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La publication de ces rapports de recherche est rendue possible grâce au
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Abstract: This paper presents a new high-order, non-stationary sequential simulation approach, aiming to
deal with the typically complex, curvilinear structures and high-order spatial connectivity of the attributes of
natural phenomena. Similarly to multipoint methods, the proposed approach employs spatial templates and a
group of training images (TI). A coarse template with a fixed number of data points and a missing value in the
middle is used, where the missing value is simulated conditional to a data event found in the neighborhood of
the middle point of the template, under a Markovian assumption. Sliding the template over the TI, a pattern
database is extracted. The parameters of the conditional distributions needed for the sequential simulation
are inferred from the pattern database considering a set of weights of contribution given for the patterns in
the database. Weights are calculated based on the similarity of the high-order statistics of the data event
of the hard data compared to those of the training image. The high-order similarity measure introduced
herein is effectively invariant under all linear spatial transformations. Following the sequential simulation
paradigm, the template chosen is sequentially moved on a raster path until all missing points/nodes are
simulated. The high-order similarity measure allows the approach to be fast as well as robust to all possible
linear transformations of a training image. The approach respects the hard data and its spatial statistics,
because it only considers TI replicate data events with similar high-order statistics. Results are promising.

Keywords: High-order spatial statistics, sequential simulation, non-stationary, transformation invariant,
multi-point statistics
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1 Introduction 

Since the early 1990’s (Guardiano and Srivastava, 1993) several new approaches to geostatistical simulation have been 
developed to move this area of research beyond the second-order or two-point methods and their limits. These methods, 
well developed to date, are placed under the term multi-point statistics (MPS). The basic idea of MPS approaches is 
that the two-point statistical tools (variogram, covariance, correlogram) of a given attribute of interest are replaced by 
a so-called training image (TI). The TI is then used as a source to provide multiple point statistics and spatial relations 
that are used along with the hard data to generate simulated realizations for the attributes of interest. The first 
implemented multi-point method is SNESIM (Strebelle, 2002) and it is TI driven; thus, similar to all conventional 
MPS methods, the simulated realizations reproduce the high-order spatial relations in the TI. As a result, in applications 
with a dense set of hard data, the complex spatial relations in the data are overridden by those in the TI, and does not 
assist with the application of MPS methods to applications with relatively dense datasets. 
 

Several MPS methods are well known to date, examples are discussed next. FILTERSIM (Zhang et al., 2006) is 
based on the classification of both data and TIs using linear filters it is efficient and also sensitive to the shape and size 
of the spatial template, and the number and form of the filters employed. The direct sampling method (Mariethoz et 
al., 2010), in the other hand, does not produce a pattern database from the TIs like FIMTERSIM. Instead, in a multigrid 
simulation setup, first coarser grid nodes are simulated, a template is chosen about a simulation point and the data-
event is extracted. This data-event is then compared with the data-event of a randomly chosen TI pattern, in an L2-
norm distance basis. If the distance is less than a threshold, then the pattern is pasted onto the simulation grid, otherwise, 
another TI pattern is randomly selected and compared, and so on. The direct sampling simulation method is fast and 
effective in simulating based on sparse data with a given TI set, and is also TI driven. Mariethoz and Kelly (2011) 
show the influence of data statistics on realizations generated from this method as a dataset increases. Other pattern-
based MPS methods include the one suggested by Arpat and Caers (2007); first, a pattern database is generated by 
sliding a fixed template over the TIs. Then, the data event on the grid used for the simulation and at each location is 
compared with the data event of the pattern database and the one with the least L2-norm distance is chosen and pasted 
on the grid nodes involves. Abdollahifard and Faez (2012) first cluster the pattern database generated from the TI using 
a Bayesian framework. Then each cluster is modeled by a set of simple linear features and the extraction of features 
for each incomplete pattern on the simulated grid follows. Honarkhah Caers (2010) instead of building a raw pattern 
database, classifies TIs using some fixed simple features and compares them, using the L2-norm, to the same features 
extracted from a point of the grid being simulated. The most similar pattern is pasted onto the grid nodes, until all of 
them are visited. 

 
MPS simulations based on Markov methods are also available. An example in this category is the Markov Mesh 

model by Stien and Kolbjørnsen (2011). A unilateral raster path is chosen for the data, visiting all of the points in a 
left-to-right and up-to-down fashion. On a chosen spatial template a joint distribution is considered for the random 
field. The parameters of this distribution are then estimated from the TIs. Sampling of the local distribution function 
generates the realizations. These models in general are biased towards the chosen path, but are vastly used for 
simulating attributes of petroleum reservoirs. 

 
In a relatively recent approach to stochastic simulation, the high-order sequential simulation extends the 

conventional second-order sequential simulation methods to higher-orders (Mustapha and Dimitrakopoulos, 2010a, 
2011). The HOSIM approach first chooses a simulation point at random and considers N nearest conditioning data as 
data-event. A special template is built by connecting the data-event to the simulation point. The conditional probability 
distribution function (CPDF) of the simulated grid node given the data-event is then modeled by a series of weighted 
orthogonal functions called Legendre polynomials. The weight of each Legendre term is calculated by matching a set 
of particular spatial statistics, the so-called spatial cumulants that are generated from the available data. The TI is only 
used to complement the spatial cumulants of the available data. Note that SNESIM is similar to HOSIM with a main 
difference that the model used for the CPDF is much simpler and the method is TI driven.  

 
The present manuscript presents a new patch-based high-order method, which utilizes high-order spatial statistics 

in the pattern’s structure. Two notable differences from past approaches are that (a) it is non-stationary, and that (b) 
utilizes a set of TI’s, rather than one, while it is data-driven. Both the above address significant topics.  The proposed 
method follows a multigrid simulation process (coarser simulation grid nodes are simulated first and become the 
conditioning data for finer simulation grid points. A simulation point is randomly selected from the grid to be simulated 
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and an order 𝑁𝑁 + 1 template is selected, based on 𝑁𝑁 nearest hard data points, i.e. the data-event. In addition, a N-
dimensional high-order statistical feature vector, introduced herein, is calculated from the data-event. By sliding the 
template over the TI a pattern database is produced and then mapped into a N-dimensional high-order statistical feature 
space. The similarity measure of two feature vectors is defined as the weighted Euclidean distance between two vectors. 
The distribution of the simulated point is then estimated from the TIs using the maximum likelihood estimate (MLE) 
considering the similarity of each pattern. A sample is then drawn from the distribution as the realization of the 
simulation point. This process is continued until all grid nodes are simulated. The feature vector introduced in this 
paper is isotropic, that is, it is invariant to any linear transformation of the training image including rotation and 
transposition. This feature is also fast to calculate enabling the simulator to incorporate a large amount of TIs. The 
simulator is non-stationary and respects the hard data and its high order statistics, that is, only TI patterns with similar 
statistics are used for simulation. As a result, the simulations are data-driven. 

 
The following sections present the proposed simulation approach; then the results of initial tests using known 

datasets follow. Conclusions and future work complete the presentation. 

2 The proposed method 

2.1 Overview   

The goal of the proposed method is to simulate a random field 𝑍𝑍(𝒙𝒙), in a sequential multi-grid process, given a grid 
with nodes 𝒙𝒙, a training image (TI), 𝑧𝑧(𝒀𝒀) = {𝑧𝑧(𝒚𝒚1), … , 𝑧𝑧(𝒚𝒚𝑀𝑀)}, with nodes 𝒀𝒀 = {𝒚𝒚1, … ,𝒚𝒚𝑀𝑀} in the training image, and 
a sparse set of N hard data 𝑧𝑧(𝑥𝑥𝑖𝑖), 𝑖𝑖 ∈ [1, … ,𝑁𝑁] on a regular grid 𝑥𝑥𝑖𝑖 , 𝑖𝑖 ∈ [1, … ,𝑁𝑁]. The hierarchy of the sequential 
simulation is illustrated in Figure 1. The blue nodes represent the hard data (a). In the first sequence, each red node is 
conditioned on the four closest blue nodes and simulated. The lines represent the conditions in (b). This continues 
sequentially until all the nodes the grid are simulated, Figure 1 (c, d, e). Unicolor lines in each figure represent the 
spatial templates, connecting the conditioning data and a single node to be simulated. The size of the templates reduces 
after each sequence to maintain the same number of conditioning nodes. This is the natural representation of the multi-
grid approach for the simulation. 

2.2 High-order transformation invariant simulation (HOSTSIM) 

At each sequence, the path is chosen randomly and saved into a vector containing the indices of the visiting nodes. 
Each successive random variable 𝑍𝑍(𝒙𝒙) at node 𝒙𝒙, is conditioned to 𝑛𝑛-nearest neighbours, selected from the set of 
previously simulated nodes and the hard data {𝒙𝒙1, … ,𝒙𝒙𝑛𝑛} (Goovaerts, 1998). A template is formed spatially by 
connecting each conditioning data, 𝒙𝒙𝑖𝑖, to node 𝒙𝒙, presented by a lag vector 𝐿𝐿𝒙𝒙 = {𝒉𝒉1, … ,𝒉𝒉𝑛𝑛} = {𝒙𝒙1 − 𝒙𝒙, … ,𝒙𝒙𝑛𝑛 − 𝒙𝒙}. 
Consequently, the neighbourhood of 𝒙𝒙 is denoted by 𝑵𝑵𝒙𝒙 = {𝒙𝒙 + 𝒉𝒉1, … ,𝒙𝒙 + 𝒉𝒉𝑛𝑛} and the data event is denoted by  
𝒅𝒅𝑵𝑵𝒙𝒙 = {𝑧𝑧(𝒙𝒙1), … , 𝑧𝑧(𝒙𝒙𝑛𝑛)}. The goal is to estimate and draw a sample from the probability, 𝑃𝑃 �𝑍𝑍(𝒙𝒙)�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)�, of each 
successive 𝑍𝑍(𝒙𝒙) in the next visiting node on the path given its data event, 𝒅𝒅𝑵𝑵𝒙𝒙 , and the TI, 𝑧𝑧(𝒀𝒀). This probability is 
intractable for continuous variables. Alternatively, a model with a set of parameters, 𝜽𝜽 ∈ 𝜣𝜣 may be chosen, to represent 
this probability independent from the data event and TI. The parameter 𝜃𝜃 is optimized to express the data event and 
TI. Thus, this probability can be decomposed using the Bayes product and sum rule: 

 𝑃𝑃 �𝑍𝑍(𝒙𝒙)�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)� = ∫ 𝑃𝑃(𝑍𝑍(𝒙𝒙)|𝜽𝜽)𝑃𝑃 �𝜽𝜽�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)� 𝑑𝑑𝜽𝜽 
𝜽𝜽∈𝜣𝜣 .      (1) 

Estimation of the integrand further simplifies Equation 1. Figure 2 represents the term 𝑃𝑃 �𝜽𝜽�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)� as a function 
of 𝜽𝜽.  
 
The contribution of this function is negligible except for a narrow band near an optimal value for the parameter’s 
Maximum Likelihood Estimate, 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 
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Figure 1. The hierarchy of the sequential-multi-grid simulation for 𝑛𝑛 = 5, the connecting lines present the conditioning dependencies. a) The hard 
data. b) Red nodes are simulated conditioned on their 4 nearest neighbours. c) Black nodes are simulated conditioned on both blue and red nodes 
from previous sequence. d) Oranges are simulated conditioned on previous simulated nodes and hard data. e) Greens are simulated in the last 
sequence. At each sequence the resolution of the grid doubles. 

 
Figure 2. Presentation of 𝑃𝑃 �𝜽𝜽�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝑧𝑧(𝑌𝑌)� as a function of 𝜽𝜽. In practice this probability is negligible except at a narrow 𝛥𝛥𝜽𝜽 band near 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀. 

Consequently, Equation 1 could be estimated as in Equation 2: 

 𝑃𝑃 �𝑍𝑍(𝒙𝒙)�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)� ≈ 𝑃𝑃(𝑍𝑍(𝒙𝒙)|𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀)𝑃𝑃 �𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)�𝛥𝛥𝜽𝜽
���������������

𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐

   

 = 1
𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀

 𝑃𝑃(𝑍𝑍(𝒙𝒙)|𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀).     (2) 

In Equation 2, 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 can be regarded as the normalization factor to produce a valid probability, 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 =
∫ 𝑃𝑃(𝑧𝑧|𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀)𝑑𝑑𝑧𝑧 
𝑧𝑧∈𝑍𝑍 .   

 
Equation 2 implies the probability distribution function of the node 𝒙𝒙 can be calculated if 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 is known. To 

estimate 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 based on Figure 2, 𝜽𝜽 = 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 when 𝑃𝑃(𝜽𝜽|𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)) is maximum for 𝜽𝜽 ∈ 𝜣𝜣. 

 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝜽𝜽 ∈ 𝜣𝜣 𝑃𝑃 �𝜽𝜽�𝒅𝒅𝑵𝑵𝒙𝒙 , 𝑧𝑧(𝒀𝒀)� .     (3) 

Using Bayes theorem: 

 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝜽𝜽 ∈ 𝜣𝜣

𝑃𝑃�𝑧𝑧(𝒀𝒀)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙� 𝑃𝑃(𝜽𝜽)�
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑃𝑃(𝑧𝑧(𝒀𝒀))�����
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝜃𝜃

 .     (4) 

One assumes a uniform prior in parameters space 𝜣𝜣, and note that the marginal probability in TI, 𝑃𝑃(𝑧𝑧(𝒀𝒀)), is 
independent from 𝜽𝜽. Hence, Equation 4 becomes: 

 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝜽𝜽 ∈ 𝜣𝜣 𝑃𝑃�𝑧𝑧(𝒀𝒀)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙� .     (5) 
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Each node in TI is only conditioned on its neighbours and the parameters set 𝜽𝜽. Hence, the joint distribution in 
Equation 5 can be decomposed further. 

 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝜽𝜽 ∈ 𝜣𝜣 ∏ 𝑃𝑃 �𝑧𝑧(𝒚𝒚𝑖𝑖)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢�

𝑀𝑀
𝑖𝑖=1  .     (6) 

A probability is maximized if the logarithm of that probability is maximized: 

 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝜽𝜽 ∈ 𝜣𝜣 ∑ 𝑙𝑙𝑙𝑙𝑎𝑎𝑃𝑃 �𝑧𝑧(𝒚𝒚𝑖𝑖)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢�

𝑀𝑀
𝑖𝑖=1  .     (7) 

At maximum the derivative with respect to 𝜽𝜽 should be zero: 

 𝜕𝜕
𝜕𝜕𝜽𝜽
�∑ 𝑙𝑙𝑙𝑙𝑎𝑎𝑃𝑃 �𝑧𝑧(𝒚𝒚𝑖𝑖)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢�

𝑀𝑀
𝑖𝑖=1 � = 0 .     (8) 

Equation 8 should be solved for 𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀. By choosing a model with a set of parameters 𝜽𝜽, solving Equation 8 for 
𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 is straightforward. 

2.3 Simulation model 

The exponential family is used herein to model the likelihood function in Equation 8 with the parameter set                   
𝜽𝜽 = {𝜃𝜃1,𝜃𝜃2}. 

 𝑃𝑃 �𝑧𝑧(𝒚𝒚𝑖𝑖)�𝜽𝜽,𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢� = 1
𝑐𝑐

exp �− 1
2
𝜔𝜔 �𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢 ,𝜎𝜎0

2� (𝑧𝑧(𝒚𝒚𝑢𝑢)−𝜃𝜃1)2

𝜃𝜃2
�.     (9) 

𝜔𝜔 �𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢 ,𝜎𝜎0
2� is introduced as the similarity measure (SM) of the data event 𝒅𝒅𝑵𝑵𝒙𝒙 and 𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢 . It ensures that the 

TI patterns with similar data events contribute more toward building the likelihood function in Equation 9. The SM is 
defined as: 

 𝜔𝜔 �𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢 ,𝜎𝜎0
2� = exp �−

1
2𝑫𝑫�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢

�
𝑇𝑇
𝑫𝑫�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢

�

𝜮𝜮�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝜎𝜎0
2�

� .     (10) 

where 𝑫𝑫�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢� is introduced as the high-order-statistics disparity vector. 𝜮𝜮�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝜎𝜎02� is the covariance matrix 
of the disparity vector and is calculated using the calculus of variations. 

2.4 High-order-statistics disparity vector 

In this paper, a particular form of disparity vector is presented, which is isotropic and compares the high-order statistics 
of two data events. Most of the MP simulation methods choose an L2-norm for the disparity measure (Arpat and Caers, 
2007; Chatterjee et al., 2012, Honarkhah and Caers, 2010; Mariethoz et al., 2010, and Mustapha et al., 2013). When 
considering two sets of data events 𝒅𝒅𝑵𝑵𝒙𝒙 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, 𝒅𝒅𝑵𝑵𝒚𝒚 = {𝑦𝑦1, … , 𝑦𝑦𝑛𝑛} of order 𝑛𝑛, to develop an isotropic L2-norm 
disparity measure, one must compare all possible ordering of these two data events, which results in 𝑛𝑛 × 𝑛𝑛! number of 
operations. For 𝑛𝑛 = 5 the number of operations are 600. This is computationally expensive and can only operate on 
small size TIs.  The following method is employed to reduce the computing time. 

 
First, Vieta’s formula (Funkhouser, 1930) is used to calculate the coefficients of two polynomials 𝑝𝑝𝒔𝒔(𝑋𝑋) and 𝑝𝑝𝒕𝒕(𝑌𝑌) 

with the roots equal to the data events 𝒅𝒅𝑵𝑵𝒙𝒙 and 𝒅𝒅𝑵𝑵𝒚𝒚, respectively. 
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 𝑝𝑝𝒔𝒔(𝑋𝑋) = 𝑋𝑋𝑛𝑛 + 𝑠𝑠1𝑋𝑋𝑛𝑛−1 + ⋯+ 𝑠𝑠𝑛𝑛 .   

 �

𝑠𝑠1 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛
𝑠𝑠2 = 𝑥𝑥1(𝑥𝑥2 + 𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛) + 𝑥𝑥2(𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛) + 𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛

:
𝑠𝑠𝑛𝑛 = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛

 .     (11) 

 𝑝𝑝𝒕𝒕(𝑌𝑌) = 𝑌𝑌𝑛𝑛 + 𝑡𝑡1𝑌𝑌𝑛𝑛−1 + ⋯+ 𝑠𝑠𝑛𝑛 .   

 �

𝑡𝑡1 = 𝑦𝑦1 + 𝑦𝑦2 + ⋯+ 𝑦𝑦𝑛𝑛
𝑡𝑡2 = 𝑦𝑦1(𝑦𝑦2 + 𝑦𝑦3 + ⋯+ 𝑦𝑦𝑛𝑛) + 𝑦𝑦2(𝑦𝑦3 + ⋯+ 𝑦𝑦𝑛𝑛) + 𝑦𝑦𝑛𝑛−1𝑦𝑦𝑛𝑛

:
𝑡𝑡𝑛𝑛 = 𝑦𝑦1𝑦𝑦2 …𝑦𝑦𝑛𝑛

 .     (12) 

These could be regarded as two mappings 𝒅𝒅𝑵𝑵𝒙𝒙 → 𝒔𝒔 = {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} and 𝒅𝒅𝑵𝑵𝒚𝒚 → 𝒕𝒕 = {𝑡𝑡1, … , 𝑡𝑡𝑛𝑛}. The advantage of 
these mappings is that they are invariant to the ordering of the domain. This invariance results from the coefficients of 
a polynomial being invariant to the order of the roots in a set due to equations 11 and 12. 𝒔𝒔 and 𝒕𝒕 are in a particular 
form of high-order moments: 

 𝑠𝑠𝑚𝑚 = ∑ 𝑁𝑁(𝑘𝑘)𝑎𝑎(𝑢𝑢)(𝑘𝑘)𝑘𝑘∈𝐾𝐾 ,   

 𝑎𝑎(𝑢𝑢)(𝑘𝑘) = 1
𝑁𝑁(𝑘𝑘)

∑ 𝑥𝑥𝑗𝑗 ∏ 𝑥𝑥𝑗𝑗+𝑙𝑙𝑙𝑙∈𝒌𝒌
𝑁𝑁(𝑘𝑘)
𝑗𝑗=1  ,     (13) 

 𝑡𝑡𝑚𝑚 = ∑ 𝑁𝑁(𝑘𝑘)𝑎𝑎(𝑢𝑢)(𝑘𝑘)𝑘𝑘∈𝐾𝐾  ,   

 𝑎𝑎(𝑢𝑢)(𝑘𝑘) = 1
𝑁𝑁(𝑘𝑘)

∑ 𝑦𝑦𝑗𝑗 ∏ 𝑦𝑦𝑗𝑗+𝑙𝑙𝑙𝑙∈𝒌𝒌
𝑁𝑁(𝑘𝑘)
𝑗𝑗=1  ,     (14) 

where, 𝒌𝒌 = {𝑘𝑘1, … , 𝑘𝑘𝑢𝑢−1} and 𝑁𝑁(𝑘𝑘) is the support for estimating the moment. The high-order statistics disparity 
vector is defined as follows: 

 𝑫𝑫�𝒅𝒅𝑵𝑵𝒙𝒙 ,𝒅𝒅𝑵𝑵𝒚𝒚𝑢𝑢� = 𝒔𝒔𝑇𝑇 − 𝒕𝒕𝑇𝑇 .     (15) 

It worth mentioning that the number of operations for this new disparity measure is reduced dramatically to 𝑛𝑛 ×
2𝑛𝑛−1 per simulation node versus 𝑛𝑛 × 𝑛𝑛! for the L2-norm. For 𝑛𝑛 = 5, 𝑙𝑙𝑝𝑝(𝐿𝐿2 − 𝑛𝑛𝑙𝑙𝑎𝑎𝑎𝑎) = 600 and                       
𝑙𝑙𝑝𝑝(ℎ𝑖𝑖𝑎𝑎ℎ − 𝑙𝑙𝑎𝑎𝑑𝑑) = 80.  

3 Results from HOSTSIM and comparisons 

The dataset used in this section is the Stanford V Reservoir dataset (Mao and Journel, 1999). This exhaustive dataset 
consists of a 3D grid with porosity values. The grid consisting of 130 × 100 × 30 nodes, i.e. 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍. Here this 
dataset is cropped into a grid of 100 × 100 × 30 in order to perform some linear transformation on the data, e.g. 
rotation. For each simulation, a layer, 𝑍𝑍 ∈ {1, … ,30}, is selected as the ground truth of the simulation, referred to as 
the original image. This image is then down-sampled to produce the hard data set, containing 𝑁𝑁 points. All layers 
except layer 𝑍𝑍 are considered as TI for each simulation. The results of the simulation produced by HOSTISIM are 
compared, with an order 5 template, with the ones produced by FILTERSIM, with a search grid size 11 × 11 and inner 
patch size 7 × 7. Note that the TI’s provided for HOSTISIM are rotated 90 degrees clock-wise. The simulations are 
generated for layers 𝑧𝑧 = {1, … ,4}, from top to bottom in Figures 3 and 4. First with 𝑁𝑁 = 625 number of hard data 
points, 6.25% of the original data, in Figure 3 and second with 𝑁𝑁 = 169 number of hard data points, 1.69% of the 
original data, in Figure 4. For each simulation on Figures 3 and 4, from left to right, the original image, HOSTISIM 
and FILTERSIM typical realizations are all presented. For each set of results, the histogram of the original image and 
two simulations are also plotted. As a robust quantitative comparison, for each simulation 10 realizations are generated 
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by HOSTISIM and FILTERSIM methods and for each one the PSNR and SSIM scores (Wang et al., 2004) are 
calculated and averaged for each method over all 10 realizations and provided on Figures 3 and 4. For every single 
case, HOSTISIM outperforms FILTERSIM; visually by better representing the channels and low contrast structures 
of the original exhaustive image, and with higher PSNR and SSIM scores, and by better matching the histogram.  
Tables 1 and 2 are presenting the average PSNR and SSIM for HOSTISIM and FILTERSIM. 

Table 1. Comparing average PSNR and SSIM for HOSTISIM and FILTERSIM methods with 𝑁𝑁 = 625 number of hard data points (6.25%). 

 PSNR SSIM 
Z HOSTISIM FILTERSIM HOSTISIM FILTERSIM 
1 24.94 23.10 0.61 0.50 
2 24.31 22.77 0.60 0.47 
3 23.84 22.42 0.57 0.44 
4 23.10 21.29 0.56 0.42 

 

Table 2. Comparing average PSNR and SSIM for HOSTISIM and FILTERSIM methods with 𝑁𝑁 = 169 number of hard data points (1.69%). 

 PSNR SSIM 
Z HOSTISIM FILTERSIM HOSTISIM FILTERSIM 
1 21.23 20.98 0.47 0.43 
2 21.49 20.65 0.47 0.40 
3 20.87 20.20 0.42 0.35 
4 20.17 18.76 0.40 0.30 

 
For more and higher resolution results, please visit this link: http://cim.mcgill.ca/~amir/HOSTISIM.html 

4 Comparing the computing times 

The current implementation of the method is in Matlab, using the GPU parallel computation library. It has not been 
optimized nor developed in C, nor Python, as of yet. On the other hand, FILTERSIM has been optimized and developed 
in Python, and is available in the SGEMS software platform. Despite this disparity in optimization, we ran some tests 
to compare them as is. The system used for the tests was a Unix OS server with 8 cores Xeon CPU, 3.500GHz with 
8MB cache size and 64GB DDR4 memory and Nvidia Tesla k40c GPU with 12GB DDR5 memory with 2880 cores. 

 
For each method, two sets of tests were performed. Each set of tests consisted of generating 10 separate simulations 

and averaging the computing time for each simulation. The hard data used for all cases were 12x12 real-valued data 
on a regular grid. The goal was to generate a realization on a 100x100 SG, for each case. Each TI was a 100x100 real-
valued image. In the first test only 1 TI was used and in the second test 29 TI’s were used. The average computing 
times are presented in Table 3. 

Table 3. Comparing average computation time for HOSTISIM and FILTERSIM methods. 

 FILTERSIM HOSTISIM *** 
Test#1 8 seconds 3 seconds + 9   seconds GPU 

initialization in Matlab 
Test#2 134 seconds 42 seconds + 12 seconds GPU 

initialization in Matlab 
***: Almost constant, overhead GPU initialization time in Matlab. 

  

http://cim.mcgill.ca/%7Eamir/HOSTISIM.html
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5 Conclusion 

A high-order, stochastic and transformation invariant simulation method, HOSTISIM, is introduced in this paper. This 
method sequentially simulates the nodes in the grid to be simulated. At each sequence the previous simulated nodes 
are also considered as conditioning data. Hence, the size of the template shrinks at each new sequence. A high-order 
statistical disparity vector is introduced to calculate the distance between the data event of a pattern in the grid with a 
pattern in the TI. This disparity vector is designed to be isotropic and invariant against any linear transformation of the 
TI patterns. The PDF of the simulating node is then estimated using a likelihood function based on the disparity vector. 
This method is easy to implement and fast in performance. Since the number of operations is dramatically reduced 
compared to isotropic L2-norm distance measures, a large TI set can be processed. This method is non-stationary, uses 
a disparity measure to choose a pattern from the TI, never becomes biased from the TI, and always respects the high-
order statistics of the hard data’s inherent structure. This method will be expanded to accommodate irregular data 
locations and implemented to simulate in 3D.  
 

 
Figure 3. The results generated given 625 hard data (6.25%). From top to bottom, layers Z=1,…4. From left to right, Original image, HOSTISIM 
and FILTERSIM simulations. On the bottom of each simulation the histogram of each image is presented and the PSNR and SSIM scores of the 
two methods are also provided. 
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Z Original HOSTISIM FILTERSIM 

1 

 

2 

3 

4 

Figure 4. The results generated given 169 hard data (1.69%). From top to bottom, layers Z=1,…4. From left to right, Original image, HOSTISIM 
and FILTERSIM simulations. On the bottom of each simulation the histogram of each image is presented and the PSNR and SSIM scores of the 
two methods are also provided. 
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