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– Library and Archives Canada, 2016

GERAD HEC Montréal
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Abstract: In this paper, we show that cooperative outcomes in a dynamic game played over an event tree
can be supported strategically, that is, to be part of a subgame perfect ε-equilibrium. A numerical example
illustrates our results.
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Résumé : Dans cet article, nous montrons que les gains coopératifs dans un jeu dynamique défini sur
un arbre d’événements peuvent avoir un support stratégique, c’est-à-dire, faire partie d’un équilibre parfait
approximé. Nous illustrons nos résultats avec un exemple numérique.
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1 Introduction

Suppose that the players in a dynamic game played over an event tree (DGPET) agree to cooperate and

maximize their joint payoff over a given finite planning horizon. The question we ask in this paper is the

following: can the resulting cooperative outcomes be sustained as an equilibrium?

In a DGPET, which is a particular stochastic game, the uncertainty is represented by an exogenously

given finite event tree, that is, players do not influence the probabilities of transitions between nodes of the

tree. As in multistage games (or difference games), a DGPET involves control and state variables. This class

of games was initially introduced to examine equilibria in the European natural gas market by Zaccour, 1987

and Haurie et al., 1990. The solution concept proposed in these papers was termed S -adapted equilibrium

where S stands for sample of realizations of the stochastic process.

Recently, cooperation in DGPET was considered, with the aim of constructing node-consistent solutions,

which means that at any node of the event tree, each player’s cooperative payoff-to-go in the subgame

starting at that node, dominates her noncooperative counterpart. Reddy et al., 2013 proposed a node-

consistent Shapley value for this class of games, whereas Parilina and Zaccour, 2015a built a node-consistent

core. Node consistency reduces to time consistency in deterministic multistage games, that is, games with

an event tree having only one node at each period. The concept of time consistency was first introduced in

Petrosjan, 1977; see also Petrosjan and Danilov, 1979. In these references, one idea was to redistribute the

players’ payoffs along cooperative trajectory by applying an imputation distribution procedure (IDP), which

is a decomposition over time of players’ payoffs. Since then, a large literature followed on time consistency

in dynamic (especially differential) games; see the book by Yeung and Petrosyan, 2006 and the survey by

Zaccour, 2008.

To be more precise on our objective here, assume that the players decide to select a particular imputation

in the overall cooperative game, say the Shapley value to fix ideas, and next devise a node-consistent IDP.

Now, replace for each player her original payoff in each node by its computed IDP gain. Can these modified

payoffs be supported strategically, that is, they are part of a (Nash) equilibrium? If at any node there exists

a player who benefits if she deviates from the cooperative trajectory, then it implies that the cooperative

trajectory is not an equilibrium in the game with payoffs given by IDP. If not, then the conclusion is that

the cooperative solution is an equilibrium, and hence is sustainable.

The problem of strategically supporting a cooperative solution is an old one in repeated games. We know

from folk theorems that any individually rational outcome (including a cooperative outcome, which is our

focus here) can be sustained if the players are sufficiently patient. A folk theorem about the existence of

subgame perfect equilibrium in trigger strategies for stochastic games was proved by Dutta, 1995. Recently,

Parilina, 2014 provided a condition of strategic support of a cooperative solution in stochastic games. In

state-space games, it seems that there is no general folk theorem, but many results for special cases exist.

For early contributions in this area, see, e.g., Haurie and Tolwinski, 1985, Tolwinski, 1986, Haurie and

Pohjola, 1987 and Haurie et al., 1994, and for more recent ones, see, e.g., Petrosyan, 2008 and Chistyakov

and Petrosyan, 2013.1

Folk theorems are for infinite-horizon games. It is well-known that cooperation is very hard, if not

impossible, to sustain in finite-horizon games. The reason is that players will find it optimal to deviate in the

last stage and by a backward induction argument, the result is a noncooperative mode of play throughout the

game. Different concepts have been proposed to cope with this difficulty, in particular the idea of subgame-

perfect ε-equilibrium; see, e.g., Radner, 1980, Benoit and Krishna, 1985, Solan and Vieille, 2003, Mailath

et al., 2005, Flesch et al., 2014 and Flesh and Predtetchinski, 2015. For the class of DGPET, Parilina

and Zaccour, 2015b constructed an ε-equilibrium and provided some illustrative examples in environmental

economics. This paper takes stock on Parilina and Zaccour, 2015b, but differ in one fundamental way: here,

we use the same method for the case where the nodes’ payoffs are given by the IDP. Put differently, we wish

to check if a node-consistent IDP enjoys the property of being an equilibrium. The short answer is no, but

it is in an ε-equilibrium sense.

1The books by Dockner et al., 2000 and Haurie et al., 2012 provide a comprehensive introduction to cooperative equilibria
in differential games.
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The rest of the paper is organized as follows: Section 2 describes the model of the game over event tree,

and Section 3 deals with realization of the cooperative solution and problems arise with the realization.

Section 4 contains main results. We provide an illustrative example in Section 5, and briefly conclude in

Section 6.

2 Game over event tree

We briefly recall the main ingredients of the class of dynamic games played over event trees; see Haurie et

al., 2012 for more details.

Let T = {0, 1, . . . , T} be the set of periods. The exogenous stochastic process is represented by an event

tree, which has a root node n0 in period 0 and a set of nodes N t =
{
nt1, . . . , n

t
Nt

}
in period t = 1, . . . , T .

Each node ntl ∈ N t represents a possible sample value of the history of the stochastic process up to time

t. The tree graph structure represents the nesting of information as one time period succeeds the other.

Let a(ntl) ∈ N t−1 be the unique predecessor of node ntl ∈ N t on the event-tree graph, t = 1, . . . , T , and

S(ntl) ⊂ N t+1 be the set of all possible direct successors of node ntl ∈ N t. A path from the root node n0 to a

terminal node nTl is called a scenario. Each scenario has a probability and the probabilities of all scenarios

sum up to 1. We denote by π(ntl) the probability of passing through node ntl , which corresponds to the sum

of the probabilities of all scenarios that contain this node. In particular, π(n0) = 1 and π(nTl ) is equal to the

probability of the single scenario that terminates in node nTl .

Denote the set of players by M = {1, . . . ,m}. For each player j ∈ M , we define a set of controls

indexed over the set of nodes. Denote by uj(n
t
l) ∈ Rmj the control of player j at node ntl , and let u(ntl) =

(u1(ntl), . . . , um(ntl)). Let X ⊂ Rp be a state set. For each node ntl ∈ N t, t = 0, 1, . . . , T, let U
ntl
j ⊂ Rµ

ntl
j

be the control set of player j. Denote by Un
t
l = U

ntl
1 × · · · × U

ntl
j × · · · × U

ntl
m the product of control sets. A

transition function fn
t
l (·, ·) : X×Untl 7→ X is associated with each node ntl . The state equations are given by

x(ntl) = fa(ntl)
(
x
(
a
(
ntl
))
, u
(
a
(
ntl
)))

, (1)

u
(
a
(
ntl
))
∈ Ua(ntl), ntl ∈ N t, t = 1, . . . , T. (2)

At each node ntl , t = 0, . . . , T − 1, the reward to player j is a function of the state and the controls of

all players, given by φ
ntl
j (x(ntl), u(ntl)). At a terminal node nTl , the reward to player j is given by function

Φ
nTl
j (x(nTl )).

We assume that player j ∈M maximizes his expected stream of payoffs discounted at rate λj (0 < λj < 1).

The state equations and the reward functions define the following multistage game, where we let

x = {x(ntl) : ntl ∈ N t, t = 0, . . . , T},
u = {u(ntl) : ntl ∈ N t, t = 0, . . . , T − 1},

and Jj(x,u) be the payoff to player j ∈M that is,

Jj(x,u) =

T−1∑
t=0

λtj
∑
ntl∈N t

π(ntl)φ
ntl
j (x(ntl), u(ntl)) + λTj

∑
nTl ∈NT

π(nTl )Φ
nTl
j (x(nTl )), (3)

s.t.

x(ntl) = fa(ntl)(x(a(ntl)), u(a(ntl))), (4)

u(a(ntl)) ∈ Ua(ntl), ntl ∈ N t, t = 1, . . . , T,

x(n0) = x0. (5)

Definition 1 An admissible S-adapted strategy of player j is a vector uj = {uj(ntl) : ntl ∈ N t, t = 0, . . . , T−1},
that is, a plan of actions adapted to the history of the random process represented by the event tree.
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The S -adapted strategy profile of the m players is u = (uj : j ∈M). We can thus define a game in normal

form
〈
M, (uj : j ∈M), (Wj(u, x

0) : j ∈M)
〉
, where Wj(u, x

0) = Jj(x,u) is a payoff function of player j ∈M ,

and x is obtained from u as the unique solution of the state equations that emanate from the initial state x0.

If the game is played noncooperatively, then the players will seek a Nash equilibrium in S -adapted

strategies defined as follows:

Definition 2 An S-adapted Nash equilibrium is an admissible S-adapted strategy profile uN such that for

every player j ∈M the following condition holds:

Wj(u
N , x0) ≥Wj

(
(uN−j ,uj), x

0
)
,

where (uN−j ,uj) is the S-adapted strategy profile when all players i 6= j, i ∈ M , use their Nash equilibrium

strategies.

Remark 1 Although the S-adapted and open-loop equilibria look similar, we note that they differ in the defi-

nitions of the state equations and controls. In an open-loop information structure, the controls and the state

equations are defined over time. In an S-adapted information structure, the controls and the state equations

are defined (indexed) over the set of nodes of the event tree.

If the players agree to cooperate, then they will maximize the sum of their discounted payoffs throughout

the entire horizon, that is,

max
uj :j∈M

∑
j∈M

Wj

(
u, x0

)
.

Denote the resulting profile of cooperative controls by u∗, that is,

u∗ = arg max
uj :j∈M

∑
j∈M

Wj

(
u, x0

)
. (6)

Further, denote by x∗ = {x∗(ntl) : ntl ∈ N t, t = 0, 1, . . . , T} the cooperative state trajectory generated by the

cooperative control profile u∗.

For later use, we also need to determine the subgame starting at node ntl ∈ N t with state x∗ (ntl),

t = 1, . . . , T − 1. This subgame takes place on a tree subgraph Γ(ntl) of the initial graph. A root of subgraph

Γ(ntl) is node ntl . The payoff function of player j ∈M in this subgame is given by

Wj

(
u(ntl), x

∗ (ntl)) =

T−1∑
θ=t

λθ−tj

∑
nθl ∈N

θ
Γ

π(nθl |ntl)φ
nθl
j (x∗(nθl ), u(nθl ))

+ λT−tj

∑
nTl ∈N

T
Γ

π(nTl |ntl)Φ
nTl
j (x∗(nTl )),

where N θ
Γ = N θ ∩ Γ(ntl), and u(ntl) = (uj(n

t
l) : j ∈ M) is an S -adapted strategy profile in the subgame,

uj(n
t
l) = {uj(nθl ) : nθl ∈ Γ(ntl)} is an admissible S -adapted strategy of player j in the subgame starting at

node ntl , with initial state x∗(ntl). The term π(nθl |ntl) is the conditional probability2 that node nθl will be

realized if the subgame starts at node ntl .

If the players act noncooperatively in the subgame starting at node ntl with state x∗(ntl) and find the

S -adapted Nash equilibrium according to Definition 2, we denote it as uN (ntl) = (uNj (ntl) : j ∈ M). The

S -adapted equilibrium payoff of player j is equal to Wj

(
uN (ntl), x

∗(ntl)
)
.

If the players cooperate in the subgame starting at node ntl with the state x∗ (ntl), they maximize the sum

of their total discounted payoffs, i.e.,

max
uj(ntl):j∈M

∑
j∈M

Wj

(
u(ntl), x

∗ (ntl)) ,
2The conditional probability π(nθl |n

t
l) can be calculated by the formula: π(nθl |n

t
l) = π(nθl )/π(ntl) if π(ntl) 6= 0; otherwise, the

subgame starting from node ntl cannot materialize.
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and the cooperative controls in the subgame are given as follows:

u∗(ntl) = arg max
uj(ntl):j∈M

∑
j∈M

Wj

(
u(ntl), x

∗ (ntl)) . (7)

Therefore, the payoff to player j in the cooperative subgame starting from node ntl , with initial state x∗(ntl),

ntl ∈ N
t
, is equal to Wj (u∗(ntl), x

∗ (ntl)), t = 1, . . . , T .

Remark 2 We suppose that the joint-optimization solution and the Nash equilibrium in the whole game and in

any subgame are unique. The uniqueness for the joint-optimization solution requires, as usual, strict concavity

of the objective function and the control set must be compact and convex. For uniqueness of S-adapted

Nash equilibrium, we observe that the multistage game has a normal form representation, and therefore the

conditions for uniqueness are the same as in classical games with continuous payoffs with constraints as

established in Rosen [1965].

3 Cooperative solution

Suppose that the players decide to cooperate and agree on a particular imputation y(n0) = (y1(n0), . . .,

ym(n0)) as a solution to whole cooperative game. By being an imputation, y(n0) satisfies the following

equality: ∑
j∈M

yj(n
0) =

∑
j∈M

Wj(u
∗, x0).

Unless the game is trivial, the total before-side-payment payoff Wj(u
∗, x0) of player j ∈M , does not coincide

with her total after-side-payment payoff given by yj(n
0). Further, we need to keep in mind that depending

on how yj(n
0) is decomposed over nodes, the player may have more or less interest in continuing cooperation.

Now, we proceed with some details.

First, define the characteristic function V (G;ntl) : 2m → R, where G is a coalition of players (G ⊂ M),

and V (∅;ntl) = 0. To compute the value V (G;ntl) for any coalition G ⊂M and any node ntl ∈ N t, we adopt

the γ-characteristic function assumption, which states that when coalition G forms, the left-out-players

(N\G) would not join force against G, but only use their individually best-reply strategies. Consequently,

the value of γ-characteristic function for coalition G is given by the S -adapted equilibrium outcome of G in

the non-cooperative game between members of G maximizing their joint payoff, and non members playing

individually, i.e., maximizing their individual payoffs.

Second, we define the imputation set Y (ntl) in any subgame starting at node ntl in state x∗(ntl), that is,

Y (ntl) =

{
(y1(ntl), . . . , ym(ntl)) : yj(n

t
l) ≥ V ({j};ntl),∀j ∈M, and

∑
j∈M

yj(n
t
l) = V (M ;ntl)

}
.

Definition 3 We call ({βj(ntl)}ntl∈N t,t=0,...,T : j ∈ M) an imputation distribution procedure (IDP) of the

imputation y(n0) = (y1(n0), . . . , ym(n0)), where βj(n
t
l) is a payment to player j at node ntl in state x∗(ntl), if

for all j ∈M the following conditions hold:

yj(n
0) =

T∑
θ=0

λθj
∑

nθl ∈N θ
π(nθl )βj(n

θ
l ), (8)

∑
j∈M

βj(n
t
l) =

∑
j∈M

φ
ntl
j

(
x∗(ntl), u

∗(ntl)
)
, ntl ∈ N t, t = 0, . . . , T − 1 (9)

∑
j∈M

βj(n
T
l ) =

∑
j∈M

Φ
nTl
j (x∗(nTl )), nTl ∈ N T . (10)

Equation (8) means that the expected sum of the discounted payments to player j ∈ M is equal to her

imputation in the whole game. Equations (9), (10) are the conditions for “admissibility” of IDP, i.e., the



Les Cahiers du GERAD G–2016–14 5

sum of payments to the players in any node is equal to the sum of payoffs that they can obtain at this node

using cooperative controls u∗(ntl).

We should notice that only along the cooperative trajectory that players receive payments according to

IDP. Off this trajectory, they are paid according to their payoff functions φ
ntl
j (·) and Φ

ntl
j (·).

Definition 4 The imputation y(n0) ∈ C(n0) ⊂ Y (n0) and corresponding imputation distribution procedure({
βj
(
ntl
)}
ntl∈N

t,t=1,...,T
: j ∈M

)
are called node consistent in the whole game, if for any state x∗(ntl), ntl ∈ N

t
, t = 0, . . . , T , there exists

y(ntl) = (y1(ntl), . . . , ym(ntl)) ∈ C(ntl) ⊂ Y (ntl) satisfying the following condition:

t−1∑
θ=0

λθj
∑

nθk∈N θ
π(nθk)βj(n

θ
k) + λtj

∑
ntk∈N t

π(nθk)yj
(
ntl
)

= yj(x
0). (11)

Here C(ntl) is a cooperative solution of the cooperative subgame beginning at node ntl with state x∗(ntl)

and it is a subset of the imputation set Y (ntl). E.g., it may be the core, the nucleolus, the Shapley value or

any other subset.

Any IDP satisfying the conditions in (8)-(10) is admissible. Following Parilina and Zaccour, 2015a, we

propose the following node-consistent IDP:

βj(n
t
l) = yj(n

t
l)− λj

∑
nt+1
k ∈S(ntl)

π(nt+1
k |n

t
l)yj(n

t+1
k ), (12)

and for t = T :

βj(n
T
l ) = Φ

nTl
j (x∗(nTl )), (13)

where y(ntl) = (y1(ntl), . . . , ym(ntl)) ∈ C(ntl) for any ntl ∈ N
t
, t = 0, . . . , T − 1. To compute the IDP, the

players need to choose an imputation y(ntl) belonging to the same cooperative solution3 in any subgame

starting at node ntl in state x∗(ntl), and follow equations (12) and (13).

If the cooperative solution C(·) is a singleton like the Shapley value, the IDP is uniquely defined by

equations (12) and (13), in which yj(n
t
l) is the jth component of the Shapley value calculated for the subgame

beginning at node ntl with state x∗(ntl).

Remark 3 Considering the cooperative subgame beginning from node ntl , we determine the characteristic

function V (G;ntl) , which is a function of the state x∗ (ntl) as well as the node. To make the notations simpler,

we omit the state. Therefore, V (G;ntl) should be read as V (G;ntl , x
∗ (ntl)) . We also omit the state in the

notations of the imputation y(ntl) and IDP β (ntl), which should be read as y(ntl , x
∗(ntl)) and β (ntl , x

∗ (ntl)),

respectively.

4 Strategic support of cooperative solution

To recapitulate, in the previous section we stated that if the players agree to cooperate throughout the game,

we can implement the agreed upon imputation by changing the initial payoff of player j in node ntl , that is,

φ
ntl
j (x∗(ntl), u

∗(ntl)), by βj(n
t
l), j ∈M and ntl ∈ N

t
, t = 0, . . . , T − 1. Similarly, Φ

nTl
j (x∗(nTl )) was substituted

for by βj(n
T
l ), j ∈ M and nTl ∈ N

T
. Once this done, the objective is to show that these (new) outcomes

can be supported strategically, that is, they correspond to the subgame perfect ε-equilibrium outcomes of a

noncooperative DGPET.

3Let the cooperative solution be a singleton like the Shapley value. Then in any subgame we need to compute the Shapley
value as a cooperative solution. The case where the cooperative solution is the set (e.g., the core) is considered in details by
Parilina and Zaccour, 2015a.
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We represent the DGPET in extensive form and assume that the players use closed-loop information

structure when choosing their strategies. It means that each player knows not only the current node ntl ∈ N t,

t = 0, . . . , T and what she has played on the path leading from the initial node n0 to a(ntl), but also what

the other players did in all previous periods. Denote by P (ntl) = (n0, n1
i1
, . . . , nt−1

it−1
, ntl) the unique path from

initial node n0 until ntl . We call the history of node ntl the collection of nodes and corresponding strategy

profiles realized on the path P (ntl) excepting node ntl , that is,

H(ntl) =
((
n0, u(n0)

)
,
(
n1
i1 , u(n1

i1)
)
, . . . ,

(
nt−1
it−1

, u(nt−1
it−1

)
))
.

Definition 5 A behavior strategy of player j ∈ M in the DGPET is a function associating an action u(ntl)

with each history H(ntl) for each node ntl ∈ N
t
, t = 0, . . . , T − 1, i.e.,

σj =
{
σ
ntl
j

}
ntl∈N t,t=0,...,T−1

,

where

σ
ntl
j : H(ntl) −→ U

ntl
j .

Behavior strategy σj prescribes to player j the action that should be implemented in each node ntl of the

event tree Γ(n0). Denote by Σj the set of behavior strategies of player j, by σ = (σ1, . . . , σm) a behavior

strategy profile, and by Σ = Σ1× . . .×Σm the set of possible strategy profiles. For a given behavior strategy

profile, we can compute the expected payoff in all subgames, including the whole game, for any given initial

state. Denote the payoff of player j in the subgame starting at node ntl in state x(ntl) as a function of the

behavior strategy profile, by

Ŵj

(
σ, x(ntl)

)
= Wj

(
u(ntl), x(ntl)

)
,

where u(ntl) is a trajectory of controls in the subgame starting at node ntl with the state x(ntl) corresponding

to the profile σ.

Below we describe the trigger strategy for the DGPET in detail.

Definition 6 A strategy profile in behavior strategies σ̂ is subgame perfect ε-equilibrium if for any player

j ∈M , any node ntl ∈ N t, any strategy σj ∈ Σj and any history H(ntl) the following inequality holds

Ŵj

(
σ̂, x(ntl)|H(ntl)

)
> Ŵj

(
(σ̂−j , σj), x(ntl)|H(ntl)

)
− ε,

where Ŵj(σ̂, x(ntl)|H(ntl)) is the player j’s payoff in the subgame starting at node ntl with the state x(ntl)

when players use strategy profile σ̂ and the history of node ntl is H(ntl).

To strategically support cooperation in the finite-horizon dynamic game played over an event tree, we

shall construct an approximated equilibrium in behavior strategies with a closed-loop information structure.

We make the following assumptions about players’ behavior:

1. The players want to realize the cooperative trajectory u∗ from (6);

2. The players agree to implement the imputation y(x0) along the cooperative trajectory u∗;

3. The players adopt the IDP payments as defined by (12) and (13);

4. If a player j deviates from cooperation at node a (ntl) , that is, implementing a control uj(a (ntl)) 6=
u∗j (a (ntl)), then cooperation breaks down and all players switch to their Nash equilibrium strategies in

the subgame starting at node ntl in state x (ntl) = fa(ntl)
(
x∗(a(ntl)), (u

∗
−j(a(ntl)), uj(a(ntl)))

)
.

If player p ∈ M deviates and cooperation breaks down, her payoff in the subgame starting at ntl in

state x (ntl) is Wp(u
N (ntl), x(ntl)), that is, the profit that player p achieves when all players implement Nash

equilibrium strategies. Denote by σ̂ = (σ̂p : p ∈ M) a behavior strategy profile that prescribes to player

p 6= j to implement the cooperative control u∗p(n
t
l) in node ntl if in the history of this node no deviations

from cooperative trajectory have been observed, and to implement uNp (ntl), otherwise. Denote by û(ntl) =



Les Cahiers du GERAD G–2016–14 7

{û(nθl ) : nθl ∈ Γ(ntl)} the collection of controls corresponding to strategy profile σ̂ such that the trigger mode

of behavior strategy is implemented in the subgame starting at node ntl in state x(ntl). If in the history of

nθl the individual deviation of player j has been observed, we denote the collection of controls corresponding

σ̂ by ûj(nθl ).

The trigger behavior strategy of a player consists of two behavior types or two modes:

The nominal mode. If the history of node ntl coincides with

H∗(ntl) =
((
n0, u∗(n0)

)
,
(
n1
i1 , u

∗(n1
i1)
)
, . . . ,

(
nt−1
it−1

, u∗(nt−1
it−1

)
))
, (14)

i.e., all players used their cooperative controls on the path P
(
nt−1
it−1

)
, that is, from n0 until nt−1

it−1
, then

player p, p ∈M implements u∗p(n
t
l) in node ntl .

The trigger mode. If the history of node ntl is such that there exists a node n on the path P
(
nt−1
it−1

)
such

that u(n) 6= u∗(n), then player p’s strategy is Nash equilibrium strategy calculated for the subgame

starting from the successor of n and corresponding state. Here, the history of node ntl is such that there

exists a node n and at least one deviating player j ∈ M , j 6= p, that is, the history H(n) of node n is

part of H∗(ntl), and (n, u(n)) is not part of H∗(ntl), but if we replace the control uj(n) of player j in

node n by the cooperative control u∗j (n), then the pair (n, (u−j(n), u∗j (n))) will be (n, u∗(n)) and part

of history H∗(ntl).

Formally speaking, the trigger behavior strategy of player p ∈M is defined as follows:

σ̂p(H(ntl)) =


u∗p(n

t
l), if H(ntl) = H∗(ntl),

ûp(n
t
l), if there exists a node n on path P (ntl),

such that u(n) 6= u∗(n),

(15)

where ûp(n
t
l) is player p’s control in node ntl . The control ûp(n

t
l) implements the punishing strategy in the

subgame starting in the unique node belonging to the set S(n) ∩ P (ntl). The control ûp(n
t
l) coincides with

uNp (ntl) calculated as a part of Nash equilibrium for the subgame starting at node n1 = S(n)∩P (ntl) in state

x(n1).

To avoid further complicating the notation, we omitted the state argument in the punishing control and

the trigger strategy, but we stress that they depend on the state value. Let node n1 be a direct successor of

node n in which player j deviates. The collection of controls (u∗−j(n), uj(n)) is then realized, and the state

value in node n1 can be calculated using the state dynamics x(n1) = fn(x∗(n), (u∗−j(n), uj(n))). The control

ûp(n1) is part of the control profile û(n1) = (uNp (n1) : p ∈M) where uNp (n1) is a control of player p in node

n1.

Now, in the subgame starting from node ntl ∈ N t in state x(ntl), the collection of controls punishing player

j’s individual deviation is given by

ûj(ntl) = (ûjp(n
t
l) : p ∈M),

where ûjp(n
t
l) =

{
ûjp(n

θ
l ) : nθl ∈ Γ(ntl)

}
. This collection of controls generates Nash equilibrium trajectory of

states in player j’s punishment in this subgame, that is,

x̂j(ntl) = {x̂j(nθl ) : nθl ∈ Γ(ntl)}.

To construct the trigger strategies, we need to find m punishing strategy profiles for each subgame. Our

main result follows.

Theorem 1 Consider the game played over event tree when players’ payoffs on the cooperative trajectory are

determined by node-consistent IDP with equations (12) and (13). For any ε > ε̂ in the game there exists

subgame perfect ε-equilibrium in trigger strategies with players’ payoffs y1(n0), . . ., ym(n0), and

ε̂ = max
j∈M

max
ntl∈N

t

t=1,...,T−1

εj(n
t
l), (16)



8 G–2016–14 Les Cahiers du GERAD

where

εj(n
t
l) = max

uj(ntl)∈U
nt
l

j

{
φ
ntl
j

(
x∗(ntl), (u

∗
−j(n

t
l), uj(n

t
l))
)
− βj(ntl)

+

T−1∑
θ=t+1

λθ−tj

∑
nθl ∈N

θ
Γ

π(nθl |ntl)
(
φ
nθl
j (x̂j(nθl ), û

j(nθl ))− βj(nθl )
)

+λT−tj

∑
nTl ∈N

T
Γ

π(nTl |ntl)
(

Φ
nTl
j (x̂(nTl ))− βj(nTl )

)}
, (17)

where ûj(nθl ) is a control profile in node nθl corresponding to a behavior strategy profile σ̂ determined by (15)

and when the trigger mode of the strategy begins in the subgame starting at the node belonging to the set

S(ntl) and in state fn
t
l

(
x (ntl) , (u

∗
−j(n

t
l), uj(n

t
l))
)
. Therefore, the differences in the second and third lines also

depend on the control uj(n
t
l). The state x̂j(nθl ), n

θ
l ∈ Γ(nθl ) is a state trajectory corresponding to ûj(ntl).

Proof. Consider the trigger behavior strategy σ̂ = (σ̂p : p ∈M) defined in (15), and the subgame starting at

any node ntl ∈ N t, t = 0, . . . , T − 1. Consider possible histories of any node ntl , and compute the benefit of

player j deviating at node ntl . Her cooperative payoff in this subgame will be given by

Ŵj

(
u∗(ntl), x

∗(ntl)
)

= βj(n
t
l) +

T−1∑
θ=t+1

λθ−tj

∑
nθl ∈N

θ
Γ

π(nθl |ntl)βj(nθl )

+ λT−tj

∑
nTl ∈N

T
Γ

π(nTl |ntl)βj(nTl ), (18)

where N θ
Γ = N θ ∩ Γ(ntl), u

∗ (ntl) = (u∗j (n
t
l) : j ∈ M) is an S -adapted cooperative strategy profile. In the

payoff we use the components of IDP instead of payoffs prescribed initially by payoff functions.

First, consider the case where the history of node ntl is H∗(ntl). Suppose player j deviates in node ntl
from the cooperative trajectory. In this case, she may secure the following payoff in the subgame starting at

node ntl , given the information that the behavior strategy profile σ̂ = (σ̂p(·) : p ∈M) determined by (15) will

materialize:

max
uj(ntl)∈U

nt
l

j

{
φ
ntl
j

(
x∗(ntl), (u

∗
−j(n

t
l), uj(n

t
l))
)

+

T−1∑
θ=t+1

λθ−tj

∑
nθl ∈N

θ
Γ

π(nθl |ntl)φ
nθl
j

(
x̂j(nθl ), û

j(nθl )
)

+ λT−tj

∑
nTl ∈N

T
Γ

π(nTl |ntl)Φ
nTl
j

(
x̂j(nTl )

)}
, (19)

where punishing Nash strategy starts to be implemented in nodes from S(ntl). If the deviation occurs, the

players leave the cooperative trajectory and their payoffs are calculated by initially defined functions φ
ntl
j (·)

and Φ
nTl
j (·).

Then, we may compute the benefit from deviation of player j at node ntl as a difference between (19)

and (18), namely:

εj(n
t
l) = max

uj(ntl)∈U
nt
l

j

{
φ
ntl
j

(
x∗(ntl), (u

∗
−j(n

t
l), uj(n

t
l))
)
− βj(ntl) (20)

+

T−1∑
θ=t+1

λθ−tj

∑
nθl ∈N

θ
Γ

π(nθl |ntl)
(
φ
nθl
j (x̂j(nθl ), û

j(nθl ))− βj(nθl )
)

+λT−tj

∑
nTl ∈N

T
Γ

π(nTl |ntl)
(

Φ
nTl
j (x̂(nTl ))− βj(nTl )

)}
,
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Second, suppose that the history of node ntl does not coincide with H∗(ntl). This means that all players

have switched from nominal mode to the trigger one. Player j will have no benefit from deviating in node

ntl because the players implement their Nash equilibrium strategies regardless of which player (or group of

players) has deviated in the previous nodes.

Calculating the maximal benefit from deviation for any subgame and any player given by (20), we obtain

the value of ε̂ from the Theorem’s statement, that is,

ε̂ = max
j∈M

max
ntl∈N

t

t=1,...,T−1

εj(n
t
l).

And for any ε > ε̂ the behavior strategy profile determined by (15) is a subgame-perfect ε-equilibrium by

construction.

5 Example

To illustrate the results of the previous section, we consider a three-player stochastic version of the determin-

istic model of pollution control in Germain et al., 2003. Denote by M = {1, 2, 3} the set of players, and by

T = {0, 1, . . . , 5} the set of periods. Let u(ntl) = (u1(ntl), u2(ntl), u3(ntl)) be the vector of countries’ emissions

of some pollutant and denote by x(ntl) the stock of pollution at node ntl in time period t. The evolution of

this stock is governed by the following difference equation:

x(ntl) =
(
1− δ(a(ntl))

)
x(a(ntl)) +

∑
j∈M

uj(a(ntl)), (21)

with the initial stock x0 at root node n0 being given, and δ(ntl) (0 < δ(ntl) < 1) is the stochastic rate of

pollution absorption by nature at node ntl . We suppose that δ(ntl) can take two possible values, that is,

δ(ntl) ∈
{
δ, δ
}

, with δ < δ. The event tree is a binary tree, i.e., each node in periods t = 0, . . . , 5 has two

successors (see Figure 1). The conditional probability of realization of the upward successor of any node is
1
4 and is 3

4 for a downward successor. So, for instance, we have probabilities π(n1
1) = 1

4 and π(n1
2) = 3

4 in

period 1, and probabilities π(n2
1) = 1

16 , π(n2
2) = 3

16 , π(n2
3) = 3

16 , π(n2
4) = 9

16 for t = 2. The root node n0 and

all upward (or left-handed) nodes have the low rate δ of pollution absorption by nature, and all downward

(or right-handed) nodes have the high level δ of pollution absorption.

The damage cost is an increasing convex function in the pollution stock having the quadratic form

Dj(x(ntl)) = αjx
2(ntl), j ∈ M , where αj is a strictly positive parameter. The cost of emissions is also given

by a quadratic function Cj(uj(n
t
l)) =

γj
2 (uj(n

t
l)− e)

2
, where e and γj are strictly positive constants.

The total discounted cost Jj(x,u) to be minimized by player j ∈M is given by

2∑
t=0

λtj
∑
ntl∈N t

π(ntl)
(
Cj(uj(n

t
l)) +Dj(x(ntl))

)
+ λ5

j

∑
n5
l∈N 5

π(n5
l )Dj(x(n5

l )),

where x = {x(ntl)} and u = {u(ntl)}, nTl ∈ N t, λj ∈ (0, 1) is a discount rate of player j, subject to (21),

given initial stock x0 = 0 before the game starts and constraints: uj(n
t
l) ∈ [0, e] for any player j ∈ M and

any node ntl ∈ N t, t = 0, 1, 2.

We use the following parameters for the numerical simulation:

α1 = 0.1, α2 = 0.2, α3 = 0.3,

γ1 = 0.9, γ2 = 0.8, γ3 = 0.7,

δ = 0.45, δ = 0.8, e = 30, λ1 = λ2 = λ3 = 0.9.

Tables 1 and 2 provide the results regarding the values of maximal benefits from deviation according to

(17) and the corresponding values for the case when players do not adopt IDP. (More precisely, we only show

the maximal values for each time period.)
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Figure 1: Event tree graph for T = 5.

Table 1: The maximal benefits from deviation in time period t calculated for the 6-period game when players
adopt IDP.

Time period t 0 1 2 3 4

Player 1 -128.351 -96.4928 -59.492 -23.5305 -0.794881
Player 2 -118.967 -73.6691 -28.0224 12.5117 26.5563
Player 3 -105.177 -33.8832 25.4111 67.5529 61.8055

Table 2: The maximal benefits from deviation in time period t calculated for the 6-period game without IDP.

Time period t 0 1 2 3 4

Player 1 104.714 108.902 96.9909 75.0803 40.6216
Player 2 -103.318 -60.0593 -18.0474 18.2751 28.5478
Player 3 -353.892 -251.621 -141.231 -41.2657 17.8045

The total costs of the three players in the whole game are 2148.7. Tables 1 and 2 show the advantage of

adopting the IDP in this game. When players adopt the IDP the maximal benefit of a deviating player or

ε̄ is equal to 67.5529 in comparison with 108.902 in the game without using IDP for payoff redistribution.

Further, the first time when a player can benefit from deviating is in period t = 2 while in the game without

IDP the profitable deviation is observed in period t = 0. Players 1 and 2 have lower benefits from deviations

in the game with IDP than in the game without IDP. But player 3 will have higher incentive to deviate from

cooperative trajectory if players adopt the IDP.

6 Concluding remarks

Node consistency, and node consistency for DGPET, can be seen as a necessary condition for sustainability

of cooperation, but not a sufficient condition. The reason is that time consistency is not an equilibrium, and

consequently the resulting outcomes are not self enforced.

The objective of this paper was to show that node-consistent outcomes are part of a subgame perfect

ε-equilibrium. As mentioned earlier, as there is no hope for endowing the cooperative outcomes with an equi-

librium property, an approximation was sought here. The simple numerical example showed that deviations

can be large and occur in early periods. One conjecture here is that the larger the planning horizon, the later
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deviations will happen. Further, the results indicate that it is not guaranteed that playing the game with

IDP payoffs instead of the original ones, will necessarily reduce the incentive to deviate of all players.
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