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Abstract: In this paper, we propose a new scheme for building algorithms to detect communities in networks.
This new approach is based upon a vertex centrality measure and the hypothesis that central vertices, i.e.
vertices with high centrality, link distinct communities. It turns out that the betweenness centrality and
the centrality based upon the clustering coefficient provide good results, but it is also the case for the
eigenvector centrality. These methods are experimented on 11 classical networks and results are compared to
those produced by Blondel’s algorithm [6], polynomial-time heuristic optimizing the modularity centrality,
and those by an algorithm [2] finding the optimal partition for the modularity centrality. Based on this
new approach, the resulting algorithm runs, beyond the centrality computation, in O(max(n log(n),m)).
These preliminary results are encouraging and will lead to further research for finding appropriate centrality
measures and study their performance.
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Introduction

When searching for communities in networks, the first question that arises is to know the definition of a

community. Unfortunately, there is no exact definition of communities, but it is generally accepted that

communities are groups of individuals that are more related to each others than to the individuals from other

communities. From an intuitive way, individuals from the same community are related, which means that

they more or less know each others.

A measure of belonging to a community is the clustering coefficient [29] which is the proportion of

neighbors of a vertex that are adjacent. The value of the clustering coefficient lies between 0 and 1. It is

1 when all the neighbors of the vertex are adjacent (which means that the vertex and its neighbors make

a clique), and it is 0 when none of the neighbors are adjacent (which tends to indicate that the vertex

is actually a bridge between communities). Observe that a centrality measure can be obtained from the

clustering coefficient by subtracting his value from 1. It is certainly not by chance if the clustering coefficient

was used as a starting point of the algorithm from Castellano, Cecconi, Loreto, Parisi, and Radicchi [28] for

community detection.

It is also not surprising to see that the betweenness centrality [17, 18] was also used for that same purpose.

Indeed, the betweenness centrality can be also computed for each vertex and is defined as the number of

shortest paths between pairs of vertices and containing this vertex. When studying these two measures and

their bounds with AutoGraphiX [15, 14], we notice that the upper bound of the clustering coefficient is

achieved for a vertex when and only when the lower bound of the betweenness centrality is too for the same

vertex, and actually this vertex has all its neighbors pairwise adjacent.

A contribution of this paper is the following approach: communities are not built around influential

individuals, i.e. vertices with high centrality, but at the opposite, influential individuals actually link com-

munities. From now, these vertices are called central, due to their role. Therefore, in terms of clustering

coefficient, influential individuals correspond to vertices with a high centrality, i.e. a low clustering coefficient,

approaching to 0.

Accordingly, the problem of finding communities may be handled from a different point of view. Commu-

nity detection may be achieved by identifying a set of vertices that make links between communities. Based

on the above mentioned remarks, we propose an algorithm in two steps to identify kernels of communities.

The first step is to find central vertices, corresponding to influential individuals. After removing central

vertices, each remaining connected component is then the kernel of a community.

The algorithm proposed by Newman and Girvan [27] was based upon a related principle. Indeed, they

used the betweenness centrality as a measure to find edges with a specific role. According to them, edges with

a high betweenness are links between different communities. Therefore, their algorithm removes iteratively

these edges and, after each removal, the betweenness centrality is recalculated. The communities then appear

as connected components in the remaining graph.

The main differences in the present paper compared to [27] are that our approach is valid for any centrality

measures and we suggest to remove vertices instead of edges. This approach seems more promising in the

case some vertex belongs to different communities and is strongly connected to each of them. In such a case,

no edge has a significant weight, which prevents the separation of the communities. Since each vertex has a

local influence, instead of sorting the vertices according to its centrality over the whole graph, we propose to

compare its centrality to its neighbors. It is another difference.

The new algorithm aims at finding communities in graphs using different vertex-related measures. It

turns out that the betweenness centrality or the local clustering coefficient may both be used as a starting

point, but each of them has some limitations. First, the clustering coefficient can not be used in the case of

bipartite graphs, which is problematic since there are a wide variety of situations that may be modeled by

bipartite graphs. Second, the betweenness centrality could be applied in any case, but it implies to compute

shortest paths between pairs of vertices. If this computation is polynomial, it is difficult to achieve in very

large graphs in a reasonable time. For these reasons, we propose also the use of eigenvector centrality [10, 12]
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as an alternative. Using the power iteration algorithm, this centrality may be computed very efficiently even

for very large graphs.

The description of the algorithm is given in the first section. In the second section, some numerical results

are provided and the obtained partitions are compared to those obtained by modularity [27] maximization

(exact algorithm [2] and heuristic with the Blondel’s algorithm [6]). Finally, in a third section, some issues

are raised and discussed in the conclusion.

1 Description of the algorithm

Based on the principle that central vertices make the link between communities, the first step of the algorithm

is to identify these vertices, according to a centrality measure. Various centrality measures may be used,

among which the most promising are the betweenness centrality [17, 18] and the centrality deduced from

the clustering coefficient [29]. Other centrality measures may also be considered, such as the eigenvector

centrality [10, 11] for instance.

It may occur that the vertices with higher centrality are close to each other. Moreover, since linking

various communities is a local property, instead of considering vertices with higher centrality over the whole

graph, we consider vertices with higher centrality relative to its neighborhood. Formally, central vertices

are vertices with a centrality greater than a threshold depending on its neighborhood. In this paper, we

investigate when the threshold of a vertex equals the average of the centrality measure of its neighbors.

Require: A connected graph G
Ensure: A partition of the vertices in communities

1: S ← ∅;
2: Compute cv the centrality of each vertex v ∈ V ;
3: Order the vertices with increasing centrality cv , breaking ties arbitrarily;

4: Compute t(v) the threshold above which v is considered central, i.e. t(v)←
∑

u∈N(v) cu

|N(v)| ;

5: if cv > t(v) then
6: S ← S ∪ {v};
7: end if
8: Let G′ = G \ S be the graph obtained from G by removing vertices of S;
9: Let P be the partition of G′ in connected components (communities);

10: while S 6= ∅ do
11: for each v ∈ S (by increasing order of cv) do
12: Assign v to a community in which it has the greatest number of neighbors;
13: S ← S \ {v};
14: end for
15: end while
16: for each v that is alone in its community do
17: Assign v to a community in which it has the greatest number of neighbors;
18: end for return P;

Algorithm 1: Centrality-Clustering Algorithm.

The so-identified central vertices are then removed from the graph, most likely leading the remaining graph

to be disconnected. Each connected component of the graph is then considered as the kernel of a community.

Some post-treatments are then applied. They consist in assigning central vertices to communities, and

reassigning vertices that are alone in their community. In the first post-treatment, considering central vertices

by increasing order of centrality is really important to ensure that each vertex has at least one neighbor which

is non-central.

2 Numerical results

In order to analyze the results obtained by Centrality-Clustering Algorithm, called CC Algorithm, as a first

step, we restrict our experimentation of finding communities to 11 classical networks presented in [2] since

they are the networks for which the optimal modularity solution is known. A set of 10 larger networks from

the literature is then added in order to study the computational performance of the algorithm.
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Table 1 compares the results obtained by CC Algorithm according to three centrality measures (eigen-

vector centrality, betweenness centrality and that deduced from the clustering coefficient) with the best

(according to the modularity) solution among 100 runs of Blondel’s algorithm [6] and the optimal modu-

larity solution. We investigate results given by the Blondel’s algorithm, often used in practice, since this

polynomial-time algorithm is a heuristic to optimize the modularity, but also the optimal modularity solu-

tion, known in these networks by the exact algorithm from Aloise, Cafieri, Caporossi, Hansen, Perron and

Liberti [2], in order to avoid bias induced by heuristic.

The criteria of comparison are based on the number M of communities in the partition, the average

density den, the edge-ratio ER, the coverage covr, the performance per and the modularity Q, all defined

by equalities (1)–(5).

den =
1

M

M∑
k=1

denk (1)

ER =
min

mout
(2)

covr =
min

m
(3)

per =
2(min + pairsout −mout)

n(n− 1)
(4)

Q =

M∑
k=1

mk
in

m
−
(

2mk
in +mk

out

2m

)2

(5)

where n and m denote, as usual, the number of vertices and edges, denk is the density (i.e. the ratio between

the number of edges and the number of all possible edges) of the kth community, min is the number of

edges whose ends are in the same community, mout is the number of edges joining vertices from different

communities (i.e. mout = m −min), pairsout is the number of pairs of vertices from different communities,

while mk
in, respectively mk

out, represents the number of edges with both ends in the community k, respectively

the number of edges with exactly one end in the community k.

The coverage, the performance and the modularity are three criteria used by Fortunato [16] while the
average density and the edge-ratio are natural criteria. However, every criterion has a weakness, i.e. there
exist a network and a partition which is not properly evaluated according to this criterion.

Table 1: Results for the main classical benchmark datasets and their comparison to partitions obtained by
modularity maximization (using Blondel’s algorithm and exact aglorithm).

Algorithm M avg. density edge-ratio coverage performance modularity

Karate [31]

CC- Eigenvector 4 0.56 3.33 0.77 0.75 0.402
CC- Betweenness 3 0.40 2.71 0.73 0.64 0.274
CC- Cluscoef 4 0.56 3.33 0.77 0.75 0.402
Blondel Modularity 3 0.35 3.11 0.76 0.71 0.381
Optimal Modularity 4 0.45 2.71 0.73 0.80 0.420

Dolphins [24]

CC- Eigenvector 1 - - - - -
CC- Betweenness 3 0.47 13.45 0.93 0.52 0.330
CC- Cluscoef 9 0.65 1.79 0.64 0.85 0.426
Blondel Modularity 4 0.42 4.68 0.82 0.74 0.495
Optimal Modularity 5 0.36 3.18 0.76 0.82 0.529

Continued on next page . . .
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. . . Continued from previous page

Algorithm M avg. density edge-ratio coverage performance modularity

les Misérables [21]

CC- Eigenvector 7 0.72 11.10 0.92 0.60 0.203
CC- Betweenness 5 0.67 14.87 0.94 0.54 0.260
CC- Cluscoef 11 0.77 3.16 0.76 0.90 0.527
Blondel Modularity 5 0.46 2.74 0.73 0.82 0.501
Optimal Modularity 6 0.42 3.23 0.76 0.88 0.560

A00 main [4]

CC- Eigenvector 3 0.28 5.94 0.86 0.37 0.182
CC- Betweenness 11 0.47 3.81 0.79 0.84 0.474
CC- Cluscoef 15 0.49 1.36 0.58 0.92 0.417
Blondel Modularity 8 0.28 3.17 0.76 0.87 0.527
Optimal Modularity 9 0.27 2.57 0.72 0.90 0.531

p53 [22]

CC- Eigenvector 3 0.68 31.29 0.97 0.12 0.017
CC- Betweenness 6 0.49 7.37 0.88 0.43 0.180
CC- Cluscoef 13 0.70 2.14 0.68 0.76 0.370
Blondel Modularity 8 0.30 2.37 0.70 0.86 0.523
Optimal Modularity 7 0.28 2.65 0.73 0.85 0.535

Polbooks [3]

CC- Eigenvector 3 0.45 8.19 0.89 0.37 0.131
CC- Betweenness 4 0.46 10.61 0.91 0.63 0.452
CC- Cluscoef 9 0.67 2.47 0.71 0.72 0.338
Blondel Modularity 4 0.44 11.25 0.92 0.69 0.502
Optimal Modularity 5 0.45 8.00 0.89 0.76 0.527

Football [19]

CC- Eigenvector 2 0.55 33.06 0.97 0.12 0.003
CC- Btw/Cluscoeff 1 - - - - -
Blondel Modularity 7 0.60 2.88 0.74 0.88 0.577
Optimal Modularity 10 0.76 2.42 0.71 0.94 0.605

A01 main [4]

CC- Eigenvector 5 0.74 34.28 0.97 0.09 0.015
CC- Betweenness 13 0.67 11.45 0.92 0.43 0.227
CC- Cluscoef 28 0.74 2.61 0.72 0.81 0.439
Blondel Modularity 11 0.24 3.74 0.79 0.88 0.613
Optimal Modularity 14 0.29 2.94 0.75 0.92 0.633

USAir97 [5]

CC- Eigenvector 10 0.87 49.62 0.98 0.15 0.009
CC- Betweenness 19 0.77 26.97 0.96 0.41 0.067
CC- Cluscoef 29 0.83 11.01 0.92 0.52 0.101
Blondel Modularity 7 0.44 3.34 0.77 0.68 0.321
Optimal Modularity 6 0.14 1.92 0.66 0.81 0.368

netscience main [26]

CC- Eigenvector 46 0.75 4.02 0.80 0.95 0.732
CC- Betweenness 53 0.73 4.47 0.82 0.97 0.764
CC- Cluscoef 76 0.81 2.36 0.70 0.99 0.673
Blondel Modularity 19 0.41 14.49 0.94 0.93 0.839
Optimal Modularity 19 0.35 11.35 0.92 0.95 0.849

s838 [25]

CC- Eigenvector 22 0.34 6.58 0.87 0.66 0.574
CC- Betweenness 66 0.52 2.55 0.72 0.98 0.690
CC- Cluscoef 52 0.63 2.90 0.74 0.72 0.446
Blondel Modularity 13 0.07 8.30 0.89 0.93 0.809
Optimal Modularity 12 0.07 9.37 0.90 0.92 0.819

Due to the definition of the betweenness centrality and that deduced from the clustering coefficient, one

would expect that CC Algorithm using those centralities would perform better than CC Algorithm based

the upon eigenvector centrality. Surprisingly, this intuition is not verified since results based on the three
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centralities are competitive, even with the results obtained from the modularity. Overall, none of these

algorithms stands out for being the best or the worst. The hypothesis that a higher centrality is associated

with vertices that lie between communities therefore seems realistic in practice.

Roughly, we note that, based on these networks, none algorithm gives a partition which is the best over

all criteria. Even if Blondel’s algorithm is designed to optimize the modularity, which is not the case of CC

Algorithm, the modularity of partitions found by CC Algorithm can be greater than the modularity of those

by Blondel’s Algorithm, as it is the case in Karate and les Misérables networks. For a deeper analysis, we

make a ranking table of the results obtained from algorithms with comparable complexity time. Therefore,

we do not consider the partitions which are optimal for the modularity criterion. Table 2 describes the

fractional rank of each polynomial-time algorithm over the 11 given networks, depending on each criterion.

The fractional rank is computed as the average of ranks over 11 networks, knowing that the best rank is

chosen in case of ties.

Table 2: Average of ranks of each algorithm over the 11 given networks.

Algorithm average density edge-ratio coverage performance modularity

CC- Eigenvector 2.09 1.81 1.81 3.36 3.36
CC- Betweenness 2.72 2.27 2.27 2.90 2.72
CC- Cluscoef 1.27 3.27 3.27 1.63 2.45
Blondel Modularity 3.54 2.45 2.45 1.90 1.27

In view of Table 2, CC Algorithm with the centrality based upon the clustering coefficient seems to

be better in terms of average density criterion, as well as CC Algorithm with the eigenvector centrality

over the edge-ratio and the coverage criteria. Moreover, CC Algorithm based on the betweenness centrality

remains stable in the ranking table for every criterion. Notice that as expected, Blondel’s algorithm performs

overall better on the modularity criterion. In terms of performance criterion, CC algorithm running with the

clustering coefficient seems the best, slightly better than Blondel’s algorithm.

One of the most important strengths of CC Algorithm is clearly its speed. CC Algorithm runs in

O(max(f(n,m), n log(n),m)), where n is the number of vertices, m is the number of edges and f(n,m)

is the computational complexity of the used centrality measure. Indeed, the computation of the centrality

in Line 2 runs clearly in O(f(n,m)). It is well-known that sorting vertices in Line 3 can be computed in

O(n log(n)). In Line 4, the computation of threshold is done in O(m), while the running time of finding

central vertices is O(n) in Lines 5–7, as well as that of removing central vertices (Line 8) is O(n). In Line 9,

searching connected components in the resulting graph takes O(m). The two post-treatments (Lines 10–18)

can be done in O(m).

Table 3 provides the time performance of CC Algorithm on 21 classical networks from the literature.

Given that the most time consuming part of the algorithm is the centrality computation, the fastest of

experimented centralities, i.e. the eigenvector centrality, was used to evaluate the computational time of CC

Algorithm. The first column denotes the network, the two following ones (n and m) provide respectively the

number of vertices and edges, the next two columns describe the performance of CC Algorithm. Indeed, the

number M of communities is provided as well as the computational time in seconds, including the required

time to build the network from its edge list description in a file. These experiments were achieved on a

computer with 2 processors Intel Xeon-8 cores running at 2.4 GHz with 128 GB of RAM. Note that parallel

capability of the computer was not used, as all the tests were achieved on a single thread.

3 Discussion and conclusion

3.1 Variations around CC Algorithm

The proposed algorithm is a framework that may be adapted by using different centrality measures, but also,

by changing the threshold when selecting central vertices.
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Table 3: Computational time of CC Algorithm using the eigenvector centrality.

Problem n m M Time (sec)

Karate [31] 34 78 4 0
Dolphins [24] 62 159 1 0
Les Misérables [21] 77 255 7 0
A00 main [4] 83 125 3 0
p53 [22] 104 226 3 0
Polbooks [3] 105 441 3 0
Football [19] 115 613 2 0
A01 main [4] 249 635 5 0
USAir97 [5] 332 2 126 10 0
netscience main [26] 379 914 46 0
s838 [25] 512 819 22 0.02
email [20] 1133 5451 5 0.03
polblogs main [1] 1 222 16 714 8 0.06
power [29] 4 941 6 594 4 0.05
erdos-02 [5] 6 927 11 850 37 0.06
PGP giant component [7] 10 680 24 316 220 0.19
cnr-2000 [8, 9] 325 557 2 738 969 4 45
eu-2005 [8, 9] 862 664 16 138 468 233 295
in-2004 main [8, 9] 1 353 703 13 126 172 683 71
as-skitter main [23] 1 694 616 11 094 209 585 287
friendster [30] 65 608 366 1 806 067 135 5116 22 770

Thus, an extension of CC Algorithm could be to change the threshold function t(v). For instance, the

maximum of the centrality of its neighborhood could be used :

t(v) = max{cw|w ∈ N(v)}, (6)

as well as any convex combination of the latter and the used threshold, i.e.

t(v) = (1− λ) max{cw|w ∈ N(v)}+ λ

∑
u∈N(v) cu

|N(v)|
(7)

where λ is a real value between 0 and 1. If λ > 1, no vertex is considered as central and only one community

could be found. At the opposite, a negative value of λ would imply that the threshold would be below the

average, in which case the algorithm may not find a partition (for instance when all vertices have the same

centrality, all vertices would then be considered as central).

Another way to adapt the algorithm is by using it recursively in order to find smaller communities. Each

community found at iteration k is thus considered as a network in which communities will be found for the

iteration k + 1. The algorithm is then a divisive algorithm similarly to those proposed by Newman and

Girvan [27] or Cafieri et al. [13]. Since CC Algorithm sometimes finds only one community (which occurs for

the Dolphins and Football networks), the recursive version of CC Algorithm does not require any stopping

criterion and will naturally stop dividing communities. This property avoids the question of the stopping

criterion and ensures that the algorithm identifies the proper number of communities by itself. We expect that

the communities found by the recursive version of CC Algorithm will likely be smaller and more homogeneous

than those by CC Algorithm.

3.2 Concluding remarks

In this paper, we developed an approach for community detection in graphs. This approach is based on a

centrality measure. We tested the betweenness centrality, a centrality based upon the clustering coefficient

and the eigenvector centrality. To our knowledge, this approach is original since it is based upon a different

paradigm than the density of clusters or edge ratio. Indeed, we consider that central vertices tends to

link different communities. This intuition holds in practice for all the three tested centrality measures, by

experimentation on 21 classical networks.
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Using this property leads to Centrality-Clustering Algorithm. The algorithm is fast and does not require

the number of communities to be provided. Extensions of the algorithm may still be achieved, especially

toward the definition of new meaningful centrality definitions.
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