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Abstract: This paper proposes a multi-stage stochastic programming formulation for the reservoir manage-
ment problem. Our problem specifically consists in minimizing the risk of floods over a fixed time horizon for a
multi-reservoir hydro-electrical complex. We consider well-studied linear time series models and enhance the
approach to consider heteroscedasticity. Using these stochastic processes under very general distributional
assumptions, we efficiently model the support of the joint conditional distribution of the random inflows and
update these sets as new data are assimilated. Using robust optimization techniques and affine decision rules,
we embed these time series in a tractable convex program. This allows us to obtain good quality solutions
rapidly and test our model in a realistic simulation framework using a rolling horizon approach. Finally, we
study a river system in western Québec and perform various numerical experiments based on different inflow
generators.
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1 Introduction
This paper considers the problem of minimizing the risk of floods for a multi-reservoir system over a fixed
time horizon subject to uncertainty on inflows while respecting tight operational constraints on total storage,
spills, releases, water balance and additional physical constraints. This reservoir management problem is of
vital importance to various real sites that are close to human habitations and that are prone to flooding [42,
41, 12, 22].

The deterministic version of the problem already poses serious challenges since operators must consider
complex non-linear phenomena related to the physical nature of the system [31]. The interconnection of
the catchment also complicates decisions as upstream releases affect downstream volumes and flows. This
issue is particularly important for large catchments where there can be long water delays [22]. Considering
uncertainty significantly increases theses difficulties since the sequential decision-making under uncertainty
represents a huge theoretical obstacle in itself [18].

In order to solve this problem, we propose a multi-stage stochastic program based on affine decision
rules and well-known time series models. Our approach leverages techniques from stochastic programming,
stochastic processes and robust optimization.

Starting with the pioneering work of [4], adjustable robust optimization based on affine decision rules
has emerged as a viable approach for dynamic problems where uncertainty is progressively revealed. The
approach has been shown capable of finding good quality solutions to large multi-stage stochastic problems
that would otherwise be unmanageable to traditional methods such as stochastic dynamic programming.

These techniques have been applied to the reservoir management problems with a varying degree of
success. The authors of [2] and [37] use this framework to maximize the expected electric production for a
multi-period and multi-reservoir hydro-electric complex while [22] minimize the risk of floods by adopting a
risk averse approach that explicitly considers the multidimensional nature of the problem subject to more
realistic operating constraints.

Although some of these studies use elaborate decision rules based on works such as [15, 25, 23], they
only consider very simplified representations of the underlying stochastic process and generally omit serial
correlation. However, the importance of the persistence of inflows can play a crucial factor in hydrological
modelling for stochastic optimization problems, particularly when daily inflows need to be considered. Au-
thors like [56, 41] argue that serial correlation of high order is important to consider inflows that are high or
low on many consecutive days and risk producing a flood or low baseflow.

This paper addresses the issue by developing a dynamic robust uncertainty set that takes into consideration
the dynamic structure and serial correlation of the inflow process. We show that under certain conditions,
these sets correspond to the support of the joint conditional distribution of uncorrelated random variables
that determine the inflows over a given horizon. Our work shares similarities with the paper of [34] who
propose dynamic uncertainty sets based on time series models for a 2-stage economic dispatch problem in
the presence of high wind penetration. Like these authors, we take advantage of the dynamic adaptability of
the uncertainty sets by incorporating our model in a realistic simulation framework with rolling horizon.

Nonetheless, we give significantly more details on the construction of these uncertainty sets for general
univariate ARMA models and provide key insights which are of value to practitioners and academics alike. We
also consider the case of heteroscedasticity which is empirically observed in various inflow time series ([45]).
Although we minimize the risk of floods, our work can be directly extended to electricity generation, under
the hypothesis that head is constant and that the production function can be modeled as a piecewise linear
function.

Our model considers ARMA and GARCH models of any order without increasing the complexity of
the problem. This is a huge improvement over stochastic dynamic programming (SDP) methods, which
have historically been the most popular techniques used for reservoir management both in academia and in
practice (see [31, 58, 13, 56] and references therein). Although these methods can deal with more realistic non-
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convex optimization problems and provide excellent closed-loop policies, they can usually only consider serial
correlation through autoregressive models of small order since higher order models require increasing the state-
space, which quickly leads to numerical intractability; particularly for multi-reservoir operations [57, 14, 55].

Considering heteroscedasticity further increases the state dimension and the resulting computational
burden for SDP. As such, we are only aware of the work of [41] that is capable of considering this phenomenon
with this methodology. Furthermore, these authors only manage to incorporate heteroscedasticity in a
reduced model used for on-line computations.

Numerous refinements of classical SDP have emerged to circumvent some of these difficulties. Neuro-
dynamic programming [12], sampling SDP [53] and more elaborate discretization schemes [59, 14] have
namely been applied successfully to large reservoir systems while explicitly or implicitely considering high
order serial correlation. However, most of these methods still require simplifications of the river dynamics
and inflow representation as well as discretization of decisions, which is not the case of our approach.

Other works based on SDP, such as [56, 53, 54, 16], have focused on various low-dimensional hydrological
variables such as seasonal forecasts, additional exogenous information like soil moisture and linear combina-
tions of past inflows. Although these aggregate hydrological variables improve the solution quality without
excessive computational requirements, they often rely on distributional assumptions such as normality that
are not verified in practice or exogenous data that may be difficult to obtain. Our model does not suffer from
such limitations.

In recent years, the stochastic dual dynamic programming (SDDP) method has emerged as an effective
algorithm capable of successfully tackling multi-dimensional stochastic reservoirs problems [55, 51, 46, 24,
38, 40]. Moreover, [35] illustrate that this method can consider multiple lag autoregressive processes without
excessively increasing the size of the problem for the aggregated 4-state Brazilian hydro-thermal system.
However, the algorithm can exhibit relatively slow convergence [51]. To avoid this issue, various studies only
consider a limited number of discrete scenarios (<100) [55, 46], but this only leads to approximate solutions
of questionable quality [49].

We also mention stochastic programming methods based on decision trees, which are also theoretically
capable of explicitly handling highly persistent inflows [10, 26, 19]. These models are simple to implement
when an existing deterministic model already exists and are intuitive to use and interpret. Unfortunately,
they display exponential growth in complexity as a function of the time horizon. Therefore, they are usually
limited to small decision trees. [22] shows that these methods can be considerably more computationally
intensive than corresponding stochastic programs based on decision rules.

The main advantage of our method with respect to SDDP and scenario-tree based stochastic program is
its limited distributional assumptions. Whereas these competing methods requires using specific distributions
from which it is possible to sample, our approach only demands hypothesis on the first 2 moments of the
random variables as well as the correlation between them. As observed by [37], this is likely to lead to
solutions that are more robust when tested on out-of-sample scenarios, which is of prime concern when data
availability is limited. Another shortcoming of SDDP and tree-based stochastic programming compared with
decision rules and SDP are their inability to provide explicit policies that can be directly used by decision
makers. Nonetheless, this is usually not a critical point, particularly when rolling horizon simulations are
considered.

The paper is structured as follows. The model for the deterministic reservoir management problem and
the stochastic version based on affine decision rules are presented in Section 2. Section 3 discusses inflow
representation and general univariate ARMA models and the resulting conditional supports. It then studies
heteroscedastic time series and their impact on the model formulation. Section 4 explains the solution
procedure and simulation framework while Section 5 studies a river in western Québec. Conclusions are
drawn in Section 6.
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1.1 Notation

The sets Z+ = {0, 1, 2, ...} and Z− = {0,−1,−2, ...} represent the non-negative and non-positive integers
while Sn+ is the cone of square n × n semi-definite matrices. The set T = {1, · · · , T} represents the entire
horizon of T periods and L = {0, · · · , L− 1} denotes a limited look-ahead horizon for some L < T .

Let (Ω,G, {Gt},P) be a filtered probability space where {Gt} is a collection of σ-algebras representing
some information available at time t ∈ T where G0 = {Ω, ∅} and GT = G. We let E [·] denote mathematical
expectation while E[·|A] represents conditional expectation given any σ-algebra A ⊆ G. Both expectations
are taken with respect to P, the base probability measure on G.

For the real random variables X, σ(X) represents the σ-algebra generated by X [6]. We abuse lan-
guage and refer to the support of X as the smallest closed set on which X takes values with probability
one. For any discrete time real valued stochastic process {Xt}t∈Z, we denote the RL valued random vector
(Xt, ..., Xt+L−1)> ≡ X[t,t+L−1] for any t ∈ Z and L ∈ N with the special notation X[t+L−1] if t = 1. For
simplicity, we abuse notation and do not distinguish a random variable from a given realisation.

2 The stochastic reservoir management problem

2.1 Deterministic look-ahead model for flood minimization

Before describing our stochastic reservoir management problem with affine decision rules, we describe the
deterministic version. A similar model is described in [22], but we present it here to make the paper self-
contained. We write the problem in a “look-ahead” form to facilitate its integration in the rolling horizon
framework presented in Section 4.

At the beginning of time t ∈ T, we seek a vector of decisions for each future time τ ∈ {t, ..., t+L−1} that
will minimize a coarse measure of flood damages over a limited horizon of L periods, where L − 1 ≤ T − t.
These decisions must respect the operational constraints (1b)–(1j):

(Pt) min
X

J∑
j=1

L−1∑
l=0

κjt+lKjt+l(Ej,t+l) (1a)

(Stor. Bounds) sj ≤ Sj,t+l − Ej,t+l ≤ s̄j ∀j ∈ J, l ∈ L (1b)
(Water Bal.) Sj,t+l = Sj,t+l−1 + ∑

i−∈I−(j)

min{δmax

i− ,t+l−1}∑
l̄=δmin

i−

λi− l̄Fi−,t+l−l̄ −
∑

i+∈I+(j)

Fi+,t+l + αj,t+lξt+l


∀j ∈ J, l ∈ L (1c)

(Flow Bounds) f
i
≤ Fi,t+l ≤ f̄i ∀i ∈ I, l ∈ L (1d)

(Evac. Curve) Li,t+l ≤ Ci(Sj−(i),t+l) ∀i ∈ Ievac, l ∈ L (1e)
(Var. Bounds) |Fi,t+l −Fi,t+l−1| ≤ ∆̄i ∀i ∈ I, l ∈ L (1f)
(Spill. Bounds) li ≤ Li,t+l ≤ l̄i ∀i ∈ I, l ∈ L (1g)
(Rel. Bounds) ri ≤ Ri,t+l ≤ r̄i ∀i ∈ I, l ∈ L (1h)
(Flow Def.) Fi,t+l = Ri,t+l + Li,t+l ∀i ∈ I, l ∈ L (1i)
(Floods) 0 ≤ Ej,t+l ∀j ∈ J, l ∈ L. (1j)

For τ = t + l with l ∈ L, the decisions Sτ ,Lτ , Rτ , Fτ , Eτ , respectively represent storage (hm3) at the
end of period τ , average spillage (hm3/period) over time τ , average releases (productive water discharge)
(hm3/period) over time τ , average total flow (hm3/period) over time τ and average floods (hm3) over time τ .1
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The sum of the spillage and the releases is the total flow. The aggregate decision vector Xτ = (S>τ ,L>τ ,
R>τ ,F>τ , E>τ )> is simply the stacking of each decision at time τ . I and J respectively represent the set of
plants and the set of reservoirs.

Constraints (1b) ensure that the total storage remains within tolerable limits sj and s̄j for all reservoirs
j ∈ J . (1c) are simply flow conservation (water balance) constraints ensuring that water released upstream
eventually reaches downstream reservoirs where λil represents the fraction of water released from plant i
to reach the unique downstream reservoir after l periods. The constant δmaxi represents the number of
periods required for 100% of the water released to reach the downstream reservoir. Similarly, δmini represents
the number of periods before any water released upstream reaches the downstream reservoir. We consider∑δmax

i

l=δmin
i

λil = 1,∀i, but we could also use
∑δmax

i

l=δmin
i

λil < 1 to model evaporation or other losses.

At time t = 1, we have Sjt−1(ξ) = sj0 where sj0 represents the fixed known amount of water (in hm3)
in reservoir j at the beginning of the time horizon. We use the approximation ξjt = αjtξt where ξt and ξjt
represent the total inflows over all reservoirs and the inflows at a specific reservoir j at time t where αjt is
the average fraction of total inflows at time t entering reservoir j. Inflows are expressed in hm3/period and
namely come from natural precipitations, run-off and spring thaw.

Constraints (1d) ensure that flows are within limits f
it
, f̄it while constraints (1f) ensure that the to-

tal flow deviation at a given plant i does not exceed a pre-specified threshold ∆i from one period to the
next. Constraints (1e) bound the maximum amount of water that can be unproductively spilled at plant
i ∈ Ievac ⊂ I for a given storage in the upstream reservoir, where Ievac is the set of plants with such con-
straints. This relationship is given by the non-linear function C (·) called an evacuation curve. Following [22],
we approximate it by an affine function in our model, but maintain the true structure in our simulations. We
successfully tested more precise representations by introducing binary decisions, but found that our simple
affine approximation has negligible impact on the final results.

Equations (1g) ensure respect of absolute upper and lower bounds. These constraints are determined
by specific physical characteristic of given plants. Constraints (1h) ensure the releases at plant i are within
prescribed bounds rit, r̄it, ∀t. These are based on navigation and flood safety thresholds as well as agreements
with riparian communities. Finally, (1i) defines the total flow as the sum of unproductive spillage and releases.

Constraints (1j) define overflows (floods) with respect to the critical storage levels sjt, s̄jt and represent
quantities we wish to minimize. Since the bounds are taken with respect to a given useful reservoir storage,
underflows (droughts) can theoretically exist at a reservoir j, but are physically bounded by a small constant
0 < εj and are highly undesirable. We therefore chose to forbid them, even if they can be added to our model
very straightforwardly.

We consider a convex quadratic penalization function: Kjt(Ejt) = aE2
jt with a > 0 in the objective (3)

to reflect the fact that larger floods have increasingly disastrous consequences. It is possible to extend our
formulation to more general functions such as the ones considered in [41] by introducing binary decisions
to model discontinuities and non-convexities. However, this would lead to a mixed integer program and
would affect the tractability of our model and ultimately its use by decision makers. Indeed, our model may
be solved frequently to analyse what-if scenarios and therefore needs to be rapidly solvable by commercial
off-the-shelf software. Moreover, Section 5 shows it leads to good empirical results.

The parameters κj,t > 0 in (3) represent the relative weight of each reservoir at a given time. We define
the set Jcrit representing reservoirs located near riparian populations and high risks of floods as well as those
with critical importance. We then fix κjt = Wκ, ∀j ∈ Jcrit, t for some large W ∈ N and some fixed κ > 0
and impose that the sum of the weights equal one so that we have a convex combination. For our problem,
the dichotomy between critical and non-critical reservoirs is unequivocal, but we could easily adapt this to
more intricate cases.

1Throughout the text, we refer interchangeably to storage as volumes, releases as discharge or turbined outflow and plants
as powerhouses.
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2.2 Sources of uncertainty

Various factors remain uncertain at the time of developing an initial production plan. Electricity prices,
demand, turbine availability and other factors may all have sizeable consequences depending on the particular
realized scenario. Nevertheless, we focus on the stochasticity surrounding inflows which is one of the main
factors of the risks of floods and droughts.

We therefore study the discrete time stochastic process {ξt} representing total inflows over the river
system at time t ∈ Z where the ξt : Ω→ R are real valued random variables bounded and non-negative with
probability one. Although we focus on minimizing the risk of floods for a finite time interval T, the process
{ξt}t∈Z extends infinitely far in the past and the future. We denote the mean and variance at time t ∈ Z as
E [ξt] = µt and E

[
(ξt − µt)2] = σ2

t .

2.3 General framework

We consider a dynamic setting were the true realization of the random process {ξt} is gradually revealed as
time unfolds over the horizon of T days [17, 50]. A sequence of controls {Xt} must be fixed at each stage
t ∈ T after observing the realized history ξ[t−1], but before knowing the future random variables. Once ξ[t−1]
is known, Xt can be implemented to yield the actual decisions Xt(ξ[t−1]) ∈ Rnt where nt ∈ N represents the
number of decisions to be taken at time t. This decision process can be visualized in Figure 1.

X1 fixed ξ1 observed · · · XT ξT

0 1 · · · T − 1 T
Time TTime 1

Figure 1: Sequential Dynamic Decision Process

2.4 Affine decision rules

To consider this uncertainty and formulate the stochastic version of model (1), we change the decision
variables X to functions X (·) of the underlying stochastic process. We specifically consider simple affine
functions of the uncertain inflows, which are a restricted class of possibly suboptimal policies. These decision
rules were popularized in dynamic/adjustable robust optimization models by [4] and have gained considerable
attention in the recent years, namely in the field of energy [22, 2, 34, 44]. Although they do not guarantee
optimality in general, they often lead to good-quality solutions that can be obtained very efficiently.

At the beginning of period t ∈ T, we let Kτ = {nτ−1 + 1, ..., nτ−1 + nτ} represent the indices associated
with decisions at time τ = t+ l for lead times l ∈ L and horizon L ∈ {0, ..., T − t+ 1}. We can then express
affine functions of the future inflow vector ξ ≡ ξ[t,t+L−1] in the form :

Xk,t+l(ξ) = X 0
k,t+l +

L−1∑
l′=0
X l
′

k,t+lξt+l′ , (2)

where X l′k,t+l ∈ R for k ∈ Kt+l, t ∈ T and l, l′ ∈ L. The decisions pertaining to spillage, flow and discharge
represent real implementable decisions used by river operators to control the dynamics of the river system.
Decisions that must be implemented at some future time τ = t + l for l ∈ L can therefore only depend on
information up to time τ − 1. We therefore require that: X l′k,t+l = 0, ∀l′ ≥ l and k ∈ Kimpl

t+l ⊂ Kt+l where
the Kimpl

t+l represents the set of indices associated to such decisions at time t+ l.
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However, storage and flood are analysis variables that are only meant to track the evolution of the system.
As such, decisions at time τ can also depend of information up to time τ and we enforce X l′k,t+l = 0, ∀l′ ≥ l+1
and k ∈ Kt+l \Kimpl

t+l . In both cases, the impact of the past observed ξ[t−1] is reflected implicitly in X 0
k,t+l.

The stochastic lookahead model (1) based on affine decision rules provides the important advantage of
avoiding the curse of dimensionality as well as the discretization of the random variables and decisions required
to solve the problem through its dynamic programming recursions. This observation is important since
finding a feasible solution to the deterministic multi-stage problem (1b) - (1j) at time t requires considering
min{δmaxi− , t − 1} past water releases for all i− ∈ I−(j) and all j ∈ J as well as |J | initial storages. For
the values |J | = 5 and

∑
j∈J

∑
i−∈I−(j)(δmaxi− − δmini− ) = 13 used in our case study, this leads to a state of

dimension 18, which is already extremely demanding for classical dynamic programming. Considering the
uncertainty and persistence of inflows further increases the state dimension. For instance, an autoregressive
model of order p ∈ N would require an additional p states.

Moreover, it becomes much easier to consider constraints such as (1c) and (1f) that involve decisions
in multiple periods. Finally, Section 3.7 shows that by leveraging techniques from robust optimization,
we are able to formulate each lookahead problem as a tractable convex program that can be solved in a
single “forward” phase and that makes limited distribution assumptions compared with SDP or stochastic
programming based on scenario trees.

2.5 Minimizing flood risk

We define the risk of floods at the beginning of time t as the conditional expected value of the penalized
aggregated flood

∑J
j=1

∑L−1
l=0 κjt+lKjt+l(Ej,t+l(ξ)) over the L period look-ahead horizon given the information

up to time t− 1 where ξ ≡ ξ[t,t+L−1]. We therefore modify the objective (1a) to :

(SPt) min
X (·)

E

 J∑
j=1

L−1∑
l=0

κjt+lKjt+l(Ej,t+l(ξ))|Gt−1

 . (3)

The conditional expectation offers the advantage of being the simplest consistent and coherent dynamic
risk measure [43]. It also enjoys various interesting properties such as linearity and has been extensively
studied in stochastic processes as well as reservoir management applications. We refer to the stochastic
version of problem (1) at time t as SPt.

3 Exploiting time series models and linear decision rules

3.1 General inflow representation

The quality of the solutions returned by solving the lookahead problem SPt crucially depends on the repre-
sentation of the underlying stochastic process {ξt}. Assuming simple independent time series will likely lead
to poor quality solutions in the presence of significant serial correlation. However, we also want to maintain
the tractability of the overall linear program considering affine decision rules.

In order to achieve these conflicting objectives, we assume that at the beginning of each time t ∈ T, the
future inflows ξ ≡ ξ[t,t+L−1] over the next L days can be represented as an affine function of some vector
% ≡ %[t,t+L−1] of real valued, uncorrelated, zero mean, second order stationary random variables. This affine
representation will allow us to construct the serial dependence empirically observed in the ξ[t,t+L−1] while
exploiting the convenient statistical properties of the %[t,t+L−1]. For modelling and tractability purposes, we
will also assume that the support of the %[t,t+L−1] is a bounded polyhedron in RL. More specifically, we
assume that with P a.s. there exists Ut, Vt ∈ RL×L,Wt ∈ Rc×L and ut, vt ∈ RL, wt ∈ Rc for some c ∈ N such
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that the following representation, which shares important similarities with the one presented in [34], holds:

Ξt =

ξ ∈ RL

∣∣∣∣∣∣∣∣∣∣
∃ζ, % ∈ RL

ξ = Utζ + ut

ζ = Vt%+ vt

Wt% ≤ wt


(4a)
(4b)
(4c)
(4d)

We assume that for any ξ, there exists unique %, ζ such that the representation (4) holds. This is enforced
by requiring that both Ut and Vt be of full rank L. Although this condition may seem strong, we will see
that it arises automatically in important contexts. Moreover, it is natural to require this criteria to avoid
indeterminate situations. We will further assume that both Ut and Vt as well as their inverse U−1

t , V −1
t are

lower triangular. This requirement is related to the concept of non-anticipativity discussed previously and
intuitively ensures that each ζt and ξt is only a function of the past %[t]. We assume that ζt, ξt and %t are
prefectly known and observable at each time t.

As will become clear in the next Section, the relationship between ζ ≡ ζ[t,t+L−1] and % as well as the
structure of Vt and vt play a very important role in our analysis. We therefore explicitly consider the
intermediary RL dimensional vector random ζ even if we could directly substitute (4c) into (4b). More
specifically, we will consider the case where the {ζt} follow well-known autoregressive moving average (ARMA)
time series models.

In this context, (4b) can be naturally interpreted as a way to remove a deterministic trend, seasonal
component or perform other preprocessing as is commonly done in time series analysis [9, 8]. The % can
then also be seen as the residuals obtained after fitting a specific ARMA model to the ζ. We assume the
random vector % lies within the polyhedron {% ∈ RL : Wt% ≤ wt} and show there exists systematic and
sound probabilistic methods to construct these polyhedral sets. We begin by assuming that the %t are
serially independent, but then generalize the approach by considering generalized autoregressive conditional
heteroscedastic (GARCH) time series models.

Finally, using the theory of ARMA and GARCH models, we will show how the representation (4) can be
updated to more adequately reflect the random environment as we move forward in time and new data is
progressively observed.

3.2 Considering general ARMA models

This section assumes some basic familiarity with linear AR(I)MA time series. For further details, we refer
to the classic texts [8, 9]. ARMA models are simple linear and discrete time series that filter the serial
dependency and output white noise. These time series model allow us to express future random variables as
an affine function of independent random variables. Furthermore, their parsimonious representation, practical
importance, successful utilization in past hydrological models for stochastic reservoir optimization and linear
structure make them as invaluable stochastic model that can be incorporated directly in our multi-stage
stochastic problem. We assume that at each time t ∈ Z, the real valued ζt satisfy the equation:

φ(B)ζt = θ(B)%t, (5)

for some φ(B) = 1−
∑p
i=1 φiB

i and θ(B) = 1+
∑q
i=1 θiB

i with φi, θi ∈ R for p, q ∈ N where B represents
the backshift operator acting on time indices such that Bpζt = ζt−p for all t, p ∈ Z [8, 9]. We suppose the %t
are independent identically distributed zero mean and Gt-measurable random variables. In order to guarantee
second order stationarity, we require that the process autocovariance function γ(l) = E [%t%t+l] depend only
on l ∈ Z and in particular that the variance γ(0) = σ2

% be constant across time. For any ARMA process
respecting Equation (5), we can equivalently write:

ζt = ψ(B)%t, (6)
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where φ(B)ψ(B) = θ(B) for some ψ(B) =
∑∞
i=0 ψiB

i. We can therefore express ζt as an infinite linear
combination of past {%τ}τ=t,t−1,.... We specifically consider the case where

∑∞
i=0 |ψi| <∞. In this case, we

say that the process {ζt} is stable. Since we assume the % are bounded with probability 1, the representa-
tion (6) is essentially unique [9]. We can relax the assumption that the original ζt are stable if (1−B)dζt = ζ ′t
for some d ∈ N such that the ζ ′t are stable. It follows that our framework also applies to ARIMA models of
any integer integration order d ∈ N.

Example 1 Consider the simple AR(1) model where ζt = φζt−1 + %t holds ∀t ∈ Z. In this case (1 −
φB)

∑∞
i=0 ψiB

i = 1 if and only if ψi = φi, i ∈ Z+. It follows the process is stable if and only if |φ| < 1.
If φ = 1, then taking ζ ′t = ζt − ζt−1 implies that ζ ′t = %t,∀t ∈ Z are iid random variables that satisfy our
assumptions.

Representation (6) is particularly useful when forecasting the future values of ζt given the information
available at time t ∈ Z. For any t ∈ Z, l ∈ Z+ we have:

ζt+l =
∞∑
j=l

ψj%t+l−j︸ ︷︷ ︸
ζ̂t(l)

+
l−1∑
j=0

ψj%t+l−j︸ ︷︷ ︸
ρt(l)

, (7)

where ζ̂t(l) = E [ζt+l|Gt] is the forecast and ρt(l) = ζt+l − ζ̂t(l) is the forecast error. This follows by the
linearity of conditional expectation together with E [%t+l|Gt] = %t+l if l ∈ Z− and E [%t+l|Gt] = E [%t+l] = 0
otherwise. For any t ∈ Z, l ∈ Z+, we observe that ρt(l) is Gt+l measurable while ζ̂t(l) is Gt measurable.
For l ∈ Z−, the forecast coincides with the actual observed random variable and therefore ρt(l) = 0 while
ζ̂t(l) = ζt+l. The conditional expectation E [ζt+l|Gt] is a natural choice of forecast as it represents the
minimum mean squared error estimator of ζt+l given the information up to time t ∈ Z for l ∈ Z+ [9].

Example 2 For the stable AR(1) model and any t ∈ Z, l ∈ Z+, we have ζ̂t+l = φlζt and ρt(l) =
∑l−1
i=0 φ

i%t+l−i.

If we set ρt−1,L ≡ (ρt−1(1), · · · , ρt−1(L))> for any t ∈ Z, we can then express the forecast error vector
ρt−1,L as a linear function of the independent %[t,t+L−1]. More specifically, the following holds for all L ∈
{1, · · · , T − t+ 1} :

ρt−1,L = Vt%[t,t+L−1], (8)

where Vt ≡ V ∈ RL×L is the following invertible and lower triangular square matrix, which is constant
across all t ∈ Z:

V =


1 · · · 0

ψ1 1
...

...
. . .

ψL−1 · · · ψ1 1

 (9)

We then have the equality:

ζ[t,t+L−1] = ζ̂t−1,L + ρt−1,L (10)
= ζ̂t−1,L + V %[t,t+L−1], (11)

where ζ̂t−1,L ≡ (ζ̂t−1(1), ..., ζ̂t−1(L))> corresponds to vt in the representation (4). The structure of V as
well as the definition of ζ̂t−1,L and ρt−1,L ensures that the representation is unique. Putting all these together
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yields a crisp representation of the inflows ξ[t,t+L−1] as an affine function of %[t,t+L−1] whose structure depends
on the past observations through ζ̂t−1,L :

ξ[t,t+L−1] = Utζ[t,t+L−1] + ut (12)
= Ut(ζ̂t−1,L + ρt−1,L) + ut (13)
= Ut(ζ̂t−1,L + V %[t,t+L−1]) + ut. (14)

Example 3 Consider the discrete time process {ξt} with mean E [ξt] = µt,∀t such that Ut = I, ut = µt and
therefore ξt = ζt + µt holds ∀t. Also suppose that {ζt} follows a stable AR(1) model. For any t ∈ Z, l ∈ Z+
and L ∈ N, we can represent ξ[t,t+L−1] as:

ξt
ξt+1
...

ξt+L−1

 =


φζt−1
φ2ζt−1

...
φLζt−1

+


1 · · · 0

φ1 1
...

...
. . .

φL−1 · · · φ1 1




%t
%t+1
...

%t+L−1

+


µt
µt+1
...

µt+L−1

 (15)

The affine representation (14) reveals that the ξ[t,t+L−1] vector is completely determined by %[t,t+L−1].
We therefore set σ(%s; s ≤ t) = Gt,∀t ∈ T which reflects the fact that observing %[t−1] at the beginning of time
t ∈ Z gives us all the information necessary to apply the real implementable policies at times 1, · · · , t− 1.

3.3 Support of the joint distribution of the {%t}

Having defined the relationship between %, ζ and ξ, we now study the support hypothesis for the % vector.
For any L ∈ N, we specifically assume that the support of %[t,t+l−1], which also corresponds to the set
{% ∈ RL : Wt% ≤ wt} described in (4), is a bounded polyhedron in RL given by the intersection of the
following two polyhedrons:2

B∞L,ε = {% ∈ RL : |%i|σ−1
% ≤ (Lε)1/2, i = 1, ..., L} (16a)

B1
L,ε = {% ∈ RL :

L∑
i=1
|%i|σ−1

% ≤ Lε1/2}. (16b)

Although limiting, the use of this polyhedron is motivated by a sound probabilistic interpretation. If
the {%t} are (possibly unbounded) iid random variables with constant variance σ2

%, then for t, L ∈ N, the
covariance matrix of %̃ ≡ %[t,t+L−1] is simply the positive definite matrix Σ%,L = σ2

%IL where IL is the L× L
identity matrix. Therefore, if tr denotes the (linear) trace operator and %̃ is a RL valued random vector,
Markov’s inequality gives us:

P(%̃>Σ−1
%,L%̃ > Lε) ≤ E

[
%̃>Σ−1

%,L%̃
]

(Lε)−1 (17)

= tr(Σ−1
%,LE

[
%̃%̃>

]
)(Lε)−1 (18)

= ε−1. (19)

The polytope B∞L,ε ∩B1
L,ε contains the ellipsoid B2

L,ε = {% ∈ RL : %>Σ−1
%,L% ≤ Lε} (see (A) for more de-

tails). It follows that P(%̃ ∈ B∞L,ε∩B1
L,ε) ≥ 1−ε−1 for all t, L ∈ N. Although we could use B2

L,ε as the support,
preliminary tests demonstrate that it is preferable to consider the exterior polyhedral approximation (16) to
speed computations.

2The set B∞L,ε ∩B1
L,ε is not strictly speaking a polyhedron since (16a)–(16b) involve the non-linear absolute value function.

Nonetheless, lifting this set using the commonly used decomposition %i = %+
i −%

−
i and |%i| = %+

i +%−i with %+
i , %
−
i ≥ 0, ∀i yields

a polyhedron where each projected point lies in the original B∞L,ε ∩B1
L,ε ([3]).



10 G–2016–24 – Revised Les Cahiers du GERAD

For our particular case, we consider a large ε and reasonably assume P(%̃ ∈ B∞L,ε ∩B1
L,ε) = 1. If the {%t}

are essentially bounded iid random variables with constant variance σ2
%, then this assumption is not restrictive,

as we can always find an ε that respects this hypotheses. Since inflows can only take a finite value with P
a.s., the essential boundedness assumption is realistic.

In a robust optimization context, this polyhedral support would be referred to as an “uncertainty set”
since it represents the set of possible values that the random variables can take. Our approach can be straight-
forwardly extended to more complex polytopes and it will retain polynomial complexity if it is extended to
the intersection of polytopes and second order or semi-definite cones [3].

The polyhedron defined by (16a)–(16b) is namely influenced by the lead time L and extending far into
the future intuitively leads to a larger set. We also note that if the calibrated time series model fits the
in-sample data poorly, then the estimated σ% will be large and hence the size of the support will increase.

3.4 Support of the (conditional) joint distribution of the {ξt}

Building on these assumptions, it follows that the polyhedron given by (4) represents the conditional support
of ξ[t,t+L−1] for L ∈ {1, ..., T − t + 1} given the past observed %[t−1]. The set Ξt implicitly depends on
past %[t−1] through vt ≡ ζ̂t−1,L and is therefore perfectly known at the beginning of time t. Given our past
hypothesis on the support of % as well as knowledge of %[t−1], the future inflows ξ[t,t+L−1] reside within Ξt
with probability 1. In robust optimization terminology, this polytope can be seen as a dynamic uncertainty
set determining the possible realizations of the random vector ξ[t,t+L−1] based on past observations.

3.5 Considering heteroscedasticity

We now relax the assumption that the {%t} are independent and consider the case when the residual {%t} fol-
low a GARCH(m, s) model where m, s ∈ N. GARCH processes have proven useful for numerous applications,
namely in the field of finance where the assumption of constant conditional variance is not always verified
and large shocks tend to be followed by periods of increased volatility [21, 32]. As we discuss in Section 5.4,
this is also empirically observed in daily inflows. For further details on GARCH processes, see [8, 7].

In this case, we still assume that for any t ∈ Z, E [%t+l|Gt] = 0,∀l ∈ Z+, E [%t] = 0 and E
[
%2
t

]
= σ2

%.
We also have E [%t+k%t+l|Gt−1] = E [%t+lE [%t+k|Gt+l] |Gt−1] = 0 for l < k ∈ L. In other words, the {%t}
are uncorrelated zero-mean random variables with constant variance σ2

a. However, they are not necessarily
independent since they are linked through the following relation for all t ∈ Z:

σ̂2
t−1(1) = α0 +

m∑
i=1

αi%
2
t−i +

s∑
j=1

βj σ̂
2
t−1−j(1) , (20)

where σ̂2
t (l) = E

[
%2
t+l|Gt

]3 for l ∈ N and α0, αi, βj ≥ 0,∀i, j to ensure non-negativity of the conditional
variance. In (D), we show that under standard stationarity assumptions on the %t, the squared shocks %2

t

satisfy the difference equation:

φ̂(B)
(
%2
t − σ2

a

)
= θ̂(B)νt. (21)

where the {νt} are zero mean uncorrelated random variables with νt = %2
t − σ̂2

t−1(1). The polynomials
are given by θ̂(B) = 1 +

∑s
j=1 θ̂jB

j and φ̂(B) = 1 −
∑max{s,m}
i=1 φ̂iB

i for θ̂i, φ̂i ∈ R. We can then find
ψ̂(B) =

∑∞
i=0 ψ̂iB

i such that φ̂(B)ψ̂(B) = θ̂(B) and we therefore have:

%2
t = σ2

% + ψ̂(B)νt. (22)
3Although non-standard, we adopt the notation σ̂2

t (l) to maintain the coherence with the past sections and to highlight the
similarities with the conditional expectation of ζt+l for some t ∈ Z and l ∈ Z+ given Gt, which we denoted ζ̂t(l).
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Similarly to the ARMA model, assuming
∑∞
i=0 |ψ̂i| < ∞ with νt essentially bounded ensures that the

representation is unique. Taking the conditional expectation on both sides of Equation (22) at the beginning of
time t allows us to obtain an expression for the conditional variance reminiscent of the conditional expectation
described in Section 3.2. For l ∈ N, we specifically have:

σ̂2
t (l) = σ2

% +
∞∑
j=l

ψ̂jνt+l−j . (23)

We can then write the conditional covariance matrix as Σ%,L,t−1 = diag(σ̂2
t−1(1), ..., σ̂2

t−1(L)), where each
conditional variance σ̂2

t (l) is a known value at time t for l ∈ {1, · · · , L}. The matrix remains diagonal since
the {%t} are uncorrelated (details are provided in (D)). In Section 3.7, we show how to obtain a better
estimation of the expected flood penalties by exploiting this information.

When the residuals follow a GARCH process, large past errors will boost σ̂t−1(i) for all i ∈ {1, · · · , L}
over the look-ahead horizon. On one hand, a stochastic process that follows the fitted time series model very
closely will therefore generate small conditional and unconditional variances. On the other hand, a poor time
series model will not only lead to imprecise forecasts and a large unconditional σ%, but also to extremely
large σ̂t−1(i), which may make it more difficult to find solutions without any storage violations. However
considering a variable conditional variance may help adapt to inflows that deviate from the forecast.

3.6 Additional modelling considerations

The representation (4) assumes that ξt ∈ R,∀t ∈ T, which is not physically meaningful since inflows must
always be non-negative. We can correct this by using the affine representation (14). More precisely, we can
impose ξ[t,t+L−1] ∈ RL+ by requiring that with P a.s., the future random vector %[t,t+L−1] reside within the
following polyhedron, which is perfectly known at the beginning of time t ∈ T:{

% ∈ RL : UtV % ≥ −(Utζ̂t−1,L + ut)
}

(24a)

The additional structure imposed by Equation (24a) affects the independence and the uncorrelation of
the %τ , but this hypothesis may not be severely violated if the constraint is not binding “very often”, which
is the case in our numerical experiments.

If the violation of independence seems severely violated and this negatively impacts performance, our
modelling approach can still be used by ignoring (24a). This simply leads to a more conservative modelling
of the uncertainty and may be considered an exterior polyhedral uncertain set on the “true” uncertainty set
representing the support.

3.7 Optimizing the conditional expected flood penalties with affine decision rules

We suppose that the inflow model (4) is correct and that the {%} are possibly heteroscedastic. Next, we
consider our lookahead model SPt at the beginning of time t ∈ T with arbitrary decision rules, after observing
the past %[t−1] and ξ[t−1] for a horizon of L ∈ {1, ..., T−t+1} days and where ξ ≡ ξ[t,t+L−1] in a more condensed
and abstract form:

min
X

E
[
L−1∑
l=0
X>t+l(ξ)Gt+lXt+l(ξ)|Gt−1

]
(25a)

s.t.
l∑
l̄=0

At+l,t+l̄Xt+l̄(ξ) ≥ C∆
t+lξ + C0

t+l ∀l ∈ L P a.s. (25b)

l∑
l̄=0

Dt+l,t+l̄Xt+l̄(ξ) = Ê∆
t+lξ + Ê0

t+l ∀l ∈ L P a.s., (25c)
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for some At+l,t+l̄ ∈ Rm
≥
t+l
×nt+l̄ , C∆

t+l ∈ Rm
≥
t+l
×L, C0

t+l ∈ Rm
≥
t+l , D∆

t+l ∈ Rm
=
t+l×L, E0

t+l ∈ Rm
=
t+l ,Xt+l(ξ) ∈

Rnt+l , Gt+l ∈ Snt+l

+ for l ∈ L, for m≥t ,m=
t , nt ∈ N.

We now limit ourselves to affine decision rules and rewrite (2) in the more compact form:

Xt(ξ) = X 0
t + X∆

t ξ, (26)

for ξ ≡ ξ[t,t+L−1] ∈ RL,X 0
t ∈ Rnt and X∆

t ∈ Rnt×L whose structure depends on the non-anticipativity
of the respective decisions. Assuming that constraint (24a) does not significantly affect the hypothesis that
E [%t+l|Gt−1] = 0,∀l ∈ Z+ and setting % ≡ %[t,t+L−1], the objective value (25a) then becomes:

E
[
L−1∑
l=0
X>t+l(ξ)Gt+lXt+l(ξ)|Gt−1

]
=
L−1∑
l=0

E
[
X̂ 0,>
t+l Gt+lX̂

0
t+l|Gt−1

]
+
L−1∑
l=0

E
[
%>X̂∆,>

t+l Gt+lX̂
∆
t+l%|Gt−1

]
(27)

=
L−1∑
l=0
X̂ 0,>
t+l Gt+lX̂

0
t+l +

L−1∑
l=0

tr(E
[
%%>|Gt−1

]
X̂∆,>
t+l Gt+lX̂

∆
t+l) (28)

=
L−1∑
l=0
X̂ 0,>
t+l Gt+lX̂

0
t+l +

L−1∑
l=0

(X̂∆
t+lΣ

1/2
%,L,t−1)>Gt+l(X̂∆

t+lΣ
1/2
%,L,t−1), (29)

where:

X̂ 0
t+l = X 0

t+l + X∆
t+lut + X∆

t+lUtζ̂t−1,L (30)
X̂∆
t+l = X∆

t+lUtV (31)

Σ1/2
%,L,t−1 = diag(σ̂t−1(1), ..., σ̂t−1(L)), (32)

and we have used the following decomposition from Section 3.2:

ξ[t,t+L−1] = Ut(ζ̂t−1,L + V %[t,t+L−1]) + ut. (33)

In the case of homoscedasticity, (32) is simply replaced by its unconditional version Σ1/2
%,L = σ%IL. Using

the definition of the conditional joint support of ξ[t,t+L−1] given by (4) , we see that for any f : RL → R and
k ∈ R, f(ξ) ≥ k,∀ξ ∈ Ξt ⇒ P(f(ξ[t,t+L−1]) ≥ k|Gt−1) = 1 with P a.s.. With (30)–(32), problem (25) can
therefore be written as:

min
X 0,X∆

L−1∑
l=0
X̂ 0,>
t+l Gt+lX̂

0
t+l +

L−1∑
l=0

(X̂∆
t+lΣ

1/2
%,L,t−1)>Gt+l(X̂∆

t+lΣ
1/2
%,L,t−1) (34a)

s.t. (
l∑
l̄=0

At+l,t+l̄X
∆
t+l̄ − C

∆
t+l)ξ ≥ −

l∑
l̄=0

At+l,t+l̄X
0
t+l̄ + C0

t+l ∀l ∈ L, ∀ξ ∈ Ξt (34b)

(
l∑
l̄=0

Dt+l,t+l̄X
∆
t+l̄ − Ê

∆
t+l)ξ = −

l∑
l̄=0

Dt+l,t+l̄X
0
t+l̄ + Ê0

t+l ∀l ∈ L, ∀ξ ∈ Ξt. (34c)

Its optimal solution represents an upper bound on (25a)–(25c) with arbitrary decision rules because we
limit ourselves to affine functions. Since Ξt is a polyhedron, we can handle the constraints (34b) through
robust optimization techniques and linear programming duality [3]. We also reformulate (34c) without the ξ
by exploiting the fact that Ξt is full dimensional and contains 0. The resulting feasible domain of the robust
equivalent is therefore polyhedral. Since Equation (34a) is of the convex quadratic type, the deterministic
equivalent is a large (minimization) second-order cone program (SOCP), which can be solved very efficiently
with interior point solvers. We give more details in (B) and (C).
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From this derivation, we also see that the optimal value of problem (34a)–(34b) will be an upper bound
on the conditional expectation of (weighted) floods over the horizon t, ..., t + L − 1 for any distribution
of the %t provided that the true support remains within the polyhedral support defined by (16a)–(16b),
constraint (24a) does not affect the hypothesis of E [%t+l|Gt−1] = 0,∀l ∈ Z+ and the structure of the ARMA
and GARCH models are correct.

4 Monte Carlo simulation and rolling horizon framework
Solving the stochastic version of problem (1a)–(1j) with affine decision rules at the beginning of time 1 for
L = T provides an upper bound on the value of the “true” problem over the horizon T when various hypotheses
on %t and ξt are verified. However, simulating the behaviour of the system with a given distribution can
give a better assessment of the real performance of these decisions. Using random variables that violate the
support assumptions also provides interesting robustness tests.

Furthermore, the full potential of ARMA and GARCH models crucially depends on the ability to as-
similate new data as it is progressively revealed. Using time series model to construct a single forecast at
time 1 for the entire horizon may lead to more realistic uncertainty modelling than considering an uncer-
tainty set that completely ignores the serial correlation. However, computing new forecasts as inflows are
progressively revealed will increase the precision of our model. We capture this fact by considering a rolling
horizon framework.

A rolling horizon framework also reflects the true behaviour of river operators who must take decisions
now at the beginning of time t for each future time t, ..., t + L− 1 by considering some horizon L ∈ N4 and
will update the parameters of the model as the time horizon progresses and new information on inflows and
other random variables is revealed. Section 5.3 also illustrates that the consequences of bad forecasts can be
mitigated by adapting past previsions.

The rolling horizon simulation works as follows. We simulate a T dimensional trajectory of zero-mean,
constant unconditional variance and uncorrelated random variables %s[T ] ≡ (%s,1, ..., %s,T )> which together
with the fixed and deterministic initial inflows ξ05 completely determine inflows ξs[T ] ≡ (ξs,1, ..., ξs,T )>. For
a given scenario s at the beginning of time t, after having observed the past history ξs[t−1] and %s[t−1], the
initial storage Sj,t−1(ξs[T ]) and the past water releases Fi,t′(ξs[T ]), t′ ≤ t − 1, i ∈ I, but before knowing the
future inflows ξs[t,T ], we compute the conditional expectation and variance of the inflows using the ARMA
and GARCH models.

We then solve the affine problem at time t by considering the (future) time horizon t, ..., t+L− 1 and by
taking the deterministic equivalent when considering affine decision rules with the conditional support Ξt.
We then implement the first period decisions, observe the total random inflow ξs,t during time t, compute
the linear combination of actual floods, update Sjt(ξs[T ]) and the past water releases Ft′,i(ξs[T ]), t′ ≤ t; i ∈ I
and solve SPt+1. We repeat this step for times t = 1, ..., T − L+ 1 for each of S sample trajectories.

5 Case study

5.1 The river system

We apply our methodology to the Gatineau river in Québec. This hydro electrical complex is part of the larger
Outaouais river basin and is managed by Hydro-Québec, the largest hydroelectricity producer in Canada [30].
It is composed of 3 run-of-the-river plants with relatively small productive capacity and 5 reservoirs, of which
only Baskatong and Cabonga have significant capacity (see Figure 2).

4We consider a rolling rather than receding horizon approach. More specifically, the future time horizon L ∈ N is held
constant at each optimization and does not decrease. This reflects the true approach used by river operators.

5We fix ξ0 = E [ξ0] as the unconditional mean inflow at time 0.
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Figure 2: Simplified representation of the Gatineau river system

The Gatineau represents an excellent case study as it runs near the small town of Maniwaki which
is subject to high risks of flooding, particularly during the spring freshet. Indeed, the city has suffered 4
significant floods in 1929, 1936, 1947 and 1974. Moreover, the reservoir system has relatively tight operational
constraints on flows and storages. If the head reservoirs are not sufficiently emptied before the freshet, there
is a significant risk of disrupting normal operating conditions and flooding [22].

The Baskatong reservoir is the largest of the broader Outaouais-Gatineau catchment and plays a critical
role in the management of the river. It is used to manage risk of floods during the freshet period as well
as droughts during the summer months. It has even been used to control baseflow at the greater Montreal
region several hundreds of kilometres downstream. As such, respect of minimum and maximum storage
threshold is essential for river operators. During certain months of the year including the freshet period,
flood management decision are taken at daily time steps and we therefore consider daily periods for the rest
of the numerical study.

Although the Gatineau also serves recreational, ecological and hydro-electicity generation purposes, flood
management remains the most important consideration due to the proximity of human settlements. Nonethe-
less, it would be useful to adopt a more holistic and integrated approach in future work in the same vein as
works such as [11, 20].

5.2 Historical daily inflows

Statistical properties of the total inflows process over the entire river {ξt}t also provide an interesting ap-
plication of our general framework. As Figure 3 illustrates, water inflows are particularly important and
volatile during the months of March through April (freshet) as snow melts. There is a second surge during
fall caused by greater precipitations and finally there are very little liquid inflows during the winter months.

Figure 3 also emphasizes the differences between the 6 in-sample years 1999-2004 used to calibrate our
model with the 6 out-of-sample years 2008-2013 used for validation. Due to the dryer years 1999–2000,
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the average in-sample inflows underestimate the true average. As exemplified by the large deviation at the
beginning of the year 2008, the actual inflows can significantly differ from the historical mean.
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5.3 Forecasting daily inflows

We estimate µt and σ2
t for the inflows {ξt}t at time t ∈ T by using the sample mean and variance at that time.

We then follow [24, 35] and fix ζt = ξt−µt

σt
, which makes sense as raw inflows can be assumed to have constant

mean and variance at the same time of the year. In this case, ut = E
[
ξ[t,t+L−1]

]
= (µt, ..., µt+L−1)> ∈ RL

and U−1
t = diag(σ−1

t , ..., σ−1
t+L−1) ∈ RL×L for our affine representation ξ[t,t+L−1] = Utζ[t,t+L−1] + ut with

P a.s..

Alternative ways to deal with the seasonal component of the time series include Fourier analysis to identify
a deterministic trend and the use of seasonal difference operators ∆sξt = ξt − ξt−s for some seasonal offset
s ∈ N [48, 8]. These are all compatible with our framework at no additional complexity.

We consider Box-Jenkins methodology [8] and find that the ζt approximately follow a ARMA(1, 1) process.
That is φ(B)ζt = θ(B)%t where φ(B) = 1 − φB and θ(B) = 1 + θB. We point out that this is the best
forecast as suggested by the data. Although our method can handle arbitrary time series models, tests with
ARMA(p, q) models of order p, q ∈ {1, · · · , 4} namely provided worst AIC criterion [1]. We also point out
that the moving average term implicitly considers arbitrarily long delays since a finite an stable pure moving
average model can be equivalently expressed as an infinite order autoregressive process [8].

The residuals resemble zero-mean independent white noise. The Ljung-Box Q-test also indicates that at
the 5% significance level, there is not enough evidence to reject the null hypothesis that the residuals are not
autocorrelated. Based on the data sample, we obtain the following estimates: σ% = 0.30, φ = 0.96, θ = −0.13.
Since |φ| < 1, we can express ζt = ψ(B)%t with

∑∞
i=0 |ψi| <∞ .

Although the initial forecast made at time 0 provides a much better estimate than the historical expected
value for small lead times, it does not perform very well for medium lead times (see Figure 4). Indeed, low
and high inflows in the beginning of the freshet resulted in very small and large forecasted inflows compared
with the actual inflows for the rest of the period for the years 2002 and 1999, respectively. However, as the
dotted lines reveal, repeatedly forecasting the future values as new data becomes available in a rolling horizon
fashion provides much better predictive power.

6The years 2005–2007 were not provided by Hydro-Québec.
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Figure 4: Comparing simple forecasts for 1999 & 2002

5.4 Heteroscedastic inflows

After fitting the ARMA(1,1) model, the residual {%t} do not seem to display any serial correlations (see
Figure 5). However, at the 5% level of significance, the Ljung-Box test on the squared residuals reveals the
presence of heteroscedasticity [33]. Visual inspection corroborates this conclusion as there are clear signs of
volatility clustering.
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Figure 5: Residuals from ARMA(1,1) model

We find that the residual {%t} approximately follow a GARCH(1, 1) model with the following estimates:
α0 = 0.01, α1 = 0.14, β1 = 0.84. We can show that the coefficients in (23) are given by ψ̂i = φ̂i−1

1 (φ̂ + θ̂) =
(α1 + β1)i−1α1 since φ̂i = (α1 + β1) and θ̂1 = −β1. It follows that

∑∞
i=0 |ψ̂i| < ∞. We point out that this

parsimonious GARCH process has proven very effective to forecast financial time-series data [32, 28].
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5.5 Comparing forecasts

Sections (3.3)–(3.5) suggests that bad forecasts will lead to poor quality solutions. In order to evaluate the
forecasting accuracy of our time series model {ξ̂frcst,t+l}L−1

l=0 , we therefore compare it with the naive static
forecast consisting of the historical daily mean {ξ̂naive,t}L−1

l=0 where ξ̂naive,t+1 = µt+l,∀l ∈ L.. We then use the
standard skill score, also known as the Nash-Sutcliffe efficiency [36, 27]. This statistical measure can be ex-
pressed as: 1− E [MSEfrcst,t,L]E [MSEnaive,t,L]−1 where MSEfrcst,t,L = L−1∑L−1

l=0 E
[
(ξ̂frcst,t+l − ξt+l)2

]
and MSEnaive,t,L = L−1∑L−1

l=0 E
[
(ξt+l − µt+l)2]. A skill score of 1 indicates a perfect forecast with zero

mean square error while a skill score of −∞ indicates a forecast doing infinitely worse than the reference fore-
cast. Positive, null and negative skill score respectively indicate superior, identical and inferior performance
relative to the reference forecast.

5.6 Numerical experiments

To validate the practical importance of our multi-stage stochastic program based on ARMA and GARCH
time series and affine decision rules, we perform a series of tests based on different inflow generators for the
Gatineau river. We consider a total horizon of T = 59 days beginning at the start of the spring freshet and
use daily time steps. We concentrate on the freshet as it represents the most difficult and interesting case for
our problem. However, we only report results for the first 30 days, which are also the most volatile and wet.

All experiments are performed by solving the problem in a rolling horizon fashion. Each optimization
problem uses a lookahead period of L = 30 days and we perform 30 model resolutions for each simulated
inflow trajectory. For each resolution, we only consider uncertainty on a limited time horizon of 7 days
and use the deterministic mean inflows for the remaining 23 days. This reduces the impact of poor quality
forecasts and speeds up computations.

To test the robustness of the different methods and evaluate if our approach could be used to avoid
emptying the head reservoirs before spring as is currently done, we always consider an initial storage that is
considerably higher than the normal operating conditions for this period. Results were obtained by assuming
no past water releases at time 0.

We used a ε1/2 = 4 which generates relatively large supports. Simulations were run on 2000 randomly
generated scenarios and took several hours (> 3 hours) to complete although most individual problems are
solved in less than 5 seconds. Problems were solved using AMPL with solver CPLEX 12.5 on computers with
16.0 GB RAM and i7 CPU’s @ 3.4 GHz.

For simulated inflows, we present the sample CVaRα of floods for α = 10−2n, n = 0, 1, ..., 100 over the
entire time horizon of T = 30 days where for the continuous random variableX, we define CVaRα = E[X|X >

VaRα(X)] and VaRα(X) = qX(α) = inf{t : P(X ≤ t) ≥ α} is the α quantile for some α ∈ (0, 1) [39].

As in [22], we choose to represent the empirical CVaR rather than the empirical distributions since it allows
rapid graphical comparison of the expected value (α = 0) and worst case (α = 1). Moreover, as mentioned
namely in [5], CVaR is consistent with second order stochastic dominance which is of prime concern for risk
averse decision makers.

To evaluate the suboptimality of our policies, we also plot the expected value of the ‘wait-and-see’ solution
with perfect foresight. Although very simple, Section 5.6 reveals that the bound can be relatively tight in
some cases and therefore that our models perform well under some scenarios.

5.7 Simulations with ARMA(1,1) & GARCH(1,1) generator

We first assume that the {%t} are zero-mean uncorrelated normal variables with unconditional variance σ2
%.

Hence these random variables violate our assumption of boundedness made in Section 3.3. Choosing random
variables with support defined exactly by (16b)–(16a) leads to virtually no floods.
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We then suppose the true inflow process {ξ̄t} is given by ξ̄t = σtζ̄t+µt where the {ζ̄t} follow an ARMA(1,1)
model with parameters θ̄ and φ̄. We specifically fix φ̄ = φ and θ = θ̄ + εθ where φ and θ are the values used
by our model through prior calibration.

Under these hypothesis, the skill of the ARMA forecast relative to the naive forecast will be non-negative
if and only if −0.87 ≤ εθ ≤ 0.87. This is independent of GARCH effects. Details are provided in (E).

As the first 2 graphs of Figure 6 illustrate, taking −0.87 ≤ εθ ≤ 0.87 with ARMA and GARCH models
unsurprisingly leads to the greatest flood reductions while only considering an ARMA model still improves
the solution quality compared to the naive forecast. The last graph with εθ = −5 reveals that even with
negative skill, it may pay off to consider ARMA or the combined GARCH and ARMA models when the true
process follows the same structure as those used by the model.
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Figure 6: Influence of reduced forecast skill

These conclusions remain valid when we increase the volatility of the true inflow process. Figure 7 namely
illustrates the impact of taking ξ̄t = ε̄1/2σtζ̄t + µt with the variance coefficient ε̄1/2 = 1, 2, 3 on the floods
when the time series model used by our multi-stage stochastic problem used to represent {ζ̄t} is exactly the
same as the one used by the inflow generator to represent {ζt}.
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Figure 7: Influence of increased unconditional variance
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As illustrated in Figures 6 and 7, the gap between the different suboptimal policies and the lower bounds
provided by the wait-and-see solution decreases as inflows become more volatile and extreme. This is likely
a consequence of the fact that persistently high inflows will invariably lead to high floods, even with perfect
foresight. In this case, the model therefore has little manoeuvrability left.

5.8 Simulation with different time series model

To test the robustness of our model with dynamic uncertainty sets, we also consider a more complicated
SARIMA(2, 0, 1)× (0, 1, 1) generator which does not rely on the affine decomposition ξt−µt

σt
= ζt,∀t assumed

by our optimization problem [8].

Figure 8 suggests that even in this case, our approach based on dynamic uncertainty sets performs better
than the one based on the naive forecast. It is encouraging to observe such robustness with respect to
time series structure. In this case, it makes virtually no difference whether we add GARCH effects or not.
Although the ARMA+GARCH model dominates the ARMA model, the curves are nearly confounded.
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Figure 8: Influence of different time series structure

5.9 Real Scenarios

We now consider S̄ = 12 real historical inflows provided by Hydro-Québec. The first 6 years (1999-2004)
were used as in-sample scenarios to determine sample moments and calibrate the time series-model. The
remaining 6 years (2008-2013) were used to validate the robustness of our approach.

Figure 9 shows violations of storage for the two large head reservoirs Baskatong and Cabonga as well as
flow bounds violations for the town of Maniwaki. Upper and lower bounds are indicated by solid black
lines. The figure indicates that violations occur at out-of-sample years (in red) while in-sample years
(in blue) respect all constraints. The two wet years 2008 and 2013 are particularly problematic. The plots
show that the models with ARMA and GARCH forecast usually yield overall superior performance compared
with the naive forecast. Indeed, these policies produce significantly less storage violations at the expense of
only slightly increased flow violations. The GARCH + ARMA and ARMA models give qualitatively similar
policies.
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Figure 9: Simulation results for 1999-2004 & 2008-2013 (12 years)

Our results also highlight the value of parsimony and the use of criteria such as AIC that penalize models
with numerous parameters. Complex models with higher order lags tended to produce very bad results when
tested on the out-of-sample historical inflows since the effect of bad forecasts had lasting consequences. For
instance, the abnormally high inflows at the beginning of the freshet in 2008 resulted in residuals that were
more than 10 times higher than the (in-sample) standard deviation at the beginning of the period. Models
based on ARMA(p,q) with large p or q produced overly wet forecasts over the next days, which led to model
infeasibility.
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This issue is directly related to over-fitting problems, which have attracted considerable attention in
statistics, namely in machine learning [29]. We believe that these results provide a counterexample to Tur-
geon’s claim that we should always try to optimize the (in-sample) performance of our model and completely
disregard parsimony [56].

6 Conclusion
In conclusion, we illustrate the importance and value of considering the persistence of inflows for the reservoir
management problem. Repeatedly solving a simple data-driven stochastic lookahead model using affine
decision rules and ARMA and GARCH time series model provides good quality solutions for a problem that
would otherwise be intractable for classical SDP and that would require considerably more distributional
assumptions for SDDP or tree-based stochastic programming.

We give detailed explanations on the construction and update of the forecasts as well as the conditional
distribution of the inflows. We also generalize the approach to consider heteroscedasticity. Although our
method is applied to the reservoir management problem, various insights and results can be easily exported
to other stochastic problems where serial correlation plays an important role.

As the results from Section 5.7, (5.8) and (5.9) seem to suggest, it is beneficial to consider ARMA and
GARCH models when theses models describe the real inflow process sufficiently well. When this is not the
case, the stochastic models based on these forecasts may only yield modest benefits compared to naive static
representations of the random vectors.

Nonetheless, our method offers numerous advantages that in our opinion outweigh its drawbacks. From
a practical point of view, our method can be easily incorporated into an existing stochastic programming
formulation based on affine decision rules. When the time series model is parsimonious, it is rather straight-
forward to compute the forecasts and update the stochastic model. The computational overhead is negligible
and our approach can be used for any time series model of any structure and any order.

Combined with affine decision rules, our lookahead model is not only tractable from a theoretical point of
view, it is also extremely fast to solve. This allows us to embed our optimization in a heavier rolling horizon
framework and to perform extensive simulations with various inflow generators. Although this would also be
theoretically possible for other competing methods such as stochastic programming based on scenario trees,
the computation requirements could quickly become excessive for practical purposes [22].

In addition, results indicate that even when the true process differs from the model considered the dynamic
uncertainty sets can achieve superior performance. It is likely that further performance gain can be obtained
by easily incorporating additional exogenous information such as soil moisture at no complexity cost.

Appendix A Joint probabilistic guarantees for the polyhedral support
Theorem 1 For any ε > 0 and L ∈ N, we have:

{y ∈ RL : ‖y‖2 ≤
√
Lε} ⊂ {y ∈ RL : ‖y‖1 ≤ L

√
ε} ∩ {y ∈ RL : ‖y‖∞ ≤

√
Lε} (35)

Proof. The Cauchy-Schwartz inequality yields ([47]):

‖y‖1 ≤ ‖y‖2 L
1/2 (36)

and we see that:

|yi| ≤

(
L∑
i=1
|yi|2

)1/2

, i = 1, ..., L⇒ max
i
|yi| ≤

(
L∑
i=1
|yi|2

)1/2

⇔ ‖y‖∞ ≤ ‖y‖2 (37)
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If follows that if ‖y‖2 ≤
√
Lε,

‖y‖∞ ≤ ‖y‖2 ≤
√
Lε (38)

‖y‖1 ≤ ‖y‖2 L
1/2 ≤ L

√
ε (39)

and (35) follows. We also note that the bounds are tight since the vector with yi = ε,∀i yields an equality
in (39) and the vector with yi = ε for a single i and 0 otherwise yields an equality in (38).

Using this fact, we can prove the following theorem:

Theorem 2 For a fixed ε > 0 and L ∈ N, given the square diagonal invertible matrix Σ = diag(σ2
1 , ..., σ

2
L) ∈

RL×L with σi > 0,∀i and Σ−1/2 = diag(σ−1
1 , ..., σ−1

L ), the following inclusion holds:

{x ∈ RL : x>Σ−1x ≤ Lε} ⊂ {x ∈ RL :
∑
i

|xi|
σi
≤ L
√
ε} ∩ {x ∈ RL : |xi|

σi
≤
√
Lε,∀i} (40)

Proof. We first observe that for any x ∈ RL, there exists a unique y ∈ RL such that y = Σ−1/2x since Σ is
invertible and Σ−1/2 exists.

We then show that the three sets in (40) can be written in terms of the 1,2 and ∞ norms and apply
Theorem 1.

1) The ellipsoid {x ∈ RL : x>Σ−1x ≤ Lε} can be written in terms of the ‖·‖2 norm:

{x ∈ RL : x>Σ−1x ≤ Lε} = {x ∈ RL : ∃y = Σ−1/2x, ‖y‖2 ≤
√
Lε} (41)

The equivalence holds since
∥∥Σ−1/2x

∥∥2
2 = (Σ−1/2x)>(Σ−1/2x) = x>Σ−1x.

2) The set: {x ∈ RL : |xi|
σi
≤
√
ε,∀i} can be written in terms of the ‖·‖∞ norm:

{x ∈ RL : |xi|σ−1
i ≤

√
ε,∀i} = {x ∈ RL : ∃y = Σ−1/2x, ‖y‖∞ ≤

√
Lε} (42)

3) The set: {x ∈ RL :
∑
i |xi|σ

−1
i ≤ L

√
ε} can be written in terms of the ‖·‖1 norm:

{x ∈ RL :
∑
i

|xi|σ−1
i ≤ L

√
ε} = {x ∈ RL : ∃y = Σ−1/2x, ‖y‖1 ≤ L

√
ε} (43)

By Theorem 1, we have:

{x ∈ RL : ∃y = Σ−1/2x, ‖y‖2 ≤
√
Lε} ⊂ (44)

{x ∈ RL : ∃y = Σ−1/2x, ‖y‖1 ≤ L
√
ε} ∩ {x ∈ RL : ∃y = Σ−1/2x, ‖y‖∞ ≤

√
Lε} (45)

which proves Theorem 2 and justifies the use of our bounded polyhedral support.

Observation 1 We observe that (40) is slightly different from the standard inclusion used in robust optimiza-
tion ([3] Section 2.3 and [52]). This is due to the fact that the authors in [3] intersect the ellipsoid with
a box (norm infinity ball) of radius 1, assume independent random variables and use Berstein’s inequality
to obtain probabilistic guarantees. The authors in [52] also derive similar uncertainty sets, but with differ-
ent probabilistic guarantees because they assume independent and bounded random variables with symmetric
distribution.

However, the bound we derive is based on Markov’s/Chebyshev’s conditional or unconditional inequality
and does not require finding the maximum realisation of the random variables explicitly. Our bounds also
hold when we weaken the requirements of independence to uncorrelation, which is required when considering
heteroscedasticity and the GARCH model.
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Appendix B Equivalent reformulation of the stochastic program
according to %

In order to derive the deterministic/robust equivalent of problem (34a)–(34c), it is convenient to formulate
the problem only in terms of %. Recall the following uncertainty set for the random inflow vector ξ:

Ξt =
{
ξ ∈ RL

∣∣∣∣∣ ∃% ∈ AL,ε,t

ξ = Ut(ζ̂t−1,L + V %) + ut

}
(46a)
(46b)

where:

AL,ε,t =


% ∈ RL

∣∣∣∣∣∣∣∣∣∣∣

|%i|σ−1
% ≤ (Lε)1/2, i = 1, ..., L

L∑
i=1
|%i|σ−1

% ≤ Lε1/2

Ut(ζ̂t−1,L + V %) + ut ≥ 0



(47a)

(47b)

(47c)

For any ξ ∈ Ξt, Equation (46b) implies that the affine decision rules X (ξ) = X 0 +X∆ξ can be written as
X̂ 0 + X̂∆% for some % ∈ AL,ε,t where:

X̂ 0 = X 0 + X∆ut + X∆Utζ̂t−1,L (48)
X̂∆ = X∆UtV (49)

Since X̂ 0 and X̂∆ are decision variables unrestricted in sign, we can equivalently write problem (34a)–
(34c) as:

min
X̂ 0,X̂∆

L−1∑
l=0
X̂ 0,>
t+l Gt+lX̂

0
t+l +

L−1∑
l=0

(X̂∆
t+lΣ

1/2
%,L,t−1)>Gt+l(X̂∆

t+lΣ
1/2
%,L,t−1) (50a)

s.t. (
l∑
l̄=0

At+l,t+l̄X̂
∆
t+l̄ − Ĉ

∆
t+l)% ≥ −

l∑
l̄=0

At+l,t+l̄X̂
0
t+l̄ + Ĉ0

t+l ∀l ∈ L, ∀% ∈ AL,ε,t (50b)

(
l∑
l̄=0

Dt+l,t+l̄X̂
∆
t+l̄ − Ê

∆
t+l)% = −

l∑
l̄=0

Dt+l,t+l̄X̂
0
t+l̄ + Ê0

t+l ∀l ∈ L, ∀% ∈ AL,ε,t (50c)

where Ĉ∆
t+l = Ct+lUtV , Ĉ0

t+l = Ct+lUtζ̂t−1+Ct+lut, Ê∆
t+l = Et+lUtV and Ê0

t+l = Et+lUtζ̂t−1+
Et+lut.

Appendix C Deriving the robust/deterministic equivalent
In order to robustify constraint (50b), we write AL,ε,t as a polyhedron in the lifted space
{(%+

1 , %
−
1 , · · · , %

+
L , %

−
L )> ∈ R2L

+ : ∃% ∈ RL; %+
i −%

−
i = %i; %+

i +%−i = |%i|,∀i = 1, ..., L}, which is the image of RL
under the coordinate-wise lifting Li(%) = (−min{%i, 0},max{%i, 0})> for i = 1, ..., L. We specifically consider:

A lift
L,ε |Gt−1 =

%
lift =


%+

1
%−1
...
%+
L

%−L

 ∈ R2L
+

∣∣∣∣∣∣∣∣∣∣∣∣
Σ−1/2
%,L S%lift ≤ (Lε)1/21

1>Σ−1/2
%,L S%lift ≤ Lε1/2

− UtV R%lift ≤ Utζ̂t−1,L + ut


(51a)

(51b)

(51c)
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where

R =


1 −1

1 −1
. . .

1 −1

 ∈ RL×2L

S =


1 1

1 1
. . .

1 1

 ∈ RL×2L

1> = (1, · · · , 1)> ∈ RL

with S>i %lift = |%i| and R>i %lift = %i for any i = 1, ..., L.

Robustifying the kthl ∈ {1, ...,mt+l} constraint (50b) for a fixed l ∈ L can therefore be achieved by setting
α>kl

(X̂ ) = −(
∑l
l̄=0At+l,t+l̄X̂∆

t+l̄− Ĉ
∆
t+l)>kl

∈ R1×L as the kthl row of −(
∑l
l̄=0At+l,t+l̄X̂∆

t+l̄− Ĉ
∆
t+l) and ensuring

that α>kl
(X̂ )R%lift ≤ (

∑l
l̄=0At+l,t+l̄)kl

holds for all %lift ∈ A lift
L,ε |Gt−1. Since A lift

L,ε |Gt−1 is a closed, non-
empty and bounded polyhedron, this can be achieved by ensuring that the maximum value of the following
pair of linear programs is smaller or equal than (

∑l
l̄=0At+l,t+l̄X̂ 0

t+l̄ − Ĉ
0
t+l)kl

:

max
%lift≥0

α>kl
(X̂ )R%lift min

π,ν≥0
(Lε)1/2π>1 + π0Lε1/2 + ν>(Utζ̂t−1,L + ut)

s. t: Σ−1/2
%,L S%lift ≤ (Lε)1/21 s. t: π>Σ−1/2

%,L S + π01>Σ−1/2
%,L S − ν>(UtV R) ≥ α>kl

(X̂ )R
(P ) 1>Σ−1/2

%,L S%lift ≤ Lε1/2 (D)
−UtV R%lift ≤ Utζ̂t−1,L + ut

Since AL,ε,t is full dimensional and contains 0, the linear system (50c) will hold for all % ∈ AL,ε,t if and
only if:

−
l∑
l̄=0

Dt+l,t+l̄X̂
0
t+l̄ + Ê0

t+l = 0 ∈ Rnt+l (52a)

(
l∑
l̄=0

Dt+l,t+l̄X̂
∆
t+l̄ − Ê

∆
t+l) = 0 ∈ Rmt+l (52b)

It follows that problem (34a)–(34c) is equivalent to:

min
X̂ 0,X̂∆,
π,ν≥0

L−1∑
l=0
X̂ 0,>
t+l Gt+lX̂

0
t+l +

L−1∑
l=0

(X̂∆
t+lΣ

1/2
%,L,t−1)>Gt+l(X̂∆

t+lΣ
1/2
%,L,t−1) (53a)

s.t. (Lε)1/2π>1 + π0Lε1/2 + ν>(Utζ̂t−1,L + ut) ≤ (
l∑
l̄=0

At+l,t+l̄X̂
0
t+l̄ − Ĉ

0
t+l)kl

∀kl ∈ {1, ...,ml}, l ∈ L

(53b)
π>Σ−1/2

%,L S + π01>Σ−1/2
%,L S − ν>(UtV R) ≥ α>kl

(X̂ )R ∀kl ∈ {1, ...,ml}, l ∈ L
(53c)

−
l∑
l̄=0

Dt+l,t+l̄X̂
0
t+l̄ + Ê0

t+l = 0 ∈ Rnt+l (53d)

(
l∑
l̄=0

Dt+l,t+l̄X̂
∆
t+l̄ − Ê

∆
t+l) = 0 ∈ Rmt+l (53e)
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Appendix D Details on GARCH(m, s) model
Recall the general GARCH(m, s) model:

σ̂2
t−1(1) = α0 +

m∑
i=1

αi%
2
t−i +

s∑
j=1

βj σ̂
2
t−1−j(1) (54)

D.1 Stationarity conditions

In order for the {%t} to be second order stationary with constant variance σ2
a we require that for any t ∈ Z:

E
[
E
[
%2
t |Gt−1

]]
= E

α0 +
m∑
i=1

αi%
2
t−i +

s∑
j=1

βj σ̂
2
t−1−j(1)

 (55)

⇔ σ2
% = α0

1−
max{m,s}∑

j=1
(αj + βj)

−1

(56)

which is finite and positive if and only if
∑max{m,s}
j=1 (αj + βj) < 1 with αj = 0 if j > m and βj = 0

if j > s.

D.2 Reformulation of difference equations

We can reformulate (54) by making the substitution νt = %2
t − σ̂2

t−1(1):

σ̂2
t−1(1) = α0 +

m∑
i=1

αi%
2
t−i +

s∑
j=1

βj σ̂
2
t−1−j(1) (57)

⇔ %2
t−i −

max{m,s}∑
i=1

(αi + βi)%2
t−i = α0 + νt −

s∑
i=1

βjνt−j (58)

with αi = 0 if i > m and βi = 0 if i > s. We can then rewrite (58) in a more compact form similar to the
general ARMA model:

φ̂(B)%2
t = α0 + θ̂(B)νt (59)

where φ̂(B) = (1−
∑max{m,s}
i=1 φ̂iB

i) and θ̂(B) = (1 +
∑s
i=1 θ̂iB

i). The coefficients of the polynomials are
given by:

φ̂i =



1 i = 0
(αi + βi) i = 1, ...,min{s,m}
βi min{s,m} < i ≤ max{s,m} and s > m

αi min{s,m} < i ≤ max{s,m} and s < m

0 otherwise

θ̂i =


1 i = 0
−βi i = 1, ...,m
0 otherwise

Given conditions (56):

φ̂(B)σ2
% =

(
1−

∑max{m,s}
j=1 (αj + βj)

)
(

1−
∑max{m,s}
j=1 (αj + βj)

)α0 (60)
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Hence (59) is equivalent to:

φ̂(B)(%2
t − σ2

%) = θ̂(B)νt (61)

D.3 Computing the conditional variance for arbitrary lead times

We can find ψ̂(B) such that φ̂(B)ψ̂(B) = θ̂(B) and we can therefore “invert” (61). Given any l ∈ Z+, we
specifically obtain:

%2
t+l = σ2

% +
∞∑
i=0

ψ̂iνt+l−i (62)

Taking the conditional expectation E [·|Gt] on both sides of the Equation 62 yields:

σ̂2
t (l) = σ2

% +
∞∑
j=l

ψ̂jνt+l−j (63)

Equation (63) holds since for j ≤ l − 1 and l ∈ Z+:

E [νt+l−j |Gt] = E
[
%2
t+l−j − E

[
%2
t+l−j |Gt+l−j−1

]
|Gt
]

(64)
= E

[
%2
t+l−j |Gt

]
− E

[
E
[
%2
t+l−j |Gt+l−j−1

]
|Gt
]

(65)
= 0 (66)

By the linearity and towering property of the conditional expectation [6].

Appendix E Forecast skill with synthetic ARMA(1,1) time series
If the true process follows an ARMA(1,1) model with parameters θ̄ and φ̄, the quality of a L day ahead
forecast made at any time t will be superior to that of the naive forecast on average when the skill of that
forecast is non-negative:

0 ≤ 1− E [MSEfrcst,t,L]E [MSEnaive,t,L]−1 (67)

⇔
L−1∑
l=0

E
[

(σt+l(
∞∑
i=0

(ψ̄i − ψi)%t+l−i))2

]
≤
L−1∑
l=0

E
[

(σt+l
∞∑
i=0

ψ̄i%t+l−i)
]2

(68)

If φ̄ = φ and θ̄ 6= θ, then (68) is equivalent to:

L−1∑
l=0

σ2
t+l

(θ − θ̄)2

1− φ2 σ2
% ≤

L−1∑
l=0

σ2
t+l

θ̄(2φ+ θ̄) + 1
1− φ2 σ2

% (69)

which for values φ̄ = −0.96 and θ̄ = −0.13 is satisfied if and only if −1 ≤ θ ≤ 0.74. Hence if we
have the perturbed model θ = θ̄ + εθ, then the skill of the forecast will be non-negative if and only if
−0.87 ≤ εθ ≤ 0.87. This is independent of GARCH effects since we consider the expected mean square error
and not the conditional expected mean square error.
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