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Legal deposit – Bibliothèque et Archives nationales du Québec, 2016
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Abstract: We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear
constrained problems with the use of an augmented Lagrangian method. No derivatives are used, neither
for the objective function nor for the constraints. An augmented Lagrangian method, known as an effective
tool to solve equality and inequality constrained optimization problems with derivatives, is exploited to
minimize the subproblems, composed of quadratic models that approximate the original objective function
and constraints, within a trust region. The trust region ratio which leads the classical update rules for the
trust region radius is defined by comparing the true decrease of the augmented Lagrangian merit function
with the expected decrease. This mechanism allows to reuse the basic unconstrained DFTR update rules
with minor modifications. Computational experiments on a set of analytical problems suggest that our
approach outperforms HOPSPACK and is competitive with COBYLA. Using an augmented Lagrangian, and
more generally a merit function, to design the DFTR update rules with constraints is shown to be an efficient
technique.

Keywords: Derivative-free optimization, trust-region algorithms, equality and inequality constraints, aug-
mented Lagrangian
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1 Introduction
We consider the general optimization problem

min
x∈Rn

f(x)

subject to h(x) = 0 (1)
g(x) ≤ 0
l ≤ x ≤ u

where f : Rn → R is a single-valued function, h : Rn → Rm and g : Rn → Rp correspond to equality and
inequality constraints, l, u ∈ (R∪{±∞})n are bounds and n, m, p ∈ N are the dimension of the problem, the
number of equalities and inequalities, respectively. We are interested in a class of derivative-free optimization
(DFO) problems in which the functions f , h and g are twice continuously differentiable, but their derivatives
are unavailable. Such a situation may occur, for example, when a simulation is involved, for which it is
difficult or costly to estimate derivatives.

Algorithms for problems of the form (1) exist. Powell [24] proposes a derivative-free trust-region (DFTR)
algorithm named COBYLA in which linear models are built by interpolating on non-degenerate simplices at
each iteration. A merit function based on the infinity norm of the constraints allows to compute the trust
region ratio. Originally proposed for inequality constraints, the software package NLopt [16] re-implements
COBYLA and replaces each equality constraint by a pair of inequalities. Recently, Sampaio and Toint [26, 27]
adapt the trust-funnel method in a DFTR algorithm to solve Problem (1). The trust-funnel method treats
the equality constraint with no need of a filter, a barrier or a penalty [13].

Other algorithms provide treatment for problems close to (1) in a DFO context. A SQP derivative-free
trust-region algorithm is proposed by Tröltzsch [28] for equality constrained problems. The NOWPAC algo-
rithm [5] handles nonlinear inequality constraints in a DFTR algorithm, where strict feasibility is guaranteed
at each iteration. Two recent papers deploy inexact restoration schemes. In [2] a violation measure is mini-
mized in the restoration phase with a derivative-free algorithm, and a penalty-like merit function is exploited
in the optimization phase. In [11], a filter is used in the optimization phase. Both papers uses models of
the function in their optimization phase. The PBTR algorithm proposed in [3] considers problems with
inequalities treated with the progressive barrier of [4] and uses Ipopt [29] to solve the underlying constrained
subproblems. In [7] a DFTR algorithm treats Problem (1) using the gradients of the nonlinear constraints.

Many DFO algorithms use the augmented Lagrangian to handle constraints. The authors of [19] highlight
a DFO issue: “as this method requires both the objective function and constraints evaluations, it can be costly
when the constraints can be easily evaluated without evaluating the objective function”. This is not the case
here, but it could be considered in future work. Torczon and Lewis [17] adapt the augmented Lagrangian
algorithm [8] to a direct-search algorithm, without the use of derivatives. This adapted augmented Lagrangian
is implemented in the direct-search HOPSPACK [18] method. The Algencan augmented Lagrangian method [6]
is used in [10] to treat the difficult constraints whereas the easiest constraints are directly integrated into
a subproblem solved by a DFO algorithm. An augmented Lagrangian method is also used in [30] where a
DFTR algorithm is associated to a filter to solve problems with separable structure. Blackbox Optimization
algorithms with surrogate models and augmented Lagrangian for inequalities and equalities are proposed
in [14] and [22]. Finally in [1], augmented Lagrangian methods improve the solution of quadratic subproblems
arising in the MADS direct-search algorithm.

Solving subproblems and trust region radius update are two important elements in the design of a DFTR
algorithm for constrained problems. This paper proposes a new derivative-free trust-region algorithm called
DFTRl treating general constrained problems by using an augmented Lagrangian. Section 2 presents a
short review of the DFTR framework. Section 3 presents our new DFTR augmented Lagrangian algorithm
for constraints, named DFTRl. Implementation details and computational results are exposed in Section 4.
The proposed algorithm performs similarly to COBYLA on a set of analytical problems but outperforms
COBYLA on problems with equalities and HOPSPACK on the entire chosen set of analytical problems. We
conclude and evoke future work in Section 5.
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2 A brief review of the DFTR framework
DFTR algorithms are inspired by the classical trust-region framework. Their originalities are the methods
used to build the models and the subjacent theory guarantying similar convergence properties. As a trust-
region algorithm [21, chap. 4], a DFTR algorithm solves a subproblem on a region where the original functions
are replaced by models. These algorithms are efficient when the models of the original functions are good
approximations within a trust region, a ball centered on the current iterate xk, of radius ∆k, the trust region
radius at iteration k. Instead of solving the original problem, subproblems are iteratively optimized.

In classical trust-region methods with derivatives, the models are constructed using first or second order
Taylor polynomials of the functions. In DFTR algorithms, the models of the functions cannot be built with
the derivatives, since they are unavailable. Frequently used techniques to build models include interpolation
or regression from a sample set of points around the current iterate. This sample set at iteration k is denoted
by Yk(xk) ⊂ Rn.

Some properties are defined to characterized models offering similar properties than the first or second
order truncated Taylor models based on derivatives. It is the case of the fully-linear models and the fully-
quadratic models (see [9, chap. 6] for the formal definitions). Fully-linear models or fully-quadratic models can
be guaranteed by some properties of the sample set. The well-poisedness is a geometric property characterizing
a set of sample points. The theory is presented in [9, chap. 3]. If the sample set well-poisedness is satisfying,
then an interpolated or regressed model computed from this sample set can be certifiably fully-linear or
certifiably fully-quadratic. Some algorithms detailed in [9, chap. 6] explain how to construct such sample
sets and models. From a given sample set it is also possible to improve the well-poisedness by replacing some
points.

The stopping criteria is typically based on the radius ∆k. Under certain assumptions the convergence
analysis shows that the sequence of the trust region radii converges to zero, whereas in most trust-region
algorithm the trust region radii diverge.

To summarize, DFTR is a trust-region algorithm with different mechanisms to build the models. Thanks
to new theories characterizing the sample set, we can certify to have Taylor-like models. Updates rules for the
trust-region are simply adapted from the classical trust-region methods with derivatives. For more details, a
basic unconstrained DFTR algorithm is presented in [9, chap. 10].

3 A DFTR algorithm using an augmented Lagrangian method
Augmented Lagrangian methods are a class of algorithms solving constrained nonlinear problems with deriva-
tives. They belong to the class of penalty methods and use iteratively reformulated unconstrained problems
thanks to an augmented Lagrangian function, which is the Lagrangian with an additional penalty term.
Different augmented Lagrangian functions and algorithms exist. We use the augmented Lagrangian function
defined by Powell, Hestenes and Rockafellar [15, 23, 25], called the PHR augmented Lagrangian. It is the
one used in the Algencan algorithm detailed in [6]:

Lρ(x;λ, µ) = f(x) + ρ

2

(
m∑
i=1

[
hi(x) + λi

ρ

]2
+

p∑
i=1

[
max

(
0, gi(x) + µi

ρ

)]2
)
,

where λ ∈ Rm, µ ∈ Rp+ and ρ ≥ 0 are penalty coefficients. The coefficient λ and µ are approximations of the
Lagrange multipliers.

3.1 Solving the subproblems with an augmented Lagrangian method

As in the DFTR algorithm, our algorithm proposed in Section 3.2 solves a subproblem at iteration k within
a trust region:

min
x∈B(xk;∆k)

f̃k(x)
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subject to h̃k(x) = 0 (2)
g̃k(x) ≤ 0
l ≤ x ≤ u,

where the functions f̃k, h̃k, and g̃k are quadratic models of f , h and g. The subproblems can be noncon-
vex with indefinite quadratic constraints, and are solved with an augmented Lagrangian algorithm. The
augmented Lagrangian of Problem (2) is:

L̃kρ(x;λ, µ) = f̃k(x) + ρ

2

(
m∑
i=1

[
h̃ki (x) + λi

ρ

]2
+

p∑
i=1

[
max

(
0, g̃ki (x) + µi

ρ

)]2
)
.

One can observe that the augmented Lagrangian of the subproblem, L̃kρ, is also a model of the augmented
Lagrangian of the Problem (1), Lρ.

Birgin and Martinez [6] list advantages of using an augmented Lagrangian, and propose the Algencan
algorithm, from which we borrowed the augmented Lagrangian to solve our subproblem. The principles of
Algencan is to minimize at each iteration the unconstrained problem obtained with the augmented Lagrangian
function with a precision εk satisfying εk → 0. The three penalty coefficients ρ, λ and µ are updated at
the end of each iteration. For example ρ is increased when the improvement is not sufficient regarding the
feasibility of the new current point. This augmented Lagrangian algorithm always manages a current point xk
satisfying the bounds constraints. In the following we denote by λ̃k, µ̃k, and ρ̃k the values of these coefficients
at the end of the subproblem solution at iteration k of our DFTR algorithm. Then the current augmented
Lagrangian function at iteration k after solving the subproblem is denoted by Lρ̃k (x; λ̃k, µ̃k), whereas the
current augmented Lagrangian model function is denoted by L̃ρ̃k (x; λ̃k, µ̃k).

3.2 A DFTR algorithm based on the augmented Lagrangian

The current augmented Lagrangian function and the current augmented Lagrangian model function are used
to compute the trust region ratio rk, measuring the quality of the minimization of the original problem in
comparison with the expected minimization obtained with the subproblem. We denote by x̃k the solution of
the model subproblem:

rk =
Lρ̃k (xk; λ̃k, µ̃k)− Lρ̃k (x̃k; λ̃k, µ̃k)
L̃ρ̃k (x; λ̃k, µ̃k)− L̃ρ̃k (x̃k; λ̃k, µ̃k)

.

The new algorithm named DFTRl is outlined in Figure 1. The algorithm parameters η0, η1, γinc, and
γdec must respect the following conditions: 0 ≤ η0 < η1 < 1, 0 < γinc < 1 < γdec. The parameters η0 and
η1 are thresholds to quantify the quality of the ratio rk. The parameters γinc and γdec are coefficients to
increase or decrease the trust region radius ∆k based on the quality of the ratio rk.

Algorithm 1: DFTRl
1 Model construction

Construct the set of sample points Yk around xk and build the models f̃k, h̃k, g̃k.
2 Subproblem solution

Solve Subproblem (2) within the trust region with the augmented Lagrangian algorithm. The algorithm returns x̃k, λ̃k,
µ̃k and ρ̃k.

3 Step calculation
Evaluate f , h, and g at x̃k and compute the ratio rk at x̃k.

4 Trust region radius update
If rk ≥ η1, then set xk+1 = x̃k and ∆k+1 = min

(
γinc∆k,∆max

)
.

If η0 ≤ rk < η1, then set xk+1 = x̃k and ∆k+1 = ∆k.
If rk < η0, then set xk+1 = xk and ∆k+1 = γdec∆k.

Figure 1: Algorithm DFTRl: iteration k.
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4 Implementation details and computational results
Our algorithm DFTRl is implemented in Python and this section compares it with two state-of-the-art
software packages. We first describe our set of analytical problems and then the tools to analyse the results.

4.1 Computational testbed

We used a set of 83 small-scale analytical problems from the CUTEst collection [12]. This set includes the
test problems used in [3]. Among them, 40 contain only inequality constraints. Their characteristics are
presented in appendix. The initial point proposed in the CUTEst collection satisfies the bound constraints.
A budget of 100(n+1) blackbox evaluations is chosen.

COBYLA is a DFTR algorithm using a l∞ merit function and linear models, and HOPSPACK is a direct-
search based method using an augmented Lagrangian to treat general constraints. We use the NLopt version
of COBYLA with default settings. HOPSPACK is used with default parameters and a tolerance of 10−7 for each
constraint. Note that HOPSPACK allows an explicit treatment of linear constraints, and as neither COBYLA
nor our implementation contains this feature, it has been disabled in order to allow a fair comparison.

Data profiles and performance profiles from [20] are used to analyze performance. These graphs compare
different algorithms on a given set of problems. For a tolerance parameter τ ∈ [0; 1], fixed to 10−3 in this
paper, data profiles present, for a particular budget of evaluations, the percentage of problems providing a
solution within τ to a reference equal to the best solution found by all the algorithms. When no feasible
solution has been found, no algorithm is considered to have solved this problem. A point is considered feasible
when every constraint is satisfied within a tolerance of 10−7.

Performance profiles from [20] are also used. A performance ratio rp,s is defined by

rp,s = tp,s
min{tp,s : s ∈ S}

for Algorithm s on Problem p where S is the set of algorithms tested. If for example rp,s = 2, Algorithm s

needs twice the number of evaluations of the best algorithm to solve Problem p, within a tolerance τ . The
performance profiles show for α ≥ 1 the fraction of problems solved by Algorithm s with a ratio r ≤ α. The
value of a performance profile for α = 1 indicates the proportion of problems a given algorithm solves the
best (two algorithms can equally solve one problem), and a performance profile when α → ∞ indicates the
proportion of problems efficiently solved by the algorithm.

The sample set used to build the quadratic interpolation models requires at each iteration (n+1)(n+2)/2
points. These points correspond to the most recent points in a ball of radius 2∆k around the current iterate
xk. If there are not enough points, then the geometry improvement algorithm is called to select new points
by keeping a well-poised geometry of the sample set.

The subproblems are optimized with the Algencan algorithm implemented in the NLopt package. A limit
of 5000 iterations is imposed, and the subproblem tolerance for each constraint is 10−8. The original problem
tolerance for each constraint is 10−7.

4.2 Comparison with COBYLA and HOPSPACK

Our algorithm is compared to the two state-of-the art software packages COBYLA and HOPSPACK. The
results are presented separately for constrained problems without equalities and those with at least one
equality.

Inequality constrained problems. The performance profiles in Figure 2(a) show that our algorithm
is competitive with COBYLA on the benchmark set of 40 inequality constrained CUTEst problems. Both
DFTRl and COBYLA perform better than the direct-search HOPSPACK algorithm using augmented La-
grangian method. The performance of DFTRl is comparable to that of COBYLA even if DFTRl is slightly
below. The performance profiles show that DFTRl solves 10% less of inequality constrained problems than
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COBYLA. The data profiles in Figure 2(b) confirm these observations: Even if DFTRl seems a bit faster
when the number of function evaluations is above 20(n + 1), COBYLA outperforms DFTRl on 10% of the
tested problems with a larger number of evaluations. These results show that DFTRl is competitive with
COBYLA but slightly less efficient.
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(a) Perf. profiles at 100(n+ 1) evaluations. (b) Data profiles with τ = 10−3.

Figure 2: Comparison of DFTRl with COBYLA and HOPSPACK on analytical CUTEst problems with only inequalities.

General constrained problems with at least one equality. Computational results with 43 problems
containing at least one equality show that DFTRl globally outperforms COBYLA on problems with at least
one equality. The performance profiles in Figure 3(a) show that our algorithm solves more than 20% of the
problems faster than COBYLA, and is able to asymptotically solves almost 10% more. Both DFTRl and
COBYLA dominate the direct-search HOPSPACK algorithm. The data profiles in Figure 3(b) confirm these
observations. The performance of DFTRl is comparable to that of COBYLA, and DFTRl outperforms
COBYLA slightly.
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Figure 3: Comparison of DFTRl with COBYLA and HOPSPACK on analytical CUTEst problems with at least one equality.
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5 Discussion
This work proposes a derivative-free trust-region algorithm to treat general nonlinear constraints for problems
without the use of their derivatives. The augmented Lagrangian method and function are used to both solve
the trust-region subproblem and simply design the update rules of the derivative-free trust-region algorithm,
with few modifications to the unconstrained DFTR framework.

Computational experiments are conducted on a collection of 80 problems from the CUTEst collection
with two state-of-the art algorithms: HOPSPACK, a direct-search algorithm using an augmented Lagrangian
method for the constraints, and COBYLA, a DFTR algorithm. Our new algorithm, DFTRl, outperforms
HOPSPACK and is competitive with COBYLA on analytical problems. It is worth noting that DFTRl
performs better on problems with equalities.

Future work may consider other penalty functions to solve the subproblem and design the trust region
ratio. Other sample set managements could be tested to improve the performance. Finally, the progressive
barrier [4] could be adapted to this new algorithm to improve the treatment of inequalities.
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Appendix

Table 1: Description of the 40 analytical problems with only inequalities (m = 0).

Name n p lower upper initial point
bounds bounds

avgasb 8 10 8 8 Feasible
b2 3 3 0 0 Infeasible
chaconn1 3 3 0 0 Infeasible
himmelp5 2 3 2 2 Infeasible
hs10 2 1 0 0 Infeasible
hs11 2 1 0 0 Infeasible
hs12 2 1 0 0 Feasible
hs15 2 2 0 1 Infeasible
hs18 2 2 2 2 Infeasible
hs19 2 2 2 2 Infeasible
hs22 2 2 0 0 Infeasible
hs23 2 5 2 2 Infeasible
hs24 2 3 2 0 Feasible
hs29 3 1 0 0 Feasible
hs30 3 1 3 3 Feasible
hs31 3 1 3 3 Feasible
hs33 3 2 3 1 Feasible
hs34 3 2 3 3 Feasible
hs35 3 1 3 0 Feasible
hs36 3 1 3 3 Feasible
hs43 4 3 0 0 Feasible
hs57 2 1 2 0 Feasible
hs64 3 1 3 0 Infeasible
hs72 4 2 4 4 Infeasible
hs76 4 3 4 0 Feasible
hs84 5 6 5 5 Feasible
hs86 5 10 5 0 Feasible
hs95 6 4 6 6 Infeasible
hs96 6 4 6 6 Infeasible
hs97 6 4 6 6 Infeasible
hs98 6 4 6 6 Infeasible
hs100 7 4 0 0 Feasible
hs101 7 6 7 7 Infeasible
hs108 9 13 1 0 Infeasible
kiwcresc 3 2 0 0 Infeasible
lootsma 3 2 0 1 Feasible
polak6 5 4 0 0 Infeasible
simpllpb 2 3 0 0 Infeasible
snake 2 2 0 0 Infeasible
spiral 3 2 0 0 Feasible
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Table 2: Description of the 40 analytical problems with at least one equality constraint.

Name n m p lower upper initial point
bounds bounds

booth 2 2 0 0 0 Infeasible
bt4 3 2 0 0 0 Infeasible
bt5 3 2 0 0 0 Infeasible
bt8 5 2 0 0 0 Infeasible
bt13 5 1 0 0 1 Infeasible
byrdsphr 3 2 0 0 0 Infeasible
cluster 2 2 0 0 0 Infeasible
dixchlng 10 5 0 0 0 Infeasible
extrasim 2 1 0 0 2 Infeasible
gottfr 2 2 0 0 0 Infeasible
hs006 2 1 0 0 0 Infeasible
hs007 2 1 0 0 0 Infeasible
hs008 2 2 0 0 0 infeasible
hs014 2 1 1 0 0 Infeasible
hs027 3 1 0 0 0 Infeasible
hs028 3 1 0 0 0 Feasible
hs032 3 1 1 3 0 Feasible
hs039 4 2 0 0 0 Infeasible
hs040 4 3 0 0 0 Infeasible
hs042 4 0 0 0 0 Infeasible
hs048 5 2 0 0 0 Feasible
hs052 5 3 0 0 0 Infeasible
hs053 5 3 5 5 5 Infeasible
hs054 6 1 0 6 6 Infeasible
hs055 6 6 0 6 2 Infeasible
hs060 3 1 0 3 3 Infeasible
hs061 3 2 0 0 0 Infeasible
hs062 3 1 0 3 3 Feasible
hs063 3 2 0 3 0 Infeasible
hs071 4 1 1 4 40 Feasible
hs073 4 1 2 4 0 Infeasible
hs078 5 3 0 0 0 Infeasible
hs080 5 3 0 5 5 Infeasible
hs111 10 3 0 10 10 Infeasible
hs112 10 3 0 10 0 Infeasible
hs114 10 3 8 0 0 Infeasible
hypcir 2 2 0 0 0 easible
maratos 2 1 0 0 0 easible
odfits 10 6 0 10 0 easible
portfl1 12 1 0 12 12 easible
supersim 2 2 0 2 0 easible
tame 2 1 0 2 0 easible
zangwil3 3 3 0 0 0 easible
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