible to compute the resistance transmission RTv of a vertex v as follows:

RTv =
∑
u∈V

ruv. (24)

The Kirchhoff index then writes by the following vertex decomposition:

Kf(G) =
1

2

∑
v∈V

RTv (25)

If Puv the power dissipation associated to each edge (u, v), independently of the source and the sink, is

defined by:

Puv =
∑
s,t∈V

(
d
(u)
st − d

(v)
st

)2
, (26)

then the edge decomposition of the Kirchhoff index of a graph G is:

Kf(G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

Puv =
∑

(u,v)∈E:u<v

Puv. (27)

4.3 Decompositions of the RW index

In the same way as the Wiener and the Kirchhoff indices, the RW index can be decomposed according to

vertices and edges. As the transmission is defined by the use of shortest paths, the random walks transmission

RWTv of a vertex v is defined as:

RWTv =
∑
u∈V

d̃uv. (28)

The vertex decomposition of the RW index of a graph G is then

RW (G) =
∑
v∈V

RWTv. (29)
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Moreover, the edge decomposition of the Wiener and the Kirchhoff indices can be also extended to the

RW index. Indeed, while the edge betweenness represents the number of shortest paths through pairs of

vertices that uses a given edge, the random edge betweenness rbuv of the edge (u, v) represents the sum of

the probabilities that the edge (u, v) is used over all pairs of vertices as follows:

rbuv =
∑
s,t∈V

|d(u)st − d
(v)
st |. (30)

Accordingly, the RW index of a graph G has the following edge decomposition:

RW (G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

rbuv =
∑

(u,v)∈E:u<v

rbuv. (31)

4.4 Further remarks

As the adjusted1 vertex betweenness [6], a vertex related value, was defined by

b′v =
∑

u:(u,v)∈E

buv, (32)

we can define, in the same way, the vertex power dissipation pv and the vertex random betweenness rbv of a

vertex v by the following equations:

pv =
∑

u:(u,v)∈E

puv, (33)

rbv =
∑

u:(u,v)∈E

rbuv. (34)

5 Bounds and values of the RW index

5.1 Value of RW index for some families of graphs

In this section, we study the RW index for some families of graphs: paths, cycles, complete graphs and stars.

Theorem 3 We denote by

• Cn a cycle on n vertices,

• Pn a path on n vertices,

• Sn a star on n vertices,

• Kn a complete graphs on n vertices.

Then, the following results yield:

(i) RW (Cn) = RW (Pn) = n
6 (n2 − 1),

(ii) RW (Sn) = RW (Kn) = (n− 1)2.

Proof. As mentionned in Theorem 2, in the class of trees, the three indices match. Moreover, Entringer,

Jackson and Snyder [11] proved that W (Pn) = n
6 (n2 − 1) and W (Sn) = (n − 1)2, proving two of the

four equalities.

We consider the cycle Cn on n vertices. Since every vertex has the same role in the graph, we can fix one

of them, say s, as a source. Let k be the distance between the source and the sink. By the property of the

1We are interested by the adjusted vertex betweenness, a centrality measure computing, for a given vertex u, the number of
pairs of vertices such that u belongs to the shortest path between this pair of vertices. This definition allows that u can be an
extremity of the shortest path, at the opposite of the vertex betweeness defined by Freeman [9, 10].
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cycle, there are only two paths between s and t: one of length k and another one of length n − k. So, the

potential difference all along each path is constant and inversely proportional to its length, i.e. the shortest

path has a probability of n−k
n and the longest one k

n . Accordingly,

RW (Cn) =
1

2

∑
s∈V

∑
t∈V

d̃st

=
n

2

n−1∑
k=1

(
k
n− k

n
+ (n− k)

k

n

)

=
n

2

n−1∑
k=1

2

n
(k(n− k))

=

n−1∑
k=1

(k(n− k))

=
n

6
(n2 − 1).

The last case is the complete graph Kn. We fix arbitrarily a vertex s as a source and another vertex t as a

sink, since every pair of vertices has the same feature. Paths of length strictly greater than 2 receive 0 as

probability because theses paths contain at least two successive vertices, distinct from the source and the

sink, and because these two vertices have an identical role, and so the same potential. Thus, paths with

non-zero probability have length 1 or 2. By a similar argument of the previous case, there are one path of

length 1 with probability 2
n and n− 2 paths of length 2 with probability 1

n . Therefore,

RW (Kn) =
1

2

∑
s∈V

∑
t∈V

d̃st

=
1

2
n(n− 1)

(
2

n
+ (n− 2)

2

n

)
= (n− 1)2.

5.2 Bounds on RW index

We observe that in the class of trees, stars and paths are extremal graphs of the RW index, since it is the

case for the Wiener index [11]. More generally, we present the two following conjectures for extremal graphs,

found by AutoGraphiX [12, 13].

Conjecture 1 The graph on n vertices that minimizes the RW index is either the star Sn or the complete

graph Kn.

Conjecture 2 The graph on n vertices that maximizes the RW index is either the path Pn or the cycle Cn.

Since the intensity of the edges are also related to the number of spanning trees [14, 15], it is interesting

to observe that the graphs on n vertices minimizing the number of spanning trees [16] are exactly the ones

minimizing the RW index, according to the Conjecture 1, and that is not the case for the Kirchhoff index.

6 Concluding remarks and extensions

A possible extension of the RW index could be on graphs with weights on the edges. Indeed, in this paper,

we consider the case when each edge is associated to a resistor of 1Ω. In the case of weighted graphs, we

could set a resistor of weΩ on each edge e with the weight we.
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