
Les Cahiers du GERAD ISSN: 0711–2440

NLP.py: An object-oriented environment
for large-scale optimization

S. Arreckx, D. Orban,
N. van Omme

G–2016–42

June 2016

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2016-42) afin de mettre à jour vos données de
référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2016-42) to update your reference data, if it has been
published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2016
– Bibliothèque et Archives Canada, 2016

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2016
– Library and Archives Canada, 2016

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-42
https://www.gerad.ca/fr/papers/G-2016-42
https://www.gerad.ca/en/papers/G-2016-42
https://www.gerad.ca/en/papers/G-2016-42

NLP.py: An object-oriented
environment for large-scale opti-
mization

Sylvain Arreckx

Dominique Orban

Nikolaj van Omme

GERAD & Department of Mathematics and Industrial Engi-
neering, Polytechnique Montréal, Montréal (Québec) Canada

sylvain.arreckx@gerad.ca

dominique.orban@gerad.ca

nikolaj.van-omme@polymtl.ca

June 2016

Les Cahiers du GERAD

G–2016–42

Copyright c© 2016 GERAD

ii G–2016–42 Les Cahiers du GERAD

Abstract: NLP.py is a programming environment to model continuous optimization problems and to design
computational methods in the high-level and powerful Python language with performance-critical parts
implemented in Cython, a low-level superset of Python that compiles to machine code. With the aim of
designing numerical methods, NLP.py is accompanied by an extensive set of building blocks to solve the linear
algebra and subproblems typically encountered in the solution of large-scale convex and nonconvex problems,
including direct and iterative method for linear systems, linesearch strategies, trust-region subproblems, and
bound-constrained subproblems. NLP.py supports several sparse matrix packages, including our own novel
CySparse library. NLP.py features turnkey algorithms for problems with specific structure along with tools to
assess performance. The extensible nature of NLP.py combines with the might and ubiquity of Python to
make it a powerful development and analysis environment for optimization researchers and practitioners.

Keywords: Cython, linear algebra, linear and nonlinear optimization, object-oriented programming, Python,
scientific computing, sparse matrix

Résumé : NLP.py constitue un écosystème de programmation simplifiant le développement d’algorithmes
d’optimisation dans un langage de haut-niveau aussi puissant que Python. Il facilite également la modélisation
de problèmes d’optimisation continue. Les tâches demandant plus de ressources sont, quant à elles,
implémentées en Cython, un surensemble de bas niveau de Python. Dans le but de concevoir des méthodes
numériques, NLP.py donne accès à un ensemble de blocs permettant de résoudre les systèmes linéaires et
sous-problèmes généralement rencontrés dans la résolution de problèmes d’optimisation convexe et non
convexe à grande échelle. Parmi ces blocs se trouvent un ensemble de méthodes directes et itératives pour
la résolution de systèmes linéaires. En outre, plusieurs recherches linéaires y sont implémentées de même
que des méthodes résolvant des sous-problèmes avec contraintes de borne ou de région de confiance. NLP.py
supporte plusieurs librairies de matrice creuse, y compris notre toute nouvelle librairie CySparse. Finalement,
plusieurs algorithmes de pointe pour des problèmes avec une structure particulière y ont été implémentés
ainsi que des outils pour évaluer leur performance. La nature extensible de NLP.py combinée à la puissance et
l’ubiquité de Python en font un environnement de développement et d’analyse puissant pour les chercheurs et
les utilisateurs de l’optimisation.

Mots clés : Cython, algèbre linéaire, optimisation linéaire et non linéaire, programmation orientée-objet,
Python, calcul scientifique, matrice creuse

Les Cahiers du GERAD G–2016–42 1

1 Introduction

We describe an open source Python programming environment for optimization that combines the advantages

of scripting and compiled languages. NLP.py, which stands for nonlinear programming in Python, is written

with the design of large-scale novel optimization methods in mind but may also be used as a set of optimization

solvers. Rather than trying to offer as wide a selection as possible of methods, a conscious decision in the

design of NLP.py is to implement a few efficiency-driven cutting-edge methods that represent recent research,

and to provide access to effective commonly-used building blocks. With those building blocks, users are able

to assemble existing methods for testing, or to prototype novel methods for research. As a consequence, the

researcher is able to concentrate on the logic of the algorithms rather than on the intricacies of core features

such as a Wolfe linesearch or the efficient solution of a symmetric indefinite linear system. One of the main

design goals is to let users experiment with variants of computational methods by swapping an implementation

detail for another, e.g., changing a linesearch scheme for another, or a quasi-Newton approximation for another.

The Python language itself reinforces this aspect, being non-intrusive, ubiquitous, and easy to learn.

Core NLP.py focuses on optimization and is accompanied by satellite packages that users can install

as needed and focusing mainly on linear algebra operations, including sparse matrix libraries, symmetric

indefinite factorizations, sparse QR factorization, and Krylov methods.

NLP.py has already been used successfully to implement numerical algorithms for linear programming

and unconstrained, bound-constrained, and nonlinearly-constrained optimization. Those algorithms have

been applied to solve, among others, problems from the CUTE/AMPL collection (Gould, Orban, and Toint,

2003b; Vanderbei, 2009), the COPS collection (Dolan, Moré, and Munson, 2004), the McMPEC collection

of problems with complementarity constraints (Leyffer, 2004; Coulibaly and Orban, 2012) and structural
optimization problems formulated as programs with vanishing constraints (Curatolo, 2008). More recently, it

has been used to develop a factorization-free augmented Lagrangian implementation for structural design

problems that arise in aircraft wing design optimization (Arreckx, Lambe, Martins, and Orban, 2015).

It is our contention that NLP.py offers the flexibility, power and ease of use for teaching optimization,

studying numerical methods, researching new algorithms and exploring new ideas, all the while retain-

ing efficiency and promoting expandability and code reuse at all levels. NLP.py may be obtained from

github.com/PythonOptimizers/NLP.py.git.

Related work

Object-oriented languages such as C++ have gained considerable momentum in the scientific computing

community in the past two decades, partly because of the flexibility that they offer and partly because of their

popularity in businesses and research institutions. Object-oriented languages offer a degree of abstraction

that lets programmers devise natural, powerful and expandable toolkits. Among the advantages offered by

object-oriented languages, abstraction, inheritance and polymorphism allow the programmer to specialize

a given method of a given object via subclassing and overriding. This is a useful feature in the context of

optimization algorithms because it allows to subclass, say, an algorithm, and specialize it.

C++ is often the language of choice for large-scale object-oriented solvers and libraries. Meza, Oliva, Hough,

and Williams (2007) propose the OPT++ object-oriented C++ toolkit for optimization that distinguishes

between an algorithm-independent class hierarchy for problems and a class hierarchy for numerical methods

that is based on common algorithmic traits. OPT++ supports parallel computing capabilities and simulation-

based optimization, which make it a promising library for large-scale real-world problems. OOQP (Gertz and

Wright, 2003) is a C++ package for convex quadratic programming that allows the solution of problems with

specialized structure via subclassing and polymorphism. The TAO Toolkit for Advanced Optimization of

Benson, McInnes, Moré, Munson, and Sarich (2016) is an object-oriented framework for optimization that

is largely based on the parallel linear algebra capabilities of the PETSc library (Balay, Buschelman, Gropp,

Kaushik, Knepley, McInnes, Smith, and Zhang, 2009). OOPS (Gondzio and Sarkissian, 2003; Gondzio and

Grothey, 2007) is a parallel interior-point solver for large-scale linear, quadratic and nonlinear programming

that exploits the nested block structure often present in large-scale problems.

http://github.com/PythonOptimizers/NLP.py.git

2 G–2016–42 Les Cahiers du GERAD

However, low-level languages such as Fortran or C++ have a rather steep learning curve and long write-

compile-link-debug cycles. High-level scripting languages such as Python let the programmer do away with

memory allocation concerns, and are typically far easier to learn and use than low-level compiled languages,

which often outweighs the performance hit normally associated with them. Python is a full-fledged object-

oriented programming language with a standard library that is nearly as extensive as that of C and C++.

There has been much activity recently devoted to developing collections of tools for both researchers, modelers

and practitioners in the Python programming language. We review those that, in our view, are prominent in

the current landscape.

Pyomo (Hart, Laird, Watson, and Woodruff, 2012) is a Python library for modeling optimization problems

and is part of the Coopr (Hart, 2009) optimization repository. The syntax of Pyomo is strongly inspired by
that of the AMPL modeling language and it currently supports linear, nonlinear and stochastic programs. In

Pyomo, derivatives are computed via the ASL but it does not rely on availability of an AMPL engine. Rather,

a Pyomo model is converted to a so-called nl file, representing computational graphs, which is then fed to

the ASL (Gay, 2005).

PuLP (Stuart, OSullivan, and Dunning, 2011) is a modeling tool for linear programming that is able to

export problems to MPS or LP format and subsequently call a linear programming solver such as GLPK

(Makhorin, 2006), COIN, CPLEX or X-PRESS.

CVXOPT (Dahl and Vandenberghe, 2009) is a complete environment for modeling and solving convex

problems, whether differentiable or not, by way of an interior-point method. CVXOPT uses its own interface

to the BLAS for fast array and dense matrix operations and its own implementation of a sparse matrix library.

PyOpt (Perez, Jansen, and Martins, 2012) is a Python framework for formulating and solving optimization

problems. Its goal is somewhat different from NLP.py as it provides an optimization framework with access

to a variety of existing optimization algorithms accessible through a common interface. The focus is on

formulating and solving nonlinear constrained optimization problems rather than developing new optimization

algorithms.

Finally, Audet, Dang, and Orban (2010) propose the OPAL Python environment for modeling and solving

non-smooth optimization problems with particular emphasis on algorithmic parameter optimization. OPAL

interfaces a mesh-adaptive direct search method and provides modeling facilities to describe parameter-

optimization problems and to assess performance by way of tailored combinations of atomic performance

measures.

Python’s notoriety is also apparent in major linear algebra libraries such as PETSc and TRILINOS, which

offer Python bindings (Balay et al., 2009; Sala, Spotz, and Heroux, 2008).

The rest of the paper is organized as follows: Section 2 describes the design philosophy of NLP.py, Section 3

summarizes the modeling facilities offered, Section 4 describes our in-house Cython sparse matrix library,

Section 5 reviews the optimization and linear algebra building blocks available, Section 6 gives a brief overview

of a few of the complete solvers written in NLP.py, and Section 7 shows examples illustrating the modularity

of NLP.py. Finally, some concluding remarks are provided in Section 8.

2 Overall design and structure

NLP.py may be viewed as a collection of tools written in Python and interfaces to core libraries written with

the Cython (Behnel, Bradshaw, Citro, Dalcin, Seljebotn, and Smith, 2011) extension of Python. Cython

is a superset of Python that facilitates interfacing with libraries that expose a C API and allows users to

type variables. Because Cython code is compiled, it results in increased performance, yet remains easier to

maintain and update than C or C++. Thanks to the strong connection between Python and Cython, core

libraries appear transparently to the user as regular Python objects.

Les Cahiers du GERAD G–2016–42 3

A solid sparse linear algebra library is essential if one is to solve large-scale sparse problems efficiently. The

library of choice in NLP.py is CySparse (Arreckx, Orban, and van Omme, 2016b), but several other libraries

are also supported to varying degrees. CySparse is described in Section 4.

The components of NLP.py revolve around the main tasks with which one is confronted in both modeling

and algorithmic design. We now briefly review those tasks and describe them in more depth in the next

sections.

Supplying derivatives The first important decision about a model is whether derivatives are available and in

the affirmative, whether they will be implemented by hand, supplied by an automatic differentiation engine,

or approximated using, say, finite differences or a quasi-Newton scheme.

Matrix storage schemes If it is anticipated that a solver will require Jacobians and/or Hessians, a user must

decide how they should be stored—e.g., as dense arrays, sparse matrices in a specific storage format, or
implicitly as linear operators. The choice of storage scheme is closely related to what types of operations a

solver will need to perform with matrices, e.g., construct block saddle-point systems, and what linear algebra

kernels will be used during the iterations.

Modeling Models are represented as Python objects that derive from one or two base classes. The object-

oriented design of NLP.py dictates that a model results by inheritance from a model class defining the

provenance of derivatives with another model class specifying a matrix storage scheme. For instance, multiple

model classes obtain their derivatives from ADOL-C—one per matrix storage scheme—and all derive from

a base class named AdolcModel. Similarly, multiple model classes store matrices according to one of the

formats available in the CySparse library—one per derivative provider, and all derive from a base class

named CySparseModel. For instance, a CySparseAdolcModel class could be defined as inheriting from both

AdolcModel and CySparseModel.

Passing models to solvers The choice of a solver depends on multiple factors, including the matrix storage

scheme, but more importantly, the structure of the problem. In NLP.py, several solvers are available and

correspond to several types of problems. There are solvers for unconstrained optimization, linear and convex

quadratic optimization, equality-constrained convex or nonconvex optimization, problems with complementarity

constraints, and general problems featuring a mixture of equality constraints, inequality constraints and

bounds. A main driver that may be called from the command line is supplied with each solver for problems

written in the AMPL modeling language. The PyKrylov companion package supplies several iterative solvers

for linear least-squares problems, including regularized problems and problems with a trust-region constraint.

Designing solvers Optimization researchers must often make implementation choices that strike a balance

between performance, adherence to theoretical requirements and ease of implementation. An example that

comes to mind is a linesearch-based method in which the search must ensure satisfaction of the strong

Wolfe conditions. Implementing such a linesearch is far more involved than implementing a simple Armijo

backtracking search. The latter may not satisfy the assumptions necessary for convergence, but may still

perform well in practice. Similarly, a trust-region method that relies on models using exact second derivatives

may perform well, but what if a quasi-Newton approximation is used instead? What if we wish to terminate

the iterations early if a condition depending on external factors is satisfied? What if we wish to experiment

with a different merit function? It seems important for researchers to be able to experiment easily and swap a

linesearch procedure for another, swap a model with exact second derivatives for a quasi-Newton model, and

so forth.

The next sections elaborate on the above aspects.

4 G–2016–42 Les Cahiers du GERAD

3 Modeling

In NLP.py, a general optimization problem is formulated as

minimize
x∈Rn

f(x) subject to cL ≤ c(x) ≤ cU, ` ≤ x ≤ u, (1)

where f : Rn → R is the objective function, c : Rn → Rm is the (vector-valued) constraint function, and

cL ∈ (R ∪ {−∞})m, cU ∈ (R ∪ {+∞})m, ` ∈ (R ∪ {−∞})n, and u ∈ (R ∪ {+∞})n. Bounds on the variables

appear separately from other types of constraints because numerical methods often treat them differently.

The j-th general constraint is an equality constraint if cLj = cUj . Similarly, if `i = ui, the i-th variable is fixed

and may technically be eliminated from the problem.

General optimization problems are represented using a subclass of the NLPModel abstract class. The

main idea is that NLPModel acts as a placeholder for attributes and methods common to all optimization

problems, and that a subclass specifies the structure of a problem of interest—e.g., an unconstrained problem,

a bound-constrained problems, a quadratic problem, and so forth. An instance of the subclass gives life to the
model by filling in the blanks. It does so by giving values to attributes such as the number of variables and

of general constraints, arrays representing cL, cU, ` and u, an initial guess, and initial Lagrange multiplier

estimates. The instance has methods for querying the model, including evaluating the objective function, the

gradient of the objective, the (sparse) Jacobian matrix of the constraint functions, and the (sparse) Hessian

matrix of the Lagrangian.

NLP.py predefines the UnconstrainedNLPModel and BoundConstrainedNLPModel subclasses of NLPModel

that may be used as a shortcut to model unconstrained and bound-constrained problems. Listing 1 shows

one way to implement the generalized Rosenbrock function for an arbitrary value of n and how to create an

instance with n = 10.

1 from nlp.model.nlpmodel import UnconstrainedNLPModel

2 from numpy import sum

3 from numpy.random import random

4

5 class Rosenbrock(UnconstrainedNLPModel):

6 def obj(self , x):

7 return sum((1-x[: -1])**2 + 100*(x[1:]-x[: -1]**2)**2)

8

9 prob = Rosenbrock (10, name="Generalized Rosenbrock")

10 prob.obj(random (10)) # evaluate objective at a random point

Listing 1: Subclassing UnconstrainedNLPModel and creating an instance.

While Listing 1 seems intuitive we immediately hit severe limitation of this approach: we must hard

code the derivatives of the objective and constraints functions if a solver is to make use of them. One might

use finite-difference approximations but the order of convergence of descent methods often suffers from such

approximations. A much more viable approach is to use automatic differentiation (AD) (Griewank, 2000).

This is especially interesting in the large-scale case as the cost of evaluating derivatives via AD is typically a

moderate multiple of the cost of evaluating the function itself. A number of generic automatic-differentiation

packages are readily available—see www.autodiff.org. Some AD packages already have mature Python

bindings and there also exist pure Python AD packages. NLP.py offers interfaces to ALGOPy (Walter, 2011b),

PyADOLC (Walter, 2011c) and PyCppAD (Walter, 2011a).

Modeling with, e.g., PyADOLC is as simple as these authors could hope. Models in which derivatives

should be computed by ADOL-C should be instances of a subclass of AdolcModel. Defining a class for

unconstrained problems whose derivatives should be computed by ADOL-C (Walther, Kowarz, and Griewank,

2005) consists in inheriting from both UnconstrainedNLPModel and AdolcModel. The latter is itself a subclass

of NLPModel that ensures that only functions need be supplied and subsequent derivatives will be evaluated

behind the scenes by ADOL-C. Listing 2 illustrates the process without repeating operations already performed

in Listing 1.

http://www.autodiff.org

Les Cahiers du GERAD G–2016–42 5

1 from nlp.model.adolcmodel import AdolcModel

2

3 class UnconstrainedAdolcModel(UnconstrainedNLPModel , AdolcModel):

4 pass # do nothing; the base classes do all the work

5

6 class AdolcRosenbrock(UnconstrainedAdolcModel):

7 def obj(self , x):

8 return np.sum((1-x[: -1])**2 + 100*(x[1:]-x[: -1]**2)**2)

9

10 prob = AdolcRosenbrock (10, name="Generalized Rosenbrock")

11 prob.obj(random (10)) # evaluate objective at a random point

12 prob.grad(random (10)) # evaluate gradient at a random point

13 prob.hess(random (10)) # evaluate Hessian at a random point

Listing 2: Inheriting from both UnconstrainedNLPModel and AdolcModel.

Listing 2 illustrates how multiple inheritance is used in NLP.py to mix base classes together so as to obtain

models with the desired features. The same effect could be achieved by defining the class AdolcRosenbrock

as inheriting from the Rosenbrock class of Listing 1 and from AdolcModel. The resulting AdolcRosenbrock

model has dense second derivatives, but we obtain sparse Hessians by inheriting from SparseAdolcModel

instead of AdolcModel. We obtain sparse Hessians in SciPy format by inheriting from SciPyAdolcModel,
etc. The same principles may be used to define unconstrained quasi-Newton models, quadratic models in

which the Hessian is stored in CySparse format, bound-constrained models in which derivatives are computed

by CppAD, etc.

Another convenient approach implemented in NLP.py is to use the AMPL modeling language (Fourer, Gay,

and Kernighan, 2002) and leverage its mature automatic-differentiation features as most researchers and users

of optimization are already familiar with it. Modeling in AMPL is simple and intuitive, and several standard

benchmark collections are modeled in AMPL, e.g., (Dolan et al., 2004; Vanderbei, 2009). In NLP.py, AMPL

models are used in the same way as NLPModels and are generated from the model and data files constituting

the AMPL model, or from the nl file decoded by the AMPL engine. Essentially, the nl file contains the

expression tree of all linear and nonlinear expressions in the model and allows for automatic differentiation

via the ASL (Gay, 1997).

In a similar vein, a subclass of NLPModel that represents a model decoded from a CUTEst problem (Gould,

Orban, and Toint, 2015b) is in development.

Lastly, PDE-constrained problems have been in the spotlight in recent years as challenging and highly

structured. In our experience, PDE libraries have a steep learning curve and the optimization methods

that they feature, if any, are few and often written to solve specific problems. The great divide between

optimization libraries and PDE libraries makes it difficult for optimization research to benefit from testing

on a large base of PDE-constrained problems and for PDE libraries to benefit from the latest advances in

optimization. In the Python language, there is however a good match. FEniCS (Logg, Mardal, Wells, et al.,

2012) is an extensive finite-element library with a full-featured Python interface named DOLFIN (Logg and

Wells, 2010). DOLFIN allows the user to define domains, meshes, function spaces, finite-element families to

approximate unknowns, and to model functionals and sets of PDEs in weak form with extraordinary ease. For

given domain, mesh, function space and finite-element family, a functional is automatically discretized and it

is possible to evaluate it as well as its derivatives with respect to the unknown function. Similarly, a set of

PDEs in weak form with accompanying boundary conditions is automatically discretized and its derivatives

can also be obtained. That makes it possible to devise a generic modeling interface for PDE-constrained

problems. In NLP.py, the latter has materialized as a subclass of NLPModel named PDENLPModel. In order

to be instantiated, a PDENLPModel must be associated with a domain, a mesh, a function space, boundary

conditions, as well as an optional initial guess, bounds on the unknown function, and possibly constraint left

and right-hand sides. Before creating an instance, a user must subclass PDENLPModel in order to specify an
objective functional and the constraints. PDE-constrained problems, and variational calculus problems in

general, are a recent addition to NLP.py and will be the subject of a follow-up report. In the present paper,

6 G–2016–42 Les Cahiers du GERAD

we show a simple example that illustrates the anatomy of such problems. Consider the distributed Poisson

control problem with Dirichlet boundary conditions

minimize
u,f

1
2

∫
Ω

|u(x)− u0(x)|2 dx+ 1
2β

∫
Ω

|f(x)|2 dx

subject to −∇ · (∇u(x)) = f(x) x ∈ Ω,

u(x) = u0(x) x ∈ ∂Ω,

where β > 0 is a regularization parameter and u0 is given. The implementation of the distributed control

problem in NLP.py is given in Listing 3. The specification of the boundary conditions was left out for

conciseness. In DOLFIN notation, dot(f,f)*dx represents the integral over the entire domain of |f |2. Though

not all details are shown, if model is an instance of the DistributedControl class, it is an NLPModel like any

other, and one may call model.obj(), model.grad() and model.hess() as with any other model. Behind

the scenes, DOLFIN is computing derivatives for us and the infrastructure set in PDENLPModel arranges so the

model appears to the user as any other model.

1 class DistributedControl(PDENLPModel):

2 def register_objective_functional(self):

3 u, f = split(self.u) # (u,f) lives in mixed -FEM space

4 du = u - self.target # self.target is u0

5 return 0.5 * (dot(du,du)*dx + self.beta * dot(f,f)*dx)

6

7 def register_constraint_form(self):

8 u, f = split(self.u)

9 v, w = split(TestFunction(self.function_space))

10 return dot(grad(v),grad(u))*dx - v*f*dx

Listing 3: Implementation of a simple boundary control problem.

The above examples show that NLP.py tries to attain the level of abstraction that is necessary in order

to be able to write optimization solvers that are agnostic to the provenance of models, provided that they

adhere to the (very general) interface described by NLPModel.

Any instance of any subclass of NLPModel may be passed directly to optimization algorithms in NLP.py
or may be composed first with another class so as to apply problem transformations. An example situation

where this is useful is when an algorithm expects to receive a problem with only equality constraints and

bounds. The SlackFramework class does just this by inheriting from NLPModel and specializing the model by

adding slack variables. This means that a SlackFramework object behaves exactly as an NLPModel object

but the methods to evaluate the constraints, the bounds and the constraints Jacobian reflect the new form of

the problem:

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, cL ≤ s ≤ cU, ` ≤ x ≤ u. (2)

A more elaborate example is the AugmentedLagrangian class, which derives from NLPModel and represents

the bound-constrained proximal augmented Lagrangian problem whose (parametrized) objective function is

f(x)− yTk (c(x)− s) + 1
2ρk(‖x− xk‖2 + ‖s− sk‖2) + 1

2δk‖c(x)− s‖22, (3)

where ρk ≥ 0 is a proximal parameter, δk > 0 is a penalty parameter, yk ∈ Rm represents a current
approximation to the vector of Lagrange multipliers associated to the equality constraints of (2), and whose

only constraints are the bounds in (2).

4 CySparse: A fast sparse matrix library

CySparse (Arreckx et al., 2016b) is a sparse matrix library written in Cython that can be used in Python and

Cython projects. CySparse was written as a successor of PySparse (Geus, Orban, and Wheeler, 2009) with

the main goal of eliminating C libraries and the intricacies of interfacing them, and using instead libraries

Les Cahiers du GERAD G–2016–42 7

written in Python and Cython. CySparse’s typed matrix indices and elements are fully compatible with

NumPy (Oliphant, 2006) internal types.

The three sparse matrix data structures currently supported are modeled after PySparse: LL (Linked List),

CSC (Compressed Sparse Column) and CSR (Compressed Sparse Row). SciPy (Jones, Oliphant, Peterson,

et al., 2001) offers corresponding structures. We compare them in section 4.1.

A specialized implementation of each data structure exists for each index and element type. In addition,

each data structure provides the option to store explicit zeros. Only the lower triangle of symmetric matrices

is stored. With two index types and seven element types, there are 84 combinations. In order to specialize

code for each combination, we created our own code generation tool based on the Jinja2 (Ronacher, 2008)

templating engine and packaged it as the cygenja (Arreckx, Orban, and van Omme, 2016a) standalone library,

which may be reused in any Cython project. NumPy and SciPy use similar tools to generate their own typed

versions of templated code. When Cython’s fused types mechanism has matured, the templating engine can

technically be removed from CySparse, which should reduce its footprint.

One of the strengths of CySparse is the frequent use of lazy evaluation. Certain operations such as matrix

addition and multiplication, and multiplication by a scalar are delayed until an end result is required. The

matrix product AB of two sparse matrices is not computed until the user explicitly requests a result, such as

the product itself, the application of AB to a vector, the (i, j)-th element of AB, etc.

LL matrices have a view attached to them—a proxy data structure that corresponds to selected parts of

it. Views are pointers and consume little memory. Therefore, extracting submatrices from a given matrix is a

cheap operation. Similarly, associated matrices, such as the transposed, conjugate and transpose conjugate,
are proxies and can be used almost anywhere a real matrix can.

4.1 Benchmarks

We provide a few benchmarks to showcase the performance of CySparse. We compare it with PySparse (Geus

et al., 2009) and SciPy and we only discuss multiplication of a sparse matrix with a dense NumPy vector.

We randomly generate square sparse matrices of size n× n with nnz nonzero elements. We generate dense
NumPy vectors with NumPy’s arange(0, n, dtype=np.float64).

For each benchmark, we run the four scenarii described in Table 1 100 times for each operation. For each

scenario, operations are ranked by runtime. The most efficient implementation gets a value of 1.0. The values

of the other operations are relative, i.e. an operation with value k takes k times as long to execute as the

most efficient operation.

Table 1: Four benchmark scenarii.

Scenario n nnz

1 104 103

2 105 104

3 106 105

4 106 5 · 103

CySparse, PySparse and SciPy, were compiled and tested with the same flags on the same machine and

using int32 indices and float64 elements.

Table 2 reports benchmarks on the basic matvec operation, i.e. the multiplication Av where A is a n× n
sparse matrix and v is a NumPy vector of length n.

CySparse lets the user simply type A*v to compute the product. PySparse does not support the notation A*v

and only offers A.matvec(v,y) where y is a preallocated vector to store the result. Because both SciPy and

CySparse allocate such a vector transparently, we take into account the time required by PySparse to allocate y.1

1 Using y = numpy.empty(n, dtype=numpy.float64).

8 G–2016–42 Les Cahiers du GERAD

Table 2: Sparse matrix with dense contiguous vector multiplication.

y = A*v with A a LL sparse matrix

Scenario 1 Scenario 2 Scenario 3 Scenario 4

PySparse 1.000 PySparse 1.000 CySparse 2 1.000 PySparse 1.000
CySparse 2 1.158 CySparse 2 1.023 CySparse 1.023 CySparse 1.043
CySparse 1.220 CySparse 1.032 PySparse 1.045 CySparse 2 1.064
SciPy 2 86.395 SciPy 101.536 SciPy 2 55.690 SciPy 133.495
SciPy 87.267 SciPy 2 102.131 SciPy 56.398 SciPy 2 135.512

y = A*v with A a CSR sparse matrix

Scenario 1 Scenario 2 Scenario 3 Scenario 4

PySparse 1.000 CySparse 2 1.000 CySparse 1.000 PySparse 1.000
CySparse 2 1.178 CySparse 1.022 PySparse 1.000 CySparse 1.018
CySparse 1.212 PySparse 1.037 CySparse 2 1.009 CySparse 2 1.061
SciPy 2 1.333 SciPy 2 1.287 SciPy 2 1.114 SciPy 1.419
SciPy 1.373 SciPy 1.308 SciPy 1.135 SciPy 2 1.421

y = A*v with A a CSC sparse matrix

Scenario 1 Scenario 2 Scenario 3 Scenario 4

SciPy 2 1.000 SciPy 1.000 SciPy 2 1.000 SciPy 1.000
SciPy 1.102 SciPy 2 1.004 SciPy 1.002 SciPy 2 1.000
CySparse 2 1.107 CySparse 1.084 CySparse 1.059 CySparse 1.138
CySparse 1.146 CySparse 2 1.120 CySparse 2 1.060 CySparse 2 1.148

CySparse and CySparse 2 in Table 2 represent y = A*v and y = A.matvec(v) respectively while SciPy and

SciPy 2 represent y = A*v and y = A._mul_vector(v), respectively. The “2” variants are equivalent to A*v

minus a small convenience layer that permits the shorthand notation.

Table 2 reveals that using LL and CSR formats, CySparse and PySparse are on par while SciPy is slightly

faster than CySparse when using the CSC format.

The second benchmark in Table 3 investigates the case where the dense NumPy vector is not contiguous in

memory. We can see that our specialized implementation pays off.

Table 3: CSC sparse matrix with dense non contiguous vector multiplication.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CySparse 2 1.000 CySparse 2 1.000 CySparse 2 1.000 CySparse 1.000
CySparse 1.011 CySparse 1.098 CySparse 1.006 CySparse 2 1.007
SciPy 2 1.354 SciPy 2.273 SciPy 2 1.733 SciPy 2 3.193
SciPy 1.394 SciPy 2 2.286 SciPy 1.742 SciPy 3.216

The third and last benchmark in Table 4 compares the multiplication of two sparse matrices with a dense

NumPy vector. CySparse computes A ·B · v as A · (B · v) and clearly this is faster than first computing A ·B
and then (A ·B) · v. Even when we force SciPy to compute A · (B · v), CySparse remains slightly faster.

5 Building blocks for optimization

5.1 Globalization strategies

One of the most important ingredients in nonlinear optimization is the globalization strategy, i.e., the

mechanism by which locally-convergent methods, such as Newton’s method, can converge from a remote initial

guess. Such mechanisms essentially come in two flavors: the linesearch and the trust region. We examine

them in turn and how they are implemented in NLP.py.

Les Cahiers du GERAD G–2016–42 9

Table 4: Sparse matrix with dense contiguous vector multiplication where the sparse matrix is obtained as the product of two
sparse matrices.

y = A*B*v with A a CSR sparse matrix, B a CSC
sparse matrix and v a dense NumPy vector

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CySparse 1.000 CySparse 1.000 CySparse 1.000 CySparse 1.000
SciPy 5.386 SciPy 3.921 SciPy 3.850 SciPy 5.207

y = A*(B*v) with A a CSR sparse matrix, B a CSC
sparse matrix and v a dense NumPy vector

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CySparse 1.000 CySparse 1.000 CySparse 1.000 CySparse 1.000
SciPy 1.019 SciPy 1.016 SciPy 1.011 SciPy 1.049

In constrained optimization, progress is often measured by way of a merit function which is typically
a weighted combination of the objective and constraint functions. Examples include `p-norm exact merit

functions, the augmented Lagrangian function, the logarithmic barrier function or the objective function itself

in unconstrained optimization. We refer the interested reader to, e.g., (Fletcher, 1987) for further information.

Let ψ denote a merit function. In linesearch methods, a search direction d is identified from the current
iterate x and a steplength t > 0 is sought so as to produce a sufficient decrease in the value of ψ. The

notion of sufficient decrease varies with the context and the smoothness of the merit function. When ψ is

continuously differentiable, typical conditions on t are the Armijo condition

ψ(x+ td) ≤ ψ(x) + αt∇ψ(x)T d, (4)

where 0 < α < 1 is a parameter, or the strong Wolfe conditions, which additionally require that

|∇ψ(x+ td)T d| ≤ σ|∇ψ(x)T d|, (5)

where α < σ < 1.

In NLP.py, a linesearch is represented by an abstract LineSearch class and is initialized by first restricting

a model to a line, which is done by creating an instance of the C1LineModel class. If model represents

a problem with objective f and constraints c, if x is the current iterate and d is a nonzero vector, then

C1LineModel(model, x, d) represents a model with objective φ(t) := f(x + td) and constraints γ(t) :=

c(x+ td) as well as bounds on t computed from bounds in model, x and d. Strictly speaking, the restricted

model may be infeasible unless x is feasible for the original model.

Two types of linesearch are currently available in NLP.py: The Armijo linesearch and the strong Wolfe

linesearch as implemented by Moré and Thuente (1994). In addition, a modified Armijo linesearch that

initially increases the step in hopes to satisfy the Wolfe conditions is used in our Python implementation of
the limited-memory BFGS method described in Section 6.

The second type of globalization mechanism available in NLP.py is the trust region. In a trust-region

method for unconstrained optimization, a model m(x+ d) of the objective f about the current iterate x is

approximately minimized within a compact trust region containing x. Typically, this region is a Euclidean

ball or a box centered at x and the model is a quadratic agreeing with f at x at least up to first order. A

typical trust-region problem is thus to

minimize
d∈Rn

m(x+ d) subject to ‖d‖ ≤ ∆. (6)

In constrained optimization, the model is often a simplified version of a merit function. We refer the reader to

the book of Conn, Gould, and Toint (2000) for more information. In the simplest case, building a quadratic

model of f is done by creating an instance QPModel(g, H) where g is a vector specifying the linear term

10 G–2016–42 Les Cahiers du GERAD

and H is a symmetric matrix or linear operator specifying the quadratic term, but note that it is possible

for the quadratic model to have constraints. The abstract TrustRegionFramework class encapsulates the

details pertaining to the definition of a trust region and to its management, including the computation

of the ratio of achieved to predicted reduction. For flexibility, the definition of the model is left to the

user. A TrustRegionFramework is initialized with an initial trust-region radius and constants related to its

management and to step acceptance.

5.2 Numerical linear algebra

In this section, we briefly describe several companion packages that combine with NLP.py and provide linear

algebra tools of critical importance to optimization.

Ordering and scaling The HSL.py satellite package (Arreckx, Orban, and van Omme, 2016c) provides flexible

access to ordering and scaling methods from the Harwell Subroutine Library (2007), including the profile and

wavefront reducing orderings of MC60, the row-permutation package MC21, which aims to produce a matrix

with as many nonzeros as possible on the main diagonal, and the scaling package MC29.

Factorization of symmetric matrices NLP.py provides access to several libraries for the solution of sparse

symmetric linear systems. The Harwell Subroutine Library (2007) subroutines MA27 of Duff and Reid

(1982) and MA57 of Duff (2004) implement multifrontal sparse symmetric indefinite factorizations and are

flexible enough to allow the factorization of definite, symmetric indefinite, and symmetric quasi-definite

(Vanderbei, 1995) matrices. HSL.py interfaces both MA27 and MA57 via the common generic class Sils.2

Two specialized classes MA27Solver and MA57Solver provide seamless access to the factorization, solution

and iterative refinement routines, and to statistics on the factorization, including the inertia of the matrix,

and in particular its number of negative eigenvalues—a critical information when factorizing saddle-point

matrices (Gould, 1985).

MUMPS (Amestoy, Duff, and L’Excellent, 1998) is a multifrontal factorization for both symmetric and

unsymmetric matrices that targets distributed memory computers, features out-of-core factorization, and

accomodates sparse right-hand sides. MUMPS.py provides a Python interface to MUMPS that is compatible

with CySparse matrices. Because MUMPS.py and HSL.py share the same solver interfaces, MA27, MA57 and

MUMPS may be simply swapped when used in NLP.py.

Factorization of non-symmetric matrices NLP.py can be used in conjunction with the satellite packages

qr mumps.py and SuiteSparse.py to factorize rectangular matrices, which is crucial to least-squares problems,

as well as square unsymmetric matrices.

qr mumps.py is a set of interfaces to qr mumps (Buttari, 2013), a multicore QR factorization well suited

to the solution of large and sparse least-squares and least-norm problems. In the same vein, SuiteSparse.py
provides access to the multifrontal sparse LU factorization implemented in UMFPACK (Davis, 2004) and the

supernodal sparse Cholesky factorization implemented in CHOLMOD.

The Python classes exposing those packages accept a sparse matrix in coordinate format or a CySparse
matrix. Therefore, any CySparse matrix originating from NLP.py may be passed to those classes and

factorization methods can be easily interchanged.

5.2.1 Iterative methods

PyKrylov (Orban, 2009) is a pure Python implementation of a number of Krylov subspace methods for

symmetric and non-symmetric linear systems together with a library of linear operators, i.e., abstract objects

that derive from a base LinearOperator class and encapsulate the action of a linear operator on a vector.

They obey the laws of mathematical linear operators, i.e., (A+B)x = Ax+Bx and (αA)x = α(Ax). Linear

operators may be used to wrap matrices and linear functions, and may be chained by way of multiplication.

2 Symmetric Indefinite Linear System

Les Cahiers du GERAD G–2016–42 11

For example, if A and B are two linear operators, C=A*B is another linear operator but its construction is

cheap; only its action C*x is computed when requested, and it will be computed as A*(B*x). Linear operators

may be transposed, conjugated, added together, restricted or composed into block operators, making them

ideal tools to work with in the context of iterative methods for linear systems.

PyKrylov provides access to limited-memory quasi-Newton operators in standard or compact form (Byrd,

Nocedal, and Schnabel, 1994), including the limited-memory BFGS, DFP and SR1 approximations.

Because the most expensive operations in Krylov methods are operator-vector products, dot products

and axpys, the performance hit incurred by PyKrylov for being implemented in a high-level language is low.

Assuming the user implements efficient operator-vector products, by relying on a fast sparse matrix package

or otherwise, NumPy handles vector operations efficiently via an optimized BLAS. A considerable advantage

of pure Python implementations of Krylov methods is that adding new methods is simple via subclassing.
PyKrylov currently features the conjugate gradient algorithm (Hestenes and Stiefel, 1952), the bi-conjugate

gradient stabilized algorithm (van der Vorst, 1992), the symmetric LQ method (Paige and Saunders, 1975), the

transpose-free quasi-minimum residual algorithm (Freund, 1993), the conjugate gradient squared algorithm
(Sonneveld, 1989), MINRES (Paige and Saunders, 1975), LSMR (Fong and Saunders, 2011), LSQR (Paige

and Saunders, 1982b) and CRAIG (Saunders, 1995). PyKrylov is distributed separately from the main NLP.py
source code as it is useful in other contexts.

Other iterative methods are part of NLP.py itself because of their relevance to optimization. Those include

the truncated conjugate-gradient algorithm of Steihaug (1983), and the projected conjugate gradient algorithm

of Gould, Hribar, and Nocedal (2001).

Preconditioning A good preconditioner is often essential in the iterative solution of linear systems or trust-

region subproblems. The diversity of applications of optimization makes it difficult to supply useful specialized

preconditioners. For this reason, a few generic preconditioners are available in NLP.py. There are currently

three types of preconditioners available: diagonal, band and based on the limited-memory LDLT factorization.

A diagonal preconditioner is simple and only consists in extracting the diagonal from an explicit matrix.

If A is a square matrix, the diagonal preconditioner is D−1 where dii = max{|aii|, 1}. Band preconditioners

require one of the factorizations for symmetric definite matrices covered in Section 5.2. More efficient

factorizations exist for banded systems, such as that of Gill, Murray, and Wright (1981) and of Schnabel and

Eskow (1999). Incomplete factorizations are popular preconditioners in a variety of fields such as multigrid

methods for partial-differential equations. They typically consist in computing a factorization of a matrix,

dropping elements in the factors that fall below a specified threshold in absolute value or that exceed the

amount of memory the user is prepared to expend. This has the effect of promoting sparse factors, at the

expense of preconditioner quality. A generalization of the incomplete Cholesky factorization of Lin and Moré

(1999) to symmetric quasi-definite matrices is proposed by Orban (2014) and implemented in the LLDL.py
package (Arreckx, Orban, and van Omme, 2016d).

6 Solvers

NLP.py provides complete solvers for various areas of optimization. Each solver can be run programmatically

or as a stand-alone executable from the command line to solve problems in AMPL format. The intent is that

solver classes be subsequently called from other applications in which optimization problems must be solved.

In this section, we briefly describe the solvers currently available and the problem classes to which they apply,

and highlight implementation specifics.

Unconstrained optimization Unconstrained optimization problems have the general form

minimize
x∈Rn

f(x), (7)

12 G–2016–42 Les Cahiers du GERAD

where f : Rn → R is generally assumed to be once or twice continuously differentiable. An important

distinction between numerical methods for (7) is based on the availability of second-order derivatives. The

numerical methods for unconstrained optimization currently implemented in NLP.py reflect this distinction.

trunk, is a factorization-free non-monotone trust-region method. At each iteration, the second-order

model

mk(xk + s) = f(xk) +∇f(xk)T s+ 1
2s

T∇2f(xk)s ≈ f(xk + s)

is approximately minimized inside a Euclidean trust region by way of the truncated conjugate gradient

algorithm of Steihaug (1983). Instead of shrinking the trust-region radius on unsuccessful iterations, a

backtracking linesearch is performed along the step in the spirit of Nocedal and Yuan (1998). The truncated

conjugate gradient may be preconditioned with a user-supplied preconditioner such as a band preconditioner

or a limited-memory Cholesky factorization—see Section 5.2.1. The convergence of trunk is covered in

(Conn et al., 2000).

The second method implements the limited-memory BFGS algorithm of Liu and Nocedal (1989). An

approximation of the Hessian matrix is implicitly maintained as a limited-memory BFGS matrix Hk such that

H−1
k ≈ ∇2f(xk). Global convergence is promoted by way of a strong Wolfe linesearch, but in practice we

have found that a modified Armijo linesearch is nearly as effective. The management of Hk is confined to a

linear operator defined in PyKrylov so that products of the form H−1
k d take the abstract form H*d. Internally,

the product is computed by the two-loop recursion formula (Nocedal, 1980) or using the compact storage of

limited-memory matrices (Byrd et al., 1994). The main class defining the framework for the limited-memory

BFGS method has as one of its members an InverseLBFGSOperator object whose role is to manage the

circular stacks and compute matrix-vector products with H−1
k . This modular design allows InverseLBFGS

objects to be used in other contexts, such as for preconditioning.

Convex quadratic programming Interior-point methods are a well-established class of methods that have

proved to be especially efficient on linear and convex quadratic programs, i.e., problems of the form

minimize
x∈Rn

gTx+ 1
2x

THx subject to Ax = b, x ≥ 0, (8)

where g ∈ Rn, H = HT ∈ Rn×n is positive semi-definite, A ∈ Rm×n and b ∈ Rm. When H = 0, (8) is a

linear program. Note that a linear or convex quadratic program modeled for solution in NLP.py need not be

in standard form, although (8) is written in this way for simplicity. Two of the best-known interior-point

methods for (8) are the long-step method (Kojima, Megiddo, and Mizuno, 1993) and the predictor-corrector

method of Mehrotra (1992) in augmented form (Fourer and Mehrotra, 1993). To account for situations

where A is (numerically) rank deficient, we implement the primal-dual regularized variant of Friedlander and

Orban (2012). At each iteration, a quasi-definite linear system with coefficient of the form[
−(X−1Z + ρI) AT

A δI

]
(9)

is solved, for iteration-dependent values ρ and δ decreasing to zero. Factorizing the latter matrix is typically

substantially cheaper and faster than factorizing the indefinite augmented matrix with ρ = δ = 0. Our

implementation features row and column equilibration of A prior to solution which in our experience increases

robustness and the accuracy of the linear system solution.

In NLP.py, the main abstract class implementing the primal-dual-regularized interior-point solver is named

InteriorPointSolver. A user may elect to use the scaling implemented in the Harwell Subroutine Library

(2007) subroutine MC29 instead of the row and column equilibration. In our implementation, this is realized

by subclassing InteriorPointSolver and overriding the scale() and unscale() methods.

Dehghani and Orban (2016) subclass InteriorPointSolver to implement a corresponding method for

linear least-squares problems with linear constraints without forming the normal equations operator.

Les Cahiers du GERAD G–2016–42 13

Bound-constrained optimization Bound-constrained problems have the form

minimize
x∈Rn

f(x) subject to ` ≤ x ≤ u, (10)

and occur naturally in numerous practical applications such as image reconstruction and the discretization of

optimal control problems with obstacles, but they also occur as subproblems in methods for general nonlinear

problems, such as augmented-Lagrangian methods. In (10), the function f is not assumed to be convex but

its second derivatives are assumed to exist and be continuous.

We elected to implement TRON (Lin and Moré, 1998), an active-set method that iteratively determines

a current working set by way of a projected gradient method, and explores faces of the feasible set using a

Newton trust-region method. Our implementation is factorization-free in the sense that only Hessian-vector

products are required, which allows us to use quasi-Newton approximations when second-order derivatives are

not available or costly to obtain. When used with limited-memory BFGS approximations, TRON becomes a

trust-region variant of L-BFGS-B (Byrd, Lu, Nocedal, and Zhu, 1995).

Equality-constrained optimization NLP.py features an implementation of the funnel method of Gould and

Toint (2008) for the general equality-constrained problem

minimize
x∈Rn

f(x) subject to c(x) = 0. (11)

Funnel avoids the use of penalty parameters or filters and make use of two trust-region mechanisms to promote

global convergence. Steps are computed as a combination of normal and tangential components. An example

of opportunity for specialization occurs in the normal step computation, which requires the solution of an

inconsistent underdetermined linear least-squares problem subject to a trust-region constraint. Such a problem

can be solved using one of the least-squares solvers available in PyKrylov, and various least-squares solvers can

be used via subclassing.

General constrained optimization In general constrained optimization, we seek to solve (1) in its most general

form, i.e., the objective function is nonconvex as are the constraint functions. For simplicity of notation

and because the numerical method described in this section treats bound constraints and general inequality
constraints alike, we rewrite the problem as

minimize
x∈Rn

f(x) subject to cE(x) = 0, cI(x) ≥ 0, (12)

where E and I are finite index sets with nE and nI elements, respectively. Note that (1) can always be
cast as (12).

The first method we elected to implement as part of NLP.py for the solution of general constrained opti-

mization problems consists in a mixed interior/exterior penalty method. The formulation (12) is transformed

by using an `1-penalty function to penalize infeasibility. The nonsmooth penalty terms are subsequently

rewritten as smooth terms by adding elastic variables s to the problem. The penalized problem takes the form

minimize
x∈Rn, s∈RnC

φ(x, s; ν) subject to ci(x) + si ≥ 0, si ≥ 0, for all i ∈ C, (13)

where

φ(x, s; ν) = f(x) + ν
∑
i∈E

(ci(x) + 2si) + ν
∑
i∈I

si.

In the above formulation, C = E ∪ I, nC = nE + nI , and ν > 0 is a penalty parameter that is updated at

each iteration. The strong relationship between (12) and (13) makes this approach attractive. Moreover, the

elastic variables have a regularizing effect in the sense that (13) always satisfies a constraint qualification

even if (12) does not. For this reason, Coulibaly and Orban (2012) apply the same idea to problems with

complementarity constraints. We refer the interested reader to (Gould, Orban, and Toint, 2015a) for more

details. The ElasticFramework abstract class performs the transformation above behind the scenes using a

derived class of NLPModel.

14 G–2016–42 Les Cahiers du GERAD

The second method for (12) that is implemented is an augmented Lagrangian method. Firstly slack

variables are introduced so the problem has constraints of the form c(x) = 0 and ` ≤ x ≤ u. The k-th outer

iteration of the augmented-Lagrangian algorithm consists in approximately solving the bound constrained

subproblem

minimize
x∈Rn

f(x) + c(x)T yk + 1
2δk‖c(x)‖22 subject to ` ≤ x ≤ u, (14)

where yk is the current vector of Lagrange multipliers estimates and δk > 0. Subproblem (14) is solved

using TRON with a limited-memory structured quasi-Newton Hessian approximation, i.e., one of the form

Bk + δkJ(xk)TJ(xk) where Bk ≈ ∇xxL(xk, yk), and where L(x, y) = f(x)− c(x)T y is the Lagrangian of the

problem and J(x) is the Jacobian of c at x. This implementation of the augmented Lagrangian resembles

that in LANCELOT (Gould, Orban, and Toint, 2003a) with the exception of the solution of (14). Arreckx

et al. (2015) use this augmented Lagrangian in the context of high-fidelity structural-design optimization.

7 Applications

In this final section, we illustrate a few concepts from the previous sections via two examples.

Quasi-Newton TRON The first example is a customization of the TRON solver described briefly in Section 6.

TRON, in the original version of Lin and Moré (1998), minimizes a sequence of quadratic models using

the conjugate gradient method with an incomplete Cholesky factorization preconditioner. For this reason,

it relies on exact second derivatives stored as an explicit matrix. In NLP.py, the default TRON class only

assumes that Hessian-vector products are available and thus, applies the conjugate gradient method without
preconditioner. Listing 4 shows how to define a subclass QNTRON of the TRON base class to handle models

that employ a quasi-Newton Hessian approximation. In NLP.py, all solver classes possess a callback method

named post_iteration() that is called, as the name indicates, at the end of every iteration. It allows users

to perform additional tasks such as updating a limited-memory quasi-Newton approximation. After a new

iterate is computed, the oldest vector pair in the set of pairs {si, yi}, for i = 1, ...,m is replaced by the new

pair {dvars, dgrad} computed from the most recent step. The rest of Listing 4 illustrates the creation of
a model using the compact representation of a symmetric rank one approximation of the Hessian and the

instantiation of a QNTRON solver that uses a truncated conjugate gradient to solve trust-region subproblems.

The solver is started by calling its solve() method.

1 from pykrylov.linop import CompactLSR1Operator as LSR1

2 from nlp.optimize.tron import TRON

3 from nlp.optimize.pcg import TruncatedCG

4 from nlp.model.amplmodel import QNAmplModel as Model

5

6 class QNTRON(TRON):

7 """A variant of TRON with L-SR1 quasi -Newton Hessian."""

8

9 def __init__(self , *args , ** kwargs):

10 super(QNTRON , self). __init__ (*args , ** kwargs)

11 self.save_g = True

12

13 def post_iteration(self , ** kwargs):

14 # Update quasi -Newton approximation.

15 if self.step_accepted:

16 self.model.H.store(self.dvars , self.dgrad)

17

18 model = Model(problem , H=LSR1 , npairs=5, scaling=True)

19

20 tron = QNTRON(model , TruncatedCG)

21 tron.solve()

Listing 4: Subclassing TRON for quasi-Newton approximations.

The performance profiles of Dolan and Moré (2002) are employed to compare the impact of using quasi-

Newton approximations with TRON from the points of view of efficiency and robustness. Efficiency and

Les Cahiers du GERAD G–2016–42 15

robustness rates are readable respectively on the left and right vertical axes of the profile. Figure 1 compares

the basic version of TRON, which uses exact second derivatives, with two limited-memory symmetric rank one

versions, using 5 and 10 pairs in history on 124 unconstrained problems and 61 bound-constrained problems

from the AMPL/CUTEr collection (Vanderbei, 2009). The plots indicate the performance loss that may be

expected when using limited-memory SR1 approximations to the second derivatives. They show however that

the compact representation and two-loop recursion implementations perform very similarly, and that there

does not seem to be a definite advantage to using 10 pairs instead of 5.

20 21 22 23 24 25

Within this factor of the best

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

Number of function evaluations

TRON_basic

TRON_SR1_5

TRON_SR1_10

TRON_SR1_compact_5

TRON_SR1_compact_10

20 21 22 23

Within this factor of the best

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

Number of function evaluations

TRON_basic

TRON_SR1_5

TRON_SR1_10

TRON_SR1_compact_5

TRON_SR1_compact_10

Figure 1: Performance profiles comparing the TRON with exact second derivatives and with symmetric rank one approximations
using 5 or 10 pairs. Left: 124 unconstrained problems. Right: 61 bound-constrained problems.

Lagrange multipliers estimates in Funnel In the funnel method of Gould and Toint (2008), a sequence of

normal and tangential steps are performed either to reduce constraint violation or the objective function while

retaining the improvement in constraint violation. In preparation for a tangential step, new local Lagrange
multiplier estimates yk are computed by solving the least-squares problem

min
y

1
2‖g

N
k + JT

k y‖2,

where gNk is the gradient of a quadratic model of the objective function and Jk is the Jacobian of the constraints
at xk. In practice, one can compute such an approximation by applying a Krylov method such as LSQR

(Paige and Saunders, 1982a,b), which is available in PyKrylov, starting from y = 0. Listing 5 illustrates how

to implement this strategy by defining a subclass LSQRFunnel of the Funnel base class. Our subclass must

implement the multipliers_estimate() method to provide Lagrange multipliers estimates.

1 from pykrylov.lls.lsqr import LSQRFramework

2 from nlp.optimize.funnel import Funnel

3

4 class LSQRFunnel(Funnel):

5

6 def multipliers_estimate(self , A, b):

7 LSQR = LSQRFramework(A)

8 LSQR.solve(b, show=False)

9 return (LSQR.x, LSQR.xnorm)

Listing 5: Subclassing Funnel for estimation of the Lagrange multipliers using LSQR.

16 G–2016–42 Les Cahiers du GERAD

If the user would now like to compute multipliers using a multi-core sparse QR factorization, the procedure

is the same, and consists in subclassing Funnel and overloading the multipliers_estimate() method. That

is illustrated in Listing 6.

1 from qr_mumps.solver import QRMUMPSSolver

2 from nlp.optimize.funnel import Funnel

3

4 class QRMUMPSFunnel(Funnel):

5

6 def multipliers_estimate(self , A, b):

7 qr = QRMUMPSSolver(A)

8 qr.factorize ()

9 x = qr.solve(b)

10 return (x, numpy.linalg.norm(x))

Listing 6: Subclassing Funnel for estimation of the Lagrange multipliers using qr mumps.

8 Conclusion

The design of the NLP.py programming environment for optimization makes extensive use of object-oriented
features, such as abstract classes and multiple inheritance. The environment provides basic building blocks

for large-scale computational optimization. The Python language is mature but in constant evolution and

scientific extensions to the language have grown for the past 15 years from basic interfaces to extensive

state-of-the-art libraries.

Admittedly, we had to make choices as to which complete solvers to include in NLP.py. Numerous other

solvers are promising candidates and will certainly be included in future versions, as will other sets of tools.

At the present time, our hope is that researchers find NLP.py to be a valuable development platform for

novel optimization methods and that the list of tools and solvers expands. NLP.py may be obtained from

github.com/PythonOptimizers/NLP.py.git.

http://github.com/PythonOptimizers/NLP.py.git

Les Cahiers du GERAD G–2016–42 17

References
P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers.

Computer Methods in Applied Mechanics and Engineering, 184:501–520, 1998.

S. Arreckx, A. Lambe, J. R. R. A. Martins, and D. Orban. A matrix-free augmented Lagrangian algorithm with
application to large-scale structural design optimization. Optimization and Engineering, pages 1–26, October 2015.

S. Arreckx, D. Orban, and N. van Omme. Cygenja: A source code generator using Jinja2 templates.
github.com/PythonOptimizers/cygenja, March 2016a.

S. Arreckx, D. Orban, and N. van Omme. CySparse: A Python/Cython library for sparse matrices.
github.com/PythonOptimizers/cysparse, March 2016b.

S. Arreckx, D. Orban, and N. van Omme. HSL.py: A Python/Cython interface to the Harwell Subroutine Library.
github.com/PythonOptimizers/HSL.py, March 2016c.

S. Arreckx, D. Orban, and N. van Omme. LLDL.py: A limited-memory ldlt factorization in Python.
github.com/PythonOptimizers/LLDL.py, March 2016d.

C. Audet, C.-K. Dang, and D. Orban. Algorithmic parameter optimization of the DFO method with the OPAL
framework. In J. Cavazos K. Naono, K. Teranishi and R. Suda, editors, Software Automatic Tuning: From Concepts
to State-of-the-Art Results, Springer, New-York, NY, 255–274, 2010.

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.
PETSc Web page, 2009. www.mcs.anl.gov/petsc.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best of both worlds.
Computing in Science Engineering, 13(2):31–39, March 2011.

S. Benson, L. C. McInnes, J. J. Moré, T. Munson, and J. Sarich. TAO user manual (revision 3.7). Technical Report
ANL/MCS-TM-322, Argonne National Laboratory, Argonne, Illinois, USA, 2016. www.mcs.anl.gov/tao.

A. Buttari. Fine-grained multithreading for the multifrontal QR factorization of sparse matrices. SIAM Journal on
Scientific Computing, 35(4):C323–C345, January 2013.

R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their use in limited
memory methods. Mathematical Programming, 63(1):129–156, 1994.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM
Journal on Scientific Computing, 16(5):1190–1208, September 1995.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, USA, 2000.

Z. Coulibaly and D. Orban. An `1 elastic interior-point method for mathematical programs with complementarity
constraints. SIAM Journal on Optimization, 22(1):187–211, 2012.

P.-R. Curatolo. Méthodes de pénalisation pour l’optimisation de structures. Ms thesis, École Polytechnique de Montréal,
Montréal, Québec, Canada, 2008.

J. Dahl and L. Vandenberghe. CVXOPT: Python software for convex optimization. abel.ee.ucla.edu/cvxopt, July
2009.

T. A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Transactions on
Mathematical Software, 30(2):196–199, June 2004.

M. Dehghani and D. Orban. A regularized interior-point method for constrained linear least squares. Cahier du
GERAD G-2016-xx, GERAD, Montréal, QC, Canada, 2016. In preparation.

E. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming,
Series B, 91(2):201–213, January 2002.

E. D. Dolan, J. J. Moré, and T. S. Munson. Benchmarking optimization software with COPS 3.0. Technical Report
ANL/MCS-273, Argonne National Laboratory, Argonne, Illinois, USA, 2004.

I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on
Mathematical Software, 30(2):118–144, June 2004.

I. S. Duff and J. K. Reid. MA27—a set of Fortran subroutines for solving sparse symmetric sets of linear equations.
Report AERE R10533, HMSO, London, UK, 1982.

R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, England, second edition, May 1987.

D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM Journal on
Scientific Computing, 33(5):2950–2971, January 2011.

R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior-point method for linear programming.
Mathematical Programming, 62(1-3):15–39, February 1993.

https://github.com/PythonOptimizers/cygenja
https://github.com/PythonOptimizers/cysparse
https://github.com/PythonOptimizers/HSL.py
https://github.com/PythonOptimizers/LLDL.py
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/tao
http://abel.ee.ucla.edu/cvxopt

18 G–2016–42 Les Cahiers du GERAD

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical Programming. Duxbury
Press / Brooks/Cole Publishing Company, second edition, 2002.

R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems. SIAM Journal on
Scientific Computing, 14(2):470–482, March 1993.

M. P. Friedlander and D. Orban. A primal–dual regularized interior-point method for convex quadratic programs.
Mathematical Programming Computation, 4(1):71–107, 2012.

D. M. Gay. Hooking your solver to AMPL. Technical Report 97-4-06, Lucent Technologies Bell Labs Innovations,
Murray Hill, NJ, 1997. www.ampl.com/REFS/HOOKING.

D. M. Gay. Writing .nl files. Technical Report SAND2005-7907P, Sandia National Laboratories, Albuquerque, NM,
2005.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming. ACM Transactions on Mathematical
Software, 29(1):58–81, March 2003.

R. Geus, D. Orban, and D. Wheeler. PySparse: a fast sparse matrix library in Python. pysparse.sf.net, July 2009.

Ph. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1981.

J. Gondzio and A. Grothey. Parallel interior-point solver for structured quadratic programs: Application to financial
planning problems. Annals of Operations Research, 152(1):319–339, July 2007.

J. Gondzio and R. Sarkissian. Parallel interior-point solver for structured linear programs. Mathematical Programming,
96(3):561–584, 2003.

N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic
programming problem. Mathematical Programming, 32(1):90–99, May 1985.

N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or a filter. Mathematical
Programming, 122(1):155–196, 2008.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained quadratic programming problems
arising in optimization. SIAM Journal on Scientific Computing, 23(4):1376–1395, January 2001.

N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe Fortran 90 packages for large-scale
nonlinear optimization. ACM Transactions on Mathematical Software, 29(4):353–372, December 2003a.

N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and SifDec, a Constrained and Unconstrained Testing Environment,
revisited. ACM Transactions on Mathematical Software, 29(4):373–394, December 2003b.

N. I. M. Gould, D. Orban, and Ph. L. Toint. An interior-point `1-penalty method for nonlinear optimization. In
M. Al-Baali, L. Grandinetti, and A. Purnama, editors, Recent Developments in Numerical Analysis and Optimization,
volume 134 of Proceedings in Mathematics and Statistics, pages 117–150, Switzerland, 2015a. Springer. special issue
of NAOIII, Muscat, Oman, 2014.

N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Unconstrained Testing Environment with
safe threads for Mathematical Optimization. Computational Optimization and Applications, 60:545–557, 2015b.

A. Griewank. Evaluating derivatives: Principles and techniques of algorithmic differentiation. Number FR19 in
Frontiers in Applied Mathematics. SIAM, Philadelphia, USA, 2000.

W. E. Hart. Coopr: A common optimization repository. Technical Report, Sandia National Laboratory, Albuquerque,
NM, 2009. software.sandia.gov/trac/coopr.

W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff. Pyomo – Optimization Modeling in Python. Springer US,
2012.

Harwell Subroutine Library. A collection of Fortran codes for large-scale scientific computation. AERE Harwell
Laboratory, Harwell, Oxfordshire, England, 2007. URL www.numerical.rl.ac.uk/hsl.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of research of the
National Bureau of Standards, 49:409–436, 1952.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001. URL www.scipy.org.

M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming.
Mathematical Programming, 61(1-3):263–280, August 1993.

S. Leyffer. MacMPEC: AMPL collection of MPECs. www.mcs.anl.gov/∼leyffer/MacMPEC, 2004.

C.-J. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization problems. SIAM Journal on
Optimization, 9:1100–1127, 1998.

C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific
Computing, 21(1):24–45, 1999.

D. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming,
45(1-3):503–528, August 1989.

http://www.ampl.com/REFS/HOOKING
http://pysparse.sf.net
https://software.sandia.gov/trac/coopr
www.numerical.rl.ac.uk/hsl
www.scipy.org
http://www.mcs.anl.gov/~leyffer/MacMPEC

Les Cahiers du GERAD G–2016–42 19

A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Transactions on Mathematical
Software, 37(2):1–28, April 2010.

A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite Element Method.
Springer, 2012. ISBN 978-3-642-23098-1.

A. Makhorin. GNU Linear Programming Kit version 4.11. Department for Applied Informatics, Moscow Aviation
Institute, Moscow, Russia, 2006. www.gnu.org/software/glpk/glpk.html.

S. Mehrotra. On the implementation of a primal-dual interior-point method. SIAM Journal on Optimization, 2(4):
575–610, November 1992.

J. C. Meza, R. A. Oliva, P. D. Hough, and P. J. Williams. OPT++: An object-oriented toolkit for nonlinear
optimization. ACM Transactions on Mathematical Software, 33(2):12, June 2007.

J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed sufficient decrease. ACM Transactions on
Mathematical Software, 20(3):286–307, September 1994.

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computations, 35:773–782, 1980.

J. Nocedal and Y. Yuan. Combining trust region and line search techniques. In Y. Yuan, editor, Advances in Nonlinear
Programming, Kluwer Academic Publishers, Dordrecht, The Netherlands, 153–176, 1998.

T. E. Oliphant. Guide to NumPy. Provo, UT, 2006. URL www.tramy.us.

D. Orban. PyKrylov: Krylov subspace methods in pure Python. github.com/dpo/pykrylov, July 2009.

D. Orban. Limited-memory ldlt factorization of symmetric quasi-definite matrices with application to constrained
optimization. Numerical Algorithms, 70(1):9–41, 2014.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical
Analysis, 12(4):617–629, 1975.

C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and least-squares problems. ACM
Transactions on Mathematical Software, 8(2):195–209, June 1982a.

C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software, 8(1):43–71, March 1982b.

R. E. Perez, P. W. Jansen, and J. R. R. A. Martins. pyOpt: A Python-based object-oriented framework for nonlinear
constrained optimization. Structures and Multidisciplinary Optimization, 45(1):101–118, 2012.

A. Ronacher. Jinja2: A full featured template engine for Python. jinja.pocoo.org/, 2008.

M. Sala, W. F. Spotz, and M. A. Heroux. PyTrilinos: High-performance distributed-memory solvers for Python. ACM
Transactions on Mathematical Software, 34(2):1–33, March 2008.

M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numerical Mathematics, 35(4):
588–604, December 1995.

R. B. Schnabel and E. Eskow. A revised modified Cholesky factorization algorithm. SIAM Journal on Optimization, 9
(4):1135–1148, January 1999.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 10(1):36–52, January 1989.

T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical
Analysis, 20(3):626–637, June 1983.

M. Stuart, M. OSullivan, and I. Dunning. PuLP: a linear programming toolkit for Python. www.optimization-

online.org/DB_FILE/2011/09/3178.pdf, 2011.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric
linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, March 1992.

R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM Journal on Optimization, 5(1):100–113, February 1995.

R. J. Vanderbei. Nonlinear optimization models. www.orfe.princeton.edu/∼rvdb/ampl/nlmodels, July 2009.

S. Walter. PyCPPAD. github.com/b45ch1/pycppad, March 2011a.

S. Walter. ALGOPy. github.com/b45ch1/algopy, March 2011b.

S. Walter. PyADOLC. github.com/b45ch1/pyadolc, March 2011c.

A. Walther, A. Kowarz, and A. Griewank. Documentation of ADOL-C, 2005. URL projects.coin-or.org/ADOL-C.
Updated version of Griewank et al., 1996.

http://www.gnu.org/software/glpk/glpk.html
www.tramy.us
http://github.com/dpo/pykrylov
http://jinja.pocoo.org/
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels
http://github.com/b45ch1/pycppad
http://github.com/b45ch1/algopy
http://github.com/b45ch1/pyadolc
projects.coin-or.org/ADOL-C

	Introduction
	Overall design and structure
	Modeling
	CySparse: A fast sparse matrix library
	Benchmarks

	Building blocks for optimization
	Globalization strategies
	Numerical linear algebra
	Iterative methods

	Solvers
	Applications
	Conclusion

