
Les Cahiers du GERAD ISSN: 0711–2440

Simulation from the normal distribution
truncated to an interval in the tail

Z. I. Botev
P. L’Ecuyer

G–2016–62

July 2016

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2016-62) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2016-62) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2016
– Bibliothèque et Archives Canada, 2016

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2016
– Library and Archives Canada, 2016

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-62
https://www.gerad.ca/fr/papers/G-2016-62
https://www.gerad.ca/en/papers/G-2016-62
https://www.gerad.ca/en/papers/G-2016-62

Simulation from the normal
distribution truncated to an
interval in the tail

Zdravko I. Botev a

Pierre L’Ecuyer b

a University of New South Wales, High Street, Kensington,
Sydney, NSW 2052, Australia

b GERAD & DIRO, Université de Montréal, Montréal
(Québec) Canada H3T 1J4

botev@unsw.edu.au

lecuyer@iro.umontreal.ca

July 2016

Les Cahiers du GERAD

G–2016–62

Copyright c© 2016 GERAD

ii G–2016–62 Les Cahiers du GERAD

Abstract: We study and compare various methods to generate a random variate from the normal distribution
truncated to some finite or semi-infinite interval, with special attention to the situation where the interval is
far in the tail. This is required in particular for certain applications in Bayesian statistics, such as to perform
exact posterior simulations for parameter inference, but could have many other applications as well. We
distinguish the case in which inversion is warranted, and that in which a rejection method is also fine. The
algorithms are implemented and available in Java, R, and MATLAB, and the software is freely available.

Keywords: Mathematics of computing, distribution functions, probabilistic algorithms, statistical software

Acknowledgments: Zdravko Botev has been supported by the Australian Research Council Discovery
Early Career Researcher Award DE140100993. Pierre L’Ecuyer received support from an NSERC-Canada
Discovery Grant, a Canada Research Chair, and an Inria International Chair.

Les Cahiers du GERAD G–2016–62 1

1 Introduction

We consider the problem of generating (simulating) a standard normal random variable X, conditional on

a ≤ X ≤ b, where a < b are real numbers, and at least one of them is finite. We are particularly interested

in the situation where the interval (a, b) is far in one of the tails, i.e., a� 0 or b� 0. The standard methods

developed for the non-truncated case do not always work well in this case. Moreover, if we insist on using

inversion, the standard inversion methods break down when we are far in the tail. Inversion is preferable to

a rejection method (in general) in various simulation applications, for example to maintain synchronization

and monotonicity when comparing systems with common random numbers, for derivative estimation and

optimization, when using quasi-Monte Carlo methods, etc. [2, 11, 12, 13, 14, 15, 17]. We examine both

rejection and inversion methods in this paper.

Our motivation for this work stems from applications in Bayesian statistics and computational biology,

in which one wishes to generate a random vector X from the multivariate normal or Student-t distribution

conditional on a ≤ X ≤ b [12], or to accurately estimate the probability P[a ≤ X ≤ b] [9], for some

rectangular box [a, b]. These problems occur in particular for the estimation of certain Bayesian regression

models and for exact simulation from these models; see [6] and the references given there. More generally, the

box can be replaced by a simplex, which can be transformed into a rectangular box by a change of variables

(a linear transformation).

Efficient and reliable simulation methods based on importance sampling were developed recently in

[5, 4] for exact simulation from such multivariate conditional distributions and to estimate the conditional

probability P[a ≤ X ≤ b]. Software tools implementing these methods has been made freely available at

Matlabr Central as a toolbox (see www.mathworks.com/matlabcentral/fileexchange/53796) and as an

R package on CRAN (see cran.r-project.org/web/packages/TruncatedNormal).

The simulation of X from these algorithms requires repeated draws from a standard normal distribution

truncated to different intervals, often far in the tail. That is, we need fast and reliable algorithms to generate

X ∼ N(0, 1), conditional on a ≤ X ≤ b, for arbitrary real numbers a < b. Various methods have already been

proposed to do that; see for example [6, 7, 10, 19, 22, 24]. Some methods work well when the interval [a, b]

contains 0 or is not far from it, but not when a� 0 or b� 0. Other methods have been designed for the right

tail, i.e., when a � 0 and b = ∞, and use rejection. These methods may be adapted in principle to a finite

interval [a, b], but they may become inefficient when the interval [a, b] is narrow. We also found no reliable

inversion method for an interval far in the tail (say, for a > 38). To generate X from a more general normal

distribution with mean µ and variance σ2 truncated to an interval (a′, b′), it suffices to apply a simple linear

transformation to recover the problem studied here, so there is no loss of generality in assuming a standard

normal distribution.

The aim of this paper is to review and compare the most popular methods we know for this task, propose

new efficient methods for certain situations, and provide reliable software implementation of these methods.

In particular, we propose a new accurate inversion method for arbitrarily large a and improvements to

commonly used methods.

2 Setting and basic inversion

All over the paper, we use φ to denote the density of the standard normal distribution (with mean 0 and

variance 1), Φ for its cumulative distribution function (cdf), Φ for the complementary cdf, and Φ−1 for the

inverse cdf defined as

Φ−1(u) = min{x ∈ R | Φ(x) ≥ u}.
Thus, if X ∼ N(0, 1),

Φ(x) = P[X ≤ x] =

∫ x

−∞
φ(y)dy = 1− Φ(x).

Conditional on a ≤ X ≤ b, X has density

φ(x)

Φ(b)− Φ(a)
for a < x < b, (1)

www.mathworks.com/matlabcentral/fileexchange/53796
cran.r-project.org/web/packages/TruncatedNormal

2 G–2016–62 Les Cahiers du GERAD

and 0 elsewhere. We denote this truncated normal distribution by TNa,b(0, 1).

It is well known that if U ∼ U(0, 1), the uniform distribution over the interval (0, 1), then

X = Φ−1(Φ(a) + (Φ(b)− Φ(a))U) (2)

has exactly the standard normal distribution conditional on a ≤ X ≤ b. But even though very accurate ap-

proximations are available for Φ and Φ−1, (2) is sometimes useless to generate X from the desired conditional

distribution.

In particular, recall that whenever computations are made under the IEEE-754 double precision standard

(which is typical), any number of the form 1 − ε for 0 ≤ ε < 2 × 10−16 (approximately) is identified with

1.0, any positive number smaller than about 10−324 cannot be represented at all (it is identified with 0), and

numbers smaller than 10−308 are represented with less than 52 bits of accuracy. This implies in particular

that Φ(x) = Φ(−x) is identified as 0 whenever x ≥ 39 and is identified as 1 whenever −x ≥ 8.3. Thus, (2)

cannot work when a ≥ 8.3. In the latter case, or whenever a > 0, it is much better to use the equivalent

form:

X = −Φ−1(Φ(a)− (Φ(a)− Φ(b))U), (3)

which is accurate for a up to about 37, assuming that we use accurate approximations of Φ(x) for x > 0 and

of Φ−1(u) for u < 1/2. Such accurate approximations are available for example in [3] for Φ−1(u) and via the

error function erf on most computer systems for Φ(x). For larger values of a (and x), a different inversion

approach must be developed.

3 Inversion far in the tail

When Φ(x) is too small to be represented as a floating-point double, we will work instead with the Mills

ratio, defined as q(x)
def
= Φ(x)/φ(x), which is the inverse of the hazard rate (or failure rate) evaluated at x.

When x is large, this ratio can be approximated by the truncated series (see [1], or [23], page 44):

q(x) ≈ 1

x
+

r∑
n=1

1× 3× 5× · · · × (2n− 1)

(−1)nx2n+1
. (4)

For any x this series diverges when r → ∞ (because the numerator increases faster than exponentially

with n), but it gives a lower bound when r is odd and an upper bound when r is even, and the distance

between the lowest upper bound and the highest lower bound converges to 0 rapidly when x increases. In our

experiments with x ≥ 10, we compared r = 5, 6, 7, 8, and we found no significant difference (up to machine

precision) in the approximation of X defined by the inverse cdf in (3), by the method we now describe. In

view of (3), we want to find x such that

Φ(x) = Φ(−x) = Φ(a)− (Φ(a)− Φ(b))u,

for 0 ≤ u ≤ 1, when a is large. This equation can be rewritten as h(x) = 0, where

h(x)
def
= Φ(a)− Φ(x) + (Φ(b)− Φ(a))u (5)

To solve h(x) = 0, we will start by finding an approximate solution and then refine this approximation via

Newton iterations. We detail how this can be achieved. To find an approximate solution, we replace the

normal cdf Φ in (3) by the standard Rayleigh distribution, whose complementary cdf and density are given

by F (x) = exp(−x2/2) and f(x) = x exp(−x2/2) for x > 0. Its inverse cdf can be written explicitly as

F−1(u) = (−2 ln(1− u))1/2. By plugging F and F−1 in place of Φ and Φ−1 in (3), and solving for x, we find

the approximate root

x ≈ (a2 − 2 ln
(
1− u+ u exp

(
(a2 − b2)/2

))
)1/2, (6)

which is simply the u-th quantile of the standard Rayleigh distribution truncated over (a, b), with density

f(x) =
x exp(−(x2 − a2)/2)

1− exp(−(b2 − a2)/2)
for a < x < b. (7)

Les Cahiers du GERAD G–2016–62 3

The next step is to improve the approximation (6) by applying Newton’s method to Equation (5). For this,

it is convenient to make the change of variable x = ξ(z), where ξ(z)
def
=
√
a2 − 2 ln(z) and z = (ξ−1)(x) =

exp((a2 − x2)/2), and apply Newton’s method to g(z)
def
= h(ξ(z)). Newton’s iteration for solving g(z) = 0

has the form

znew = z −4(z),

with Newton correction term

4(z) =
g(z)

g′(z)
=

h(ξ(z))

h′(ξ(z))
· 1

ξ′(z)
, (by the chain rule)

=
Φ(a)− Φ(ξ(z)) + u(Φ(b)− Φ(a))

φ(ξ(z))
× (−zξ(z))

= zξ(z)
Φ(ξ(z))− Φ(a) + u(Φ(a)− Φ(b))

φ(ξ(z))

= zξ(z)
(
q(ξ(z))− q(a)(1− u) exp(ξ(z)

2−a2
2)−

− q(b)u exp(ξ(z)
2−b2
2)

)
= x

(
zq(x)− q(a)(1− u)− q(b)u exp(a

2−b2
2)

)
,

where the identity x = ξ(z) was used for the last equality. A key observation here is that, thanks to the

replacement of Φ by q, the computation of 4(z) does not involve extremely small quantities that can cause

numerical underflow, even for extremely large a. The resulting Newton algorithm converges rapidly whenever

a is large (say, a ≥ 10).

The complete procedure is summarized in Algorithm 1, which we have implemented in Java, Matlabr,

and R. According to our experiments, the larger a the faster the convergence. Figure 1 shows the required

number of Newton iterations to have δx ≤ δ∗ = 10−10, as a function of a, where δx represents the relative

change in x in the last iteration.

Algorithm 1 : Returns the u-quantile of TNa,b(0, 1)

Require: Input u ∈ (0, 1), δ∗

qa ← q(a)
qb ← q(b)

c← qa(1− u) + qbu exp(
a2−b2

2
)

δx ←∞
z ← 1− u+ u exp(a

2−b2

2
)

x←
√
a2 − 2 ln(z)

repeat
z ← z − x(zq(x)− c)
xnew ←

√
a2 − 2 ln(z)

δx ← |xnew − x|/x
x← xnew

until δx ≤ δ∗
return Quantile x

4 G–2016–62 Les Cahiers du GERAD

Figure 1: Number of Newton iterations necessary to achieve δx < δ∗ = 10−10 for the median of TNa,∞(0, 1), as a function of a

Table 1: Inversion using (3) vs using Algorithm 1: a comparison for some values of a, b, and u, with r = 5 and δ∗ = 10−14

a b u using (3) using Algo. 1

10.0 12.0 0.99 10.446272896499 10.446272896855
10.0 12.0 0.30 10.035260039588 10.035260039626
20.0 22.0 0.99 20.228389499595 20.228389499595
20.0 22.0 0.30 20.017781627473 20.017781627473
30.0 32.0 0.99 30.152946658582 30.152946658582
30.0 32.0 0.30 30.011873653870 30.011873653867
40.0 42.0 0.99 — 40.114892634811
40.0 42.0 0.30 — 40.008910319783
50.0 52.0 0.99 — 50.091982066969
50.0 52.0 0.30 — 50.007130140913

We note that for an interval [a, b] = [a, a + w] of fixed length w, when a increases the conditional

density concentrates closer to a. As an illustration, the following table gives the conditional probability

P[X > a + 1 | X > a] = Φ(a + 1)/Φ(a) for a few values of a. The third column in the table reports the

approximation (4) with w = 1,

Φ(a+ w)

Φ(a)
=
q(a+ w)φ(a+ w)

q(a)φ(a)
≈ a exp[−w2/2− wa]

a+ w
,

which shows that this conditional probability decreases as exp(−aw) when a→∞.

a P[X > a+ 1 | X > a] a
a+1 exp(−a− 1/2)

2 5.93× 10−2 5.47× 10−2

10 2.51× 10−5 2.50× 10−5

20 1.19× 10−9 1.19× 10−9

30 5.49× 10−14 5.49× 10−14

We see that there is practically no difference between generating X conditional on a ≤ X ≤ a + 1 and

conditional on X ≥ a when a ≥ 30, but there can be a significant difference for small a.

4 Rejection methods

We now examine rejection (or acceptance-rejection) methods, which can be faster than inversion. A large

collection of rejection-based generation methods for the normal distribution have been proposed over the

years; see [6, 7, 10, 24] for surveys, discussions, comparisons, and tests. Most of them (the fastest ones)

use a change of variable and/or precomputed tables to speedup the computations. In its most elementary

form, a rejection method to generate from some density f uses a hat function h ≥ f and rescales h vertically

to a probability density g = h/
∫∞
−∞ h(y)dy, often called the proposal density. A random variate X is

generated from g, is accepted with probability f(X)/h(X), is rejected otherwise, and the procedure is repeated

Les Cahiers du GERAD G–2016–62 5

until X is accepted as the retained realization. In practice, more elaborate versions are used that incorporate

transformations and partitions of the area under h.

Any of these proposed rejection methods can be applied easily if Φ(b) − Φ(a) is large enough, just by

adding a rejection step to reject any value that falls outside [a, b]. The acceptance probability for this step

is Φ(b) − Φ(a). When this probability is too small, this becomes too inefficient and something else must be

done. One way is to define a proposal g whose support is exactly [a, b], but this could be inefficient (too

much overhead) when a and b change very often. Chopin [6] developed a rejection method specially adapted

to this situation. It is based on a hat function defined by juxtaposing a large number of vertical rectangles

of different heights but equal surface over some finite interval [amin, amax], and use an exponential proposal

with rate a = amax (the RejectTail variant of Algorithms 2 below) for the tail above amax or when a > a′max.

The fastest implementation uses 4000 rectangles, amax ≈ 3.486, a′max ≈ 2.605. This method is fast, although

it requires the storage of very large precomputed tables, which could actually slow down computations on

certain type of hardware for which memory is limited, like GPUs.

Simple rejection methods for the standard normal truncated to [a,∞), for a ≥ 0, have been proposed long

ago. Marsaglia [20] proposed a method that uses for g the standard Rayleigh distribution truncated over

[a,∞). An efficient implementation is given in [7, page 381]. Devroye [7, page 382] also gives an algorithm

that uses for g an exponential density of rate a shifted by a. There two methods have exactly the same

acceptance probability,

α(a) = a
√

2π exp(a2/2)Φ(a),

which converges to 1 when a→∞. Geweke [8] and Robert [22] optimized the acceptance probability to

β(a) = λ
√

2π exp
(
aλ− λ2/2

)
Φ(a)

by taking the rate λ = (a +
√
a2 + 4)/2 > a for the shifted exponential proposal. However, the gain with

respect to Devroye’s method is small and can be wiped out easily by a larger computing time per step. Here

are the acceptance probabilities for some a:

a α(a) β(a)
2 0.84273845 0.93364532

10 0.99028596 0.99520084
20 0.99751852 0.99876308
30 0.99889257 0.99944705

For large a, both are very close to 1 and there is not much difference between them.

We will compare two ways of adapting these methods to a truncation over a finite interval [a, b]. The

first one is to keep the same proposal g which is positive over the interval [a,∞) and reject any value

generated above b. The second one truncates and rescales the proposal to [a, b] and applies rejection with

the truncated proposal. We label them by RejectTail and TruncTail, respectively. TruncTail has a smaller

rejection probability, by the factor 1 − Φ(a)/Φ(b), but also entails additional overhead to properly truncate

the proposal. Typically, it is worthwhile only if this additional overhead is small and/or the interval [a, b] is

very narrow, so it improves the rejection probability significantly. Our experiments will confirm this.

Algorithms 2, 3, 4, state the rejection methods for the TruncTail case with the exponential proposal

with rate a [7], with the rate λ proposed in [22], and with the standard Rayleigh distribution, respectively,

extended to the case of a finite interval [a, b]. For the RejectTail variant, one would remove the computation

of q, replace ln(1− qU) by lnU , and add X ≤ b to the acceptance condition. Algorithm 5 gives this variant

for the Rayleigh proposal.

6 G–2016–62 Les Cahiers du GERAD

Algorithm 2 : X ∼ TNa,b(0, 1) with exponential proposal with rate a, truncated

Ka ← 2a2

q ← 1− exp(−(b− a)a)
repeat

Generate U, V ∼ U(0, 1), independent
X ← − ln(1− qU)
E ← − ln(V)

until X2 ≤ KaV
return a+X/a

Algorithm 3 : X ∼ TNa,b(0, 1) with exponential proposal with rate λ, truncated

λ← (a+
√
a2 + 4)/2

q ← 1− exp(−(b− a)λ)
repeat

Generate U, V ∼ U(0, 1), independent
X ← a− ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)
return a+X/a

Algorithm 4 : X ∼ TNa,b(0, 1) with Rayleigh proposal, truncated

c← a2/2
q ← 1− exp(c− b2/2)
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(1− qU)

until V 2X ≤ a
return X ←

√
2X

Algorithm 5 : X ∼ TNa,b(0, 1) with Rayleigh proposal and RejectTail

c← a2/2
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b
return

√
2X

When the interval [a, b] is very narrow, it makes sense to just use the uniform distribution over this

interval for the proposal g. This is suggested in [22]. Generating from the proposal is then very fast. On the

other hand, the acceptance probability may become very small if the interval is far in the tail and b − a is

not extremely small. Indeed, the acceptance probability in this case is:
√

2π exp(a2/2)(Φ(a)− Φ(b))

b− a
=
q(a)− q(b) exp((a2 − b2)/2)

b− a
,

which decays at a rate of 1/a when a→∞ while (b− a) remains constant.

Algorithm 6 : X ∼ TNa,b(0, 1) with uniform proposal, truncated

repeat
Simulate U, V ∼ U(0, 1), independently.
X ← a+ (b− a)U

until 2 lnV ≤ a2 −X2

return X

Another choice that the user can have with those generators (and for any variate generator that depends

on some distribution parameters) is to either precompute various constants that depend on the parameters

Les Cahiers du GERAD G–2016–62 7

and store them in some “distribution” object with fixed parameter values, or to recompute these parameter-

dependent constants each time a new variate is generated. This type of alternative is common in modern

variate generation software [16, 18]. The first approach is worthwhile if the time to compute the relevant

constants is significant and several random variates are to be generated with exactly the same distribution

parameters. For the applications in Bayesian statistics mentioned earlier, it is typical that the parameters a

and b change each time a new variate is generated [6]. But there can be applications in which a large number

of variates are generated with the same a and b.

For one-sided intervals [a,∞), the algorithms can be simplified. One can use the RejectTail framework

and since b = ∞, there is no need to check if X ≤ b. When reporting our test results, we label this the

OneSide case.

Note that computing an exponential is typically more costly than computing a log (by a factor of 2 or 3

for negative exponents and 10 for large exponents, in our experiments) and the latter is more costly than

computing a square root (also by a factor of 10). This means significant speedups could be obtained by

avoiding to recompute the exponential each time at the beginning of Algorithms 2, 3, and 4. This is possible

if the same parameter b is used several times, or if b =∞, or if we use RejectTail instead of TruncTail.

5 Speed comparisons

We report a representative subset of results of speed tests made with the different methods, for some pairs

(a, b). In each case, we generated 108 (100 millions) truncated normal variates, added them up, printed the

CPU time required to do that, and printed the sum for verification. The experiments were made in Java

using the SSJ library [16], under Eclipse and Windows, on an Intel Core(TM) i7-5600U processor running at

2.60 GHz.

Table 2: Time to generate n = 108 random variates for [a, b] = [3.0, 3.1]

Method CPU time (seconds)

recompute precompute

Generation in [a, b)
ExponD 6.458 6.224
ExponDRejectTail 23.041 23.197
ExponR 16.630 9.922
ExponRRejectTail 32.401 32.339
ExponRRejectTailLog 25.101 25.303
Rayleigh 10.296 4.602
RayleighRejectTail 15.226 15.335
Uniform 4.259 4.337
InverseSSJ 30.576 8.143
InverseQuickSSJ 18.798 3.307
InverseRightTail 31.122 7.660

Generation in [a,∞)
ExponDOneSide 6.427 6.458
ExponROneSideLog 7.051 6.989
RayleighOneSide 4.072 4.415
InverseSSJOneSide 20.218 8.159
InverseRightTailOneSide 18.720 7.644

The following tables report the timings, in seconds. The two columns “recompute” and “precompute”

are for the cases where the constants that depend on a and b are recomputed each time a random variate is

generated or are precomputed once for all, respectively, as discussed earlier.

ExponD, ExponR, and Rayleigh refer to the TruncTail versions of Algorithms 2, 3, and 4, respectively.

We add “RejectTail” to the name for the RejectTail versions. For ExponRRejectTailLog, we took the log on

both sides of the inequality to remove the exponential in the “until” condition. Uniform refers to Algorithm 6.

InversionSSJ refers to the default inversion method implemented in SSJ, which uses [3] and gives at least

15 decimal digits of relative precision, combined with a generic “truncated distribution” class also offered

8 G–2016–62 Les Cahiers du GERAD

Table 3: Time to generate n = 108 random variates for [a, b] = [7.0, 8.0]

Method CPU time

recompute precompute

Generation in [a, b)
ExponD 11.700 6.162
ExponDRejectTail 6.037 6.084
ExponR 15.959 8.986
ExponRRejectTail 9.204 9.095
ExponRRejectTailLog 7.036 7.020
Rayleigh 9.859 4.274
RayleighRejectTail 3.916 3.994
Uniform 25.397 25.678
InverseSSJ 30.670 8.143
InverseQuickSSJ 22.293 6.646
InverseRightTail 31.122 7.706

Generation in [a,∞)
ExponDOneSide 5.897 5.959
ExponROneSideLog 6.802 6.708
RayleighOneSide 3.744 4.056
InverseSSJOneSide 20.233 8.190
InverseRightTailOneSide 18.861 7.675

Table 4: Time to generate n = 108 random variates for [a, b] = [100.0, 102.0]

Method CPU time

recompute precompute

Generation in [a, b)
ExponD 11.684 6.006
ExponDRejectTail 5.881 5.912
ExponR 15.787 8.861
ExponRRejectTail 9.126 9.017
ExponRRejectTailLog 6.926 6.958
Rayleigh 9.968 4.165
RayleighRejectTail 3.838 3.900
Uniform 650.618 656.421
InverseMillsRatio 22.527 16.006

Generation in [a,∞)
ExponDOneSide 5.772 5.819
ExponROneSideLog 6.724 6.630
RayleighOneSide 3.666 3.962

Table 5: Time to generate n = 108 random variates for [a, b] = [100.0, 100.0001]

Method CPU time

recompute precompute

Generation in [a, b)
ExponD 12.308 6.833
ExponDRejectTail 543.804 546.581
ExponR 16.474 10.655
ExponRRejectTail 865.244 865.338
ExponRRejectTailLog 651.195 648.995
Rayleigh 10.592 5.070
RayleighRejectTail 323.078 322.407
Uniform 3.588 3.619
InverseMillsRatio 18.174 12.121

Generation in [a,∞)
ExponDOneSide 5.788 5.834
ExponROneSideLog 6.739 6.630
RayleighOneSide 3.666 3.994

Les Cahiers du GERAD G–2016–62 9

in SSJ. InverseQuickSSJ is a faster but less accurate version based on a cruder approximation of Φ from [21]

based on table lookups, which returns about 6 decimal digits of precision. InverseRightTail uses the accurate

approximation of Φ together with (3). InverseMillsRatio is our new inversion method based on Mills ratio,

with δ∗ = 10−10. We added “OneSide” for the simplified OneSide versions, for which b =∞.

For the OneSide case, i.e., b =∞, the Rayleigh proposal gives the fastest method in all cases, and there

is no significant gain in precomputing and storing the constant c = a2/2.

For finite intervals [a, b], when b − a is very small so Φ(b)/Φ(a) is close to 1, the uniform proposal wins

and the RejectTail variants are very slow. See Table 5. Precomputing the constants is also not useful for the

uniform proposal. For larger intervals in the tail, Φ(x) decreases quickly at the beginning of the interval and

this leads to very low acceptance ratios; see Tables 3 and 4. A Rayleigh proposal with the RejectTail option

is usually the fastest method in this case. Precomputing and storing the constants is also not very useful for

this option. For intervals closer to the center, as in Table 2, the uniform proposal performs well for larger

(but not too large) intervals, and the RejectTail option becomes slower unless [a, b] is very wide. The reason

is that for a fixed w > 0, Φ(a+w)/Φ(a) is larger (closer to 1) when a > 0 is closer to 0. In general, inversion

is slower than the fastest rejection method.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1970.

[2] S. Asmussen and P. W. Glynn. Stochastic Simulation. Springer-Verlag, New York, 2007.

[3] J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational Chebyshev approximations for the inverse of the error
function. Mathematics of Computation, 30:827–830, 1976.

[4] Z. I. Botev. The normal law under linear restrictions: simulation and estimation via minimax tilting. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 2016. doi: 10.1111/rssb.12162.

[5] Z. I. Botev and P. L’Ecuyer. Efficient estimation and simulation of the truncated multivariate Student-t distri-
bution. In Proceedings of the 2015 Winter Simulation Conference, 380–391. IEEE Press, 2015.

[6] N. Chopin. Fast simulation of truncated Gaussian distributions. Statistics and Computing, 21(2):275–288, 2011.

[7] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, NY, 1986.

[8] J. Geweke. Efficient simulation of the multivariate normal and Student-t distributions subject to linear constraints
and the evaluation of constraint probabilities. In Computing science and statistics: Proceedings of the 23rd
symposium on the interface, 571–578, Fairfax, Virginia, 1991.

[9] C. Hans. Model uncertainty and variable selection in Bayesian lasso regression. Statistics and Computing,
20(2):221–229, 2010.

[10] W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate Generation. Springer-
Verlag, Berlin, 2004.

[11] D. P. Kroese, T. Taimre, Z. I. Botev and R. Y. Rubinstein. Student Solutions Manual to Accompany Simulation
and the Monte Carlo Method, Student Solutions Manual. Vol. 732. John Wiley & Sons, 2012.

[12] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John Wiley and Sons, New York,
2011.

[13] P. L’Ecuyer. Variance reduction’s greatest hits. In Proceedings of the 2007 European Simulation and Modeling
Conference, 5–12, Ghent, Belgium, 2007. EUROSIS.

[14] P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics, 13(3):307–349,
2009.

[15] P. L’Ecuyer. Random number generation with multiple streams for sequential and parallel computers. In
Proceedings of the 2015 Winter Simulation Conference, pages 31–44. IEEE Press, 2015.

[16] P. L’Ecuyer. SSJ: Stochastic simulation in Java, software library, 2016. http://simul.iro.umontreal.ca/ssj/.

[17] P. L’Ecuyer and G. Perron. On the convergence rates of IPA and FDC derivative estimators. Operations
Research, 42(4):643–656, 1994.

[18] J. Leydold. UNU.RAN—Universal Non-Uniform RANdom number generators, 2009. Available at http://

statmath.wu.ac.at/unuran/.

[19] G. Marsaglia. Generating a variable from the tail of the normal distribution. Technometrics, 6(1):101–102, 1964.

[20] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. SIAM Review, 6:260–
264, 1964.

http://simul.iro.umontreal.ca/ssj/
http://statmath.wu.ac.at/unuran/
http://statmath.wu.ac.at/unuran/

10 G–2016–62 Les Cahiers du GERAD

[21] G. Marsaglia, A. Zaman, and J. C. W. Marsaglia. Rapid evaluation of the inverse normal distribution function.
Statistics and Probability Letters, 19:259–266, 1994.

[22] C. P. Robert. Simulation of truncated normal variables. Statistics and computing, 5(2):121–125, 1995.

[23] C. G. Small. Expansions and Asymptotics for Statistics. Number 115 in Monographs on Statistics and Applied
Probability. CRC Press, 2010.

[24] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. Gaussian random number generators. ACM
Computing Surveys, 39(4):Article 11, Nov. 2007.

	Introduction
	Setting and basic inversion
	Inversion far in the tail
	Rejection methods
	Speed comparisons

