
Les Cahiers du GERAD ISSN: 0711–2440

Cospectrality of graphs with respect to
distance matrices

M. Aouchiche,
P. Hansen

G–2016–127

December 2016
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de référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2016-127) to update your reference data, if it has
been published in a scientific journal.
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Québec – Nature et technologies.
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Abstract: The distance, distance Laplacian and distance signless Laplacian spectra of a connected graph G
are the spectra of the distance, distance Laplacian and distance signless Laplacian matrices of G. Two graphs
are said to be cospectral with respect to the distance (resp. distance Laplacian or distance signless Laplacian)
matrix if they share the same distance (resp. distance Laplacian or distance signless Laplacian) spectrum.
If a graph G does not share its spectrum with any other graph, we say G is defined by its spectrum. In this
paper we are interested in the cospectrality with respect to the three distance matrices. First, we report on a
numerical study in which we looked into the spectra of the distance, distance Laplacian and distance signless
Laplacian matrices of all the connected graphs on up to 10 vertices. Then, we prove some theoretical results
about what we can deduce about a graph from these spectra. Among other results we identify some of the
graphs defined by their distance Laplacian or distance signless Laplacian spectra.
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1 Introduction and definitions

We begin by recalling some definitions. In this paper, we consider only simple, undirected and finite

graphs, i.e, undirected graphs on a finite number of vertices without multiple edges or loops. A graph

is (usually) denoted by G = G(V,E), where V is its vertex set and E its edge set. The order of G is the

number n = |V | of its vertices and its size is the number m = |E| of its edges.

As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by Ka,n−a the complete bipartite

graph and by Kn the complete graph, each on n vertices. The graph obtained from a star Sn, n ≥ 3, by

adding an edge is well defined and here denoted by S+
n .

The adjacency matrix A of G is a 0–1 n× n–matrix indexed by the vertices of G and defined by aij = 1

if and only if ij ∈ E. Denote by (λ1, λ2, . . . , λn) the A–spectrum of G, i.e., the spectrum of the adjacency

matrix of G, and assume that the eigenvalues are labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn. For more results

about the A–spectra of graphs, see the book [14].

The matrix L = Deg−A, where Deg is the diagonal matrix whose diagonal entries are the degrees in G,

is called the Laplacian of G. Denote by (µ1, µ2, . . . , µn) the L–spectrum of G, i.e., the spectrum of the

Laplacian of G, and assume that the eigenvalues are labeled such that µ1 ≥ µ2 ≥ · · · ≥ µn = 0. For a survey

about the Laplacian matrices of graphs see [34].

The matrix Q = Deg+A is called the signless Laplacian of G. Denote by (q1, q2, . . . , qn) the Q–spectrum

of G, i.e., the spectrum of the signless Laplacian of G, and assume that the eigenvalues are labeled such that

q1 ≥ q2 ≥ · · · ≥ qn. For more details about the signless Laplacian of graphs see [15, 16, 17].

Given two vertices u and v in a connected graph G, d(u, v) = dG(u, v) denotes the distance (the length

of a shortest path) between u and v. The Wiener index W (G) of a connected graph G is defined to be the

sum of all distances in G, i.e.,

W (G) =
1

2

∑
u,v∈V

d(u, v).

The transmission t(v) of a vertex v is defined to be the sum of the distances from v to all other vertices

in G, i.e.,

tv = t(v) =
∑
u∈V

d(u, v).

A connected graph G = (V,E) is said to be k–transmission regular if t(v) = k for every vertex v ∈ V . The

transmission regular graphs are exactly the distance–balanced graphs introduced in [28]. They are also called
self–median graphs in [9].

The distance matrix D of a connected graph G is the matrix indexed by the vertices of G where

Di,j = d(vi, vj), and d(vi, vj) denotes the distance between the vertices vi and vj . Let (∂1, ∂2, . . . , ∂n)

denote the spectrum of D. It is called the distance spectrum of the graph G. Assume that the distance

eigenvalues are labeled such that ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. For a survey and references about the distance spectra

of graphs, see [4].

Similarly to the (adjacency) Laplacian L = Deg−A, we defined in [3] the distance Laplacian of a connected

graph G as the matrix DL = Tr−D, where Tr denotes the diagonal matrix of the vertex transmissions in G.

Let (∂L1 , ∂
L
2 , . . . , ∂

L
n ) denote the spectrum of DL and assume that the eigenvalues are labeled such that

∂L1 ≥ ∂L2 ≥ · · · ≥ ∂Ln = 0. We call it the distance Laplacian spectrum of the graph G. Some properties of the

distance Laplacian eigenvalues are discussed in [1]. In [35], Nath and Paul studied the second smallest distance

Laplacian eigenvalue ∂Ln−1 and characterized some families of graphs for which ∂Ln−1 = n+ 1. They [35] also

studied the distance Laplacian spectrum of the path Pn.

Also in [3], and similarly to the (adjacency) signless Laplacian L = Deg +A, we introduced the distance

signless Laplacian of a connected graph G to be DQ = Tr + D. Let (∂Q1 , ∂
Q
2 , . . . , ∂

Q
n ) denote the spectrum

of DQ and assume that the eigenvalues are labeled such that ∂Q1 ≥ ∂Q2 ≥ · · · ≥ ∂Qn . We call it the distance

signless Laplacian spectrum of the graph G.
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For a given real number x and a matrix M , we denote µM (x) the multiplicity of x as an eigenvalue of M .

Evidently, µM (x) = 0 whenever x does not belong to the spectrum of M .

Graphs with the same spectrum with respect to an associated matrix M are called cospectral graphs

with respect to M , or M–cospectral graphs. Two M–cospectral non–isomorphic graphs G and H are

called M–cospectral mates or M–mates. If one considers more than one matrix associated to graphs, say

M1,M2, . . . ,Mk, then two graphs are said to be (M1,M2, . . . ,Mk)-mates if they are cospectral with respect

to all the matrices M1,M2, . . . ,Mk simultaneously.

In the next section, and after a brief review on the cospectrality with respect to A, L and Q, we re-

port on a numerical study in which we looked into the spectra of the distance, distance Laplacian and

distance signless Laplacian matrices of all the connected graphs on up to 10 vertices. To achieve our objec-

tive we generated the desired graphs using Nauty (a computer program for generating graphs available at

http://cs.anu.edu.au/~bdm/nauty/) and then calculated the different spectra using the third version of

AutoGraphiX (AGX III) [10].

In the last section, we prove some theoretical results about what we can deduce about a graph from these

spectra. Among others results we identify some of the graphs defined by their distance Laplacian or distance

signless Laplacian spectra.

2 Experiments

The question “Which graphs are determined by their A–spectrum?” raised by Günthard and Primas [24]

in 1956 in a paper relating spectral theory of graphs and Hückel’s theory from chemistry. Cospectrality

plays an important role in isomorphism theory. Actually, it is not yet known if testing isomorphism of two

graphs is a hard problem or not, while determining whether two graphs are cospectral can be done in a

polynomial time. Thus checking isomorphism is done among cospectral graphs only. It was conjectured [24]

that there are no A–cospectral mates. A year later, the conjecture was refuted by Collatz and Sinogowitz [12]

giving two A–cospectral mates, which are in fact, the smallest such trees (see Figure 1 (a)). For the class of

general graphs, the A–cospectral mates with the smallest order, first given by Cvetković [13], are illustrated

in Figure 1 (b). The A–cospectral mates with smallest order among connected graphs, first given by [6], are

illustrated in Figure 1 (c).

Figure 1: (a) Two A–cospectral trees. (b) Two A–cospectral graphs. (c) Two A–cospectral connected graphs.

Several constructions of A–cospectral mates were proposed in the literature. The first infinite family of

pairs of A–cospectral mates, among trees, was constructed by Schwenk [37]. For more construction methods

see for example [18, 19, 22, 23, 26, 30]. The number of graphs with a mate also attracted much attention.

Schwenk [37] proved that asymptotically every tree has a mate, i.e., the proportion of trees (among the class

of trees) with mates tends to 1 when the order n tends to +∞. Such a statement is neither proved nor refuted

for the class of graphs in general. Till now, computational experiments were done on the set of all graphs on

up to 12 vertices [7]. Here, we partially reproduce the table, from [7], containing the number of graphs with

a mate. Recall that there are no A–cospectral graphs with less than 5 vertices.

Table 1: statistics from [7].

Number of vertices 5 6 7 8 9 10 11 12
Number of graphs 34 156 1044 12346 274668 12005168 1018997864 165091172592
Number of graphs with a mate 2 10 110 1722 51039 2560606 215331676 31067572481

http://cs.anu.edu.au/~bdm/nauty/
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Cospectrality with respect to other graph matrices were also the subject of many publications. The

L–cospectrality is studied in [25, 26, 27, 33, 34, 39]. The smallest L–cospectral graphs, with respect to

the order, contain 6 vertices, and are given in Figure 2 (a). The Q–cospectrality is studied in [18, 26] (see

also [15]). The Q–cospectral graphs with the smallest order are illustrated in Figure 2 (b). Another Laplacian

matrix of a graph is defined by L = (Diag(Deg))−
1
2L(Diag(Deg))−

1
2 (see [11] for more information). The

L–cospectrality is studied in [8], and the smallest cospectral graphs, with respect to the order, are shown in

Figure 2 (c).

Figure 2: (a) Two L–cospectral graphs. (b) Two Q–cospectral graphs. (c) Two L–cospectral connected graphs.

We mentionned above that Schwenk [37] proved that the proportion of trees with A–mate is asymp-

totically 1. A similar result about D–mates was established by McKay [32]. The smallest (see Figure 3)

D–cospectral trees contain 17 vertices, and belong to an infinite family of pairs of D–mates that can be

constructed using McKay’s method described in [32]. In fact, these two trees are the only D–cospectral trees

on 17 vertices.

Using Nauty, we generated all trees with at most 20 vertices and tested cospectrality with respect to

D, DL and DQ. Among the 123867 trees on 18 vertices, there are two pairs of D–mates. Note that these

pairs can be obtained using McKay’s method. Among the 317955 trees on 19 vertices, there are six pairs

of D–mates four of which can be obtained using McKay’s method. The remaining two pairs are given in

Figure 4. There are 14 pairs of D–mates, over all the 823065 trees on 20 vertices, nine of which can be

obtained using McKay’s method (see [3] for more details).

In [3], the authors enumerated all 1346023 trees on at most 20 vertices: no DL–mates and

no DQ–mates were found. In the present paper, we continue the enumeration considering all connected

graphs (generated using Nauty) on up to 10 vertices. The involved matrices and invariants were cal-

culated using AutoGraphiX III, a conjecture making system in graph theory available at https://www.

gerad.ca/~gillesc/ (see also [10]). Unlike the case of trees, in the case of connected graphs, we found

DQ–mates with only 5 vertices. They are given in Figure 5 and their DQ spectrum is (11, 4(3), 3). There are

3 pairs of DQ-cospectral graphs on 6. There are no D-mates or DL-mates with less that 7 vertices. On 7

vertices, there are 11 pairs of D-cospectral graphs, 20 pairs of DL-cospectral graphs, and one set of 3 graphs

with the same DL-spectrum. The three graphs are given in Figure 6 and their common DL-cospectrum is

(11, 10(2), 8(2), 7, 0).

Detailed statistics about all connected graphs on up to 10 vertices are summarized in Table 2, where (as

well as in the other tables) n, N , N(·) and M(·) denote the number of vertices, the number of connected

graphs, the number of graphs with a mate and the number of graphs in maximal sets of mates sharing the

same spectrum. The distribution of the number of graphs of order 10 according to their spectra is detailed

in Table 3. The largest family of graphs on 10 vertices sharing the same D-spectrum contains 21 graphs.

They are illustrated in Figure 7 and their common D-spectrum is (13.1138, 0.687669, 0.17603, -0.375826,

-0.882076, -1, -2.2877, -2.48748, -3.28521, -3.65925). The size of a largest family of graphs on 10 vertices

sharing the same DL-spectrum is 16. There are two such families and the 16 graphs of one of them are

given in Figure 8. Their common DL-spectrum is (17.6591, 16.7142, 16.4689, 15.8805, 15, 14.2691, 13.5169,

12.5202, 11.971, 0). The largest family of graphs, shown in Figure 9, on 10 vertices sharing the same

DQ-spectrum contains 9 graphs. Their common DQ-spectrum is (26.1104, 14.1387, 13.5021, 12.518, 12.2561,

11.5155, 10.7634, 10.1476, 9.8958, 9.15244).

The proportions of graph mates, with respect to D, DL or DQ, among the connected graphs with given

order n ∈ {3, 4, . . . , 10} are given in Table 4. The proportion of graphs with a D-mate increases with respect

to the number of vertices. The proportion of graphs with a DQ-mate decreases with respect to the number

of vertices. We do not know if the tendencies remain the same for these matrices or not. For DL, the

https://www.gerad.ca/~gillesc/
https://www.gerad.ca/~gillesc/
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Figure 3: The smallest D–cospectral trees.

Figure 4: Two pairs of D–cospectral trees on 19 vertices.

behavior is different. Actually, the proportion of graphs with a DL-mate increases till n = 9 and decreases

from 0.075754558, for n = 9, to 0.067242455, for n = 10. Besides the proportion of cospectral graphs, we

can speak about the number of different spectra (which corresponds to the number of different characteristic

polynomials) according to number of vertices and with respect to the three matrices under study: D, DL

and DQ. These numbers are given in Table 5.

Table 2: Number of cospectral graphs for given order.

n N N(D) M(D) N(DL) M(DL) N(DQ) M(DQ)

3 2 0 1 0 1 0 1
4 6 0 1 0 1 0 1
5 21 0 1 0 1 2 2
6 112 0 1 0 1 6 2
7 853 22 2 43 (1×) 3 38 2
8 11117 658 (8×) 3 745 (23×) 3 453 (11×) 3

(3×) 4
9 261080 25058 (663×) 3 19778 (157×) 4 8168 (152×) 3

(164×) 4 (12×) 6 (20×) 4
(24×) 5 (1×) 8
(13×) 6

(1×) 7,8,10
10 11716571 1389984 See Table 3 787851 See Table 3 319324 See Table 3

Figure 5: The two DQ–cospectral graphs on 5
vertices. Figure 6: The set of 3 DL–cospectral graphs on 7 vertices.

After the study of each of the three distance matrices alone, we considered the problem of cospectrality

with respect to 2 matrices simultaneously, and then with respect to the 3 together. The results are summarized

in Table 6.
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Table 3: Details of the size of cospectral graphs set on 10 vertices.

Family size D DL DQ

2 583922 345065 148101
3 46300 20010 5978
4 14369 6947 1138
5 1905 819 87
6 1714 580 26
7 288 138 4
8 283 82 1
9 45 30 1
10 64 17 0
11 33 6 0
12 10 5 0
13 2 5 0
14 4 2 0
15 3 1 0
16 2 2 0
21 1 0 0

Total 1389984 787851 319324

Table 4: Proportions of the graphs with a mate.

n D DL DQ

3 0 0 0
4 0 0 0
5 0 0 0.095238095
6 0 0 0.053571429
7 0.025791325 0.050410317 0.044548652
8 0.05918863 0.067014482 0.040748403
9 0.095978244 0.075754558 0.03128543
10 0.118634027 0.067242455 0.027254049

Table 5: Numbers of different spectra with respect to the order.

n # of graphs # of D–spectra # of DL–spectra # of DQ–spectra

3 2 2 2 2
4 6 6 6 6
5 21 21 21 20
6 112 112 112 109
7 853 842 831 834
8 11117 10784 10730 10885
9 261080 247984 251007 256900
10 11716571 10975532 11302429 11552583

Table 6: Cospectrality with respect to 2 or 3 matrices.

n N(D,DL) M(D,DL) N(D,DQ) M(D,DQ) N(DL,DQ) M(DL,DQ) N(D,DL,DQ) M(D,DL,DQ)

3 – 7 0 1 0 1 0 1 0 1
8 0 1 0 1 90 2 0 1
9 32 2 0 1 1965 (7×) 3 0 1
10 9449 (15×) 3 7712 (4×) 3 61909 (343×) 3 7622 (4×) 3

(19×) 4

Regarding the cospectrality with respect to (D,DL), there exist no mates with fewer than 9 vertices.

There are exactly 16 pairs of mates (i.e., 261064 different pairs of (D,DL) spectra) on 9 vertices, and 4702

pairs and 15 triplets of mates (i.e., 11711841 different pairs of (D,DL) spectra) on 10 vertices.
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Figure 7: The 21 graphs on 10 vertices with the same D–spectrum.

Figure 8: A set of 16 graphs on 10 vertices with the same DL–spectrum.

Figure 9: The 9 graphs on 10 vertices with the same DQ–spectrum.

Regarding the cospectrality with respect to (D,DQ), there exist no mates with fewer than 10 vertices.

There are exactly 3850 pairs and 4 triplets of mates (i.e., 11712713 different pairs of (D,DQ) spectra) on

10 vertices.

Regarding the cospectrality with respect to (DL,DQ), there exist no mates with fewer than 8 vertices.

There are exactly 45 pairs of mates (i.e., 11072 different pairs of (DL,DQ) spectra) on 8 vertices, 972 pairs
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and 7 triplets of mates (i.e., 260094 different pairs of (DL,DQ) spectra) on 9 vertices, and 30402 pairs, 343

triplets and 19 quadruplets of mates (i.e., 11686169 different pairs of (DL,DQ) spectra) on 10 vertices.

Now, considering the three matrices together, we observed that there are no mates with respect to

(D,DL,DQ) with fewer than 10 vertices. There are exactly 3805 pairs and 4 triplets of (D,DL,DQ)–mates

(i.e., 260094 different triplets of (D,DL,DQ) spectra) on 10 vertices. Note that the number of pairs of

(D,DL,DQ)–mates is close to that of (D,DL,DQ)–mates, while the number of triplets of (D,DL,DQ)–mates

is equal to that of (D,DL,DQ)–mates, and evidently, the graphs are exactly the same. The 4 triplets are

given in Figure 10, each triplet in a column. The common spectra for each triplet are as follows:

First column,

D − spectrum : (13.0145, 0.860806, 0.632632, -0.189468, -0.745898, -2, -2, -2.81825, -3.11491, -3.63938),

DL − spectrum : (16.9545, 16.1402, 15.6776, 15, 15, 13.7947, 13.2357, 12.1972, 12, 0),

DQ − spectrum : (26.0578, 13.8909, 13.4771, 13.1016, 12.216, 11, 11, 10.061, 9.77111, 9.42446);

Second column,

D − spectrum : (13.2112, 0.958622, 0.386055, -0.057418, -0.981982, -1.65446, -2, -2.93591, -3.25412, -3.67196),

DL − spectrum : (17.2429, 16.3028, 16.0878, 15, 15, 14.2351, 13.3409, 12.6972, 12.0934, 0),

DQ − spectrum : (26.4465, 14.0719, 13.582, 13.3028, 12.3508, 11.5818, 11, 10.1736, 9.79338, 9.69722);

Third column,

D − spectrum : (13.8103, 0.671932, 0.253572, -0.0667908, -1, -1.3536, -2.02291, -2.9435, -3.38921, -3.95979),

DL − spectrum : (17.9066, 17.3028, 16.6591, 15.7649, 15, 15, 13.9122, 13.6972, 12.7571, 0),

DQ − spectrum : (27.6396, 14.3028, 14.2052, 13.8212, 13, 12.4019, 11.6211, 10.6972, 10.3938, 9.91717);

Fourth column,

D − spectrum : (14.0126, 0.63458, 0.114908, -0.186188, -1, -1, -2.2541, -2.82053, -3.6405, -3.86081),

DL − spectrum : (18, 17.8028, 16.7643, 16.2053, 15, 15, 14.3224, 13.8598, 13.0455, 0),

DQ − spectrum : (28.0505, 14.5514, 14.2257, 13.9277, 13, 13, 11.7822, 10.8678, 10.4903, 10.1045).

Figure 10: The 4 triplets of (D,DL,DQ)–mates on 10 vertices.
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3 Theoretical results

In this section, we prove some theoretical results related to D, DL and DQ spectra. First, we give results about

what can be inferred from one of these spectra, regarding the graph, without knowing the graph. Thereafter,

we prove, most often as corollaries, that some graphs are determined by their D, DL or DQ spectra.

Using only its spectrum of a graph, we can get a lot of information about its structure. For instance recall

some such results gathered in the following theorem.

Theorem 1 ([18]) For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a

graph G, the following can be deduced from the spectrum:

(i) The number of vertices.

(ii) The number of edges.

(iii) Whether G is regular.

(iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum:

(v) The number of closed walks of any fixed length.

(vi) Whether G is bipartite.

For the Laplacian matrix the following follows from the spectrum:

(vii) The number of components.

(viii) The number of spanning trees.

We can prove similar results regarding the distance Laplacian and distance signless Laplacian matrices.

First, we need to recall the following theorem from [3].

Theorem 2 ([3]) Let G be a connected graph on n vertices. Then ∂Ln−1 ≥ n with equality holding if and only

if G is disconnected. Furthermore, the multiplicity of n as an eigenvalue of DL is one less than the number

of components of G.

Now, considering the distance Laplacian, we have the following result.

Theorem 3 From distance Laplacian spectrum of a connected graph G, we can deduce the following:

(i) The number n of vertices of G.

(ii) The Wiener index of G.

(iii) The number of connected components of the complement G.

Proof. (i) The number n of vertices of G is equal to the number of eigenvalues.

(ii) The Wiener index of G is half the sum of the diagonal entries (transmissions) of the distance
Laplacian matrix, which is the sum of the eigenvalues.

(iii) The number of connected components of the complement G, as stated in Theorem 2, is the
multiplicity of n in the spectrum plus 1.

Using follows from Theorem 3 (i) and (ii), we can deduce following results.

Corollary 1 The following graphs are determined by their distance Laplacian spectra:

a) the complete graph Kn;

b) the graph Kn − e obtained from Kn by the deletion of an edge;

c) the path Pn.
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Proof. In all cases the number of vertices n is the number of eigenvalues.

a) It was proved in [20, 21] that the Wiener index reaches its minimum, over the all connected graphs on

n vertices, only for Kn with W (Kn) = n(n− 1)/2. Thus Kn is the only graph on n vertices with

n∑
i=1

∂Li = n(n− 1).

b) The graph Kn− e is uniquely from Kn by a removal of an edge, and this operation decreases the value

of the Wiener index by 1. Any further deletion of edges strictly decreases the value of the Wiener index.

Thus Kn is the only graph on n vertices with

n∑
i=1

∂Li = n(n− 1) + 2 = n2 − n+ 2.

c) It was proved in [20, 21] that the Wiener index reaches its maximum, over the all connected graphs on n

vertices, only for Pn with W (Pn) = (n− 1)n(n+ 1)/6. Thus Pn is the only graph on n vertices with

n∑
i=1

∂Li =
(n− 1)n(n+ 1)

3
.

To state another corollary of Theorem 3, we need to prove a few lemmas. First, recall that a comet Con,∆
is the tree obtained from a star S∆ and a path Pn, by joining and endpoint of the path to a pendent vertex

of the star. See Figure 11 for Con,3.

Figure 11: A comet with ∆ = 3.

Lemma 1 For a comet Con,∆, we have

W (Con,∆) =
n3 − 7n+ 18

6
.

Proof. It was proved in [20] that for any tree T on n vertices,

W (T ) =
(n− 1)n(n+ 1)

2
− τ(T ), (1)

where τ(T ) denotes the number of 3–subsets of non collinear vertices (which do not belong to a same path)

in T . For a comet Con,3, any 3–subset of non collinear vertices must contain (see Figure 11) u, v and any

other vertex but w. Thus Con,3 contains exactly n− 3 such subsets. A substitution leads to the result.

Lemma 2 Let T ∗ be the graph on n vertices for which the Wiener index attains its second largest value over

all graphs of order n. Then T ∗ is a tree.
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Proof. If T ∗ is not a tree, since the deletion of an edge increases the Wiener index then it must be a unicyclic

graph, i.e., a connected graph with m = n edges. In addition, the only spanning tree in T ∗ must be the

path. Indeed, if T is a spanning tree of T ∗, then W (T ∗) < W (T ) < W (Pn) which would be a contradiction

with the fact that T ∗ is the graph with second largest value of W over all graphs of order n.

Now and according to [38], the graph PKn,n consisting of a triangle with an appended path, called path

complete on n vertices and n edges, is the only graph with the maximum Wiener index over all the unicyclic

graphs on n vertices. For PKn,n, we have (see [5])

W (PKn,n) =
n3 − 7n+ 12

6
< W (Con,∆) =

n3 − 7n+ 18

6
.

Since Con,∆ is a tree, T ∗ must also be a tree.

Before the statement of the next result, we need to recall a few definitions. A vertex of degree at least 3

in a tree is called a branching vertex. If v is a branching vertex in a tree T , then a branch of T is attached

to v is the connected component, that does not contain v, of the graph obtained from T by the deletion of an

edge incident to v. The number of branches that can be associated to a branching vertex equals its degree.

Lemma 3 The second lagest value of the Wiener index, over all connected graphs on n ≥ 4 vertices, is reached

uniquely for the comet Con,∆.

Proof. According to Lemma 2, it suffices to prove the result for the class of trees.

It is easy to check that the result is true for n = 4 and n = 5. So assume that n ≥ 6, and let T be a

tree on n vertices such that T 6∼= Pn and T 6∼= Con,3. Under these conditions, T contains at least a branching

vertex v to which at least three branches are attached, two of which contain at least two vertices each. Let V1

and V2 two branches attached at v such that n1 = |V1| ≥ 2 and n1 = |V1| ≥ 2. Let V3 = V − (V1 ∪ V2 ∪ {v}),
where V is the set of all vertices of T . If we take one vertex from each of V1, V2 and V3, we get 3 non collinear

vertices. So T contains at least n1 cotn2 · (n−n1−n2− 1) 3–subsets of non collinear vertices. Note that the

expression n1 cotn2 · (n− n1 − n2 − 1) reaches its minimum value when n1 and n2 as small as possible, and

then n1 · n2 · (n− n1 − n2 − 1) ≥ 2 · 2 · (n− 2− 2− 2) = 4(n− 5). Now, using the formula (1) and Lemma 1,

we have

W (T ) =
(n− 1)n(n+ 1)

2
− τ(T ) ≤ (n− 1)n(n+ 1)

2
− n1 · n2 · (n− n1 − n2 − 1)

≤ (n− 1)n(n+ 1)

2
− 4(n− 5) <

(n− 1)n(n+ 1)

2
− (n− 3) = W (Con,3) for all n ≥ 6.

The following corollary is an immediate consequence of Theorem 3 and Lemma 3.

Corollary 2 The comet Con,3 is determined by its distance Laplacian spectrum.

It was proved in [29] that a complete k-partite graph is determined by its distance spectrum. We prove

a similar result with respect to the distance Laplacian spectrum. For that purpose, we need to recall two

results from [3] and then prove lemmas.

Theorem 4 Let G be a graph on n vertices. If S = {v1, v2, . . . vp} is an independent set of G such that

N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then ∂ = t(vi) = t(vj) for all i, j ∈ {1, 2, . . . , p} and ∂ + 2 is an

eigenvalue of DL with multiplicity at least p− 1.

We use the above theorem to prove the following lemma.
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Lemma 4 The distance Laplacian characteristic polynomial of Kn1,n2,...,nk
, the k-partite graph on n = n1 +

n2 · · ·+ nk vertices, is given by

P
Kn1,n2,...,nk

L (t) = t(t− n)k−1
k∏

i=1

(t− (n+ ni))
n1−1.

Proof. It is trivial that 0 is a distance Laplacian eigenvalue of Kn1,n2,...,nk
. Also, since the complement

of Kn1,n2,...,nk
contains k connected components, it follows from Theorem 2 that n is a distance Laplacian

eigenvalue of Kn1,n2,...,nk
with multiplicity k − 1.

Let v be any vertex in the independent set of Kn1,n2,...,nk
that contains ni vertices. It is easy to see that

t(v) = n+ ni − 2.

Using Theorem 4 for each i ∈ {1, 2, . . . , k}, we conclude that n + ni is a distance Laplacian eigenvalue of

Kn1,n2,...,nk
with multiplicity at least ni − 1.

Summarizing, the distance Laplacian spectrum of Kn1,n2,...,nk
is(

n+ n
(n1−1)
1 , n+ n

(n2−1)
2 , . . . , n+ n

(nk−1)
k , n(k−1), 0

)
.

The following theorem from [3] is about the behaviour of the the distance Laplacian spectrum of a graph G,

when an edge is deleted from G.

Theorem 5 ([3]) Let G be a connected graph on n vertices and m ≥ n edges. Consider the connected

graph G̃ obtained from G by the deletion of an edge. Let
(
∂L1 , ∂

L
2 , . . . ∂

L
n

)
and

(
∂̃L1 , ∂̃

L
2 , . . . ∂̃

L
n

)
denote the

distance Laplacian spectra of G and G̃ respectively. Then ∂̃Li ≥ ∂Li for all i = 1, . . . n.

The above theorem can be improved by adding the following result.

Lemma 5 Let G be a connected graph on n vertices and m ≥ n edges. Consider the connected graph G̃

obtained from G by the deletion of an edge. Let
(
∂L1 , ∂

L
2 , . . . , ∂

L
n

)
and

(
∂̃L1 , ∂̃

L
2 , . . . , ∂̃

L
n

)
denote the distance

Laplacian spectra of G and G̃ respectively. Then, there exists i ∈ {1, 2, . . . , n− 1} such that ∂̃Li > ∂Li .

Proof. Denote W and W̃ the Wiener indices of G and G̃ respectively. Since the deletion of an edge in a

connected graph increases strictly some distances and lets unchanged the others (but never decreases the

distance between any pair of vertices), we have

n∑
j=1

∂̃Lj = 2W̃ > 2W =

n∑
j=1

∂Lj .

Now, using Theorem 5 and the fact that ∂̃Ln = ∂Ln = 0, we get the result.

Theorem 6 The k-partite graph on n = n1 + n2 · · ·+ nk vertices, Kn1,n2,...,nk
, is determined by its distance

Laplacian spectrum.

Proof. Let G be a graph with same distance Laplacian spectrum as Kn1,n2,...,nk
,(

n+ n
(n1−1)
1 , n+ n

(n2−1)
2 , . . . , n+ n

(nk−1)
k , n(k−1), 0

)
.

Since n a distance Laplacian eigenvalue of G with multiplicity k − 1, then, according to Theorem 2, the

complement G of G contains k connected components. Thus, G is a spanning subgraph of Kn1,n2,...,nk
.
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Now, assume that G 6∼= Kn1,n2,...,nk
. Then, G can be obtained from Kn1,n2,...,nk

using a sequence of edge

deletions. According to Lemma 5, there exists i such that ∂i(G) > ∂i(Kn1,n2,...,nk
), which contradicts the

assumption that G and Kn1,n2,...,nk
share the same distance Laplacian spectrum.

Now, let us turn to results related to the distance signless Laplacian.

Theorem 7 From signless distance Laplacian spectrum of a connected graph G, we can deduce the following:

(i) The number n of vertices of G.

(ii) The Wiener index of G.

(iii) Whether G is transmission regular.

Proof. (i) and (ii) are proved as in Theorem 3.

(iii) It was proved in [2] that for a connected graph G,

2Trmin ≤ 2Tr ≤ ∂Q1 (G) ≤ 2Trmax

with equalities if and only if G is a transmission regular graph, where Trmin, Tr and Trmax

denote the minimum, average and maximum transmissions, respectively. Now considering the
fact that the sum of the transmissions in G is exactly the sum of the distance signless Laplacian
eigenvalues of G, we conclude that G is transmission regular if and only if

∂Q1 =
2tr(DQ)

n
.

Thus whenever the above equality holds, the graph is k–transmission regular with k = ∂Q1 .

Using Theorem 7 (i) and (ii), we can deduce the following results.

Corollary 3 The following graphs are determined by their distance signless Laplacian spectra:

a) the complete graph Kn;

b) the graph Kn − e obtained from Kn by the deletion of an edge;

c) the path Pn;

d) the comet Con,3.

The proof of the above corollary is similar to that of Corollary 1.

Next, we prove that the cycle Cn is determined by its signless distance Laplacian. For that purpose, we

recall a result from [36] and prove a lemma, but first recall that a connected graph is said k-vertex connected

if the deletion of any set of (at most) k − 1 vertices does not disconnect the graph.

Lemma 6 ([36]) Let G be a 2-vertex-connected graph on n vertices with Wiener index W . Then we have

W ≤ n

2

⌊
n2

4

⌋
with equality if and only if G is the cycle Cn.

Lemma 7 Let G be a transmission regular graph on n ≥ 3 vertices. Then G is 2-vertex-connected.

Proof. Let G = (V,E) be a transmission regular graph on n ≥ 3 vertices and assume that it contains a

vertex v whose removal disconnects G. Denote by V1 and V2 the sets of vertices of two connected components

of G− v (the graph obtained from G by the deletion of v). Let V3 = V − (V1 ∪ V2 ∪ {v}) (note that this set

can be empty while V1 and V2 are not), and consider the partition {V1, V2, V3, {v}} of the vertex set of G.

Let v1 ∈ V1 and v2 ∈ V2 with vv1, vv2 ∈ E. It is easy to see that



Les Cahiers du GERAD G–2016–127 13

• if u ∈ V1, then d(u, v1) ∈ {d(u, v)− 1, d(u, v), d(u, v) + 1} and d(u, v2) = d(u, v) + 1;

• if u ∈ V2, then d(u, v2) ∈ {d(u, v)− 1, d(u, v), d(u, v) + 1} and d(u, v1) = d(u, v) + 1;

• if u ∈ V3, then d(u, v1) = d(u, v) + 1 and d(u, v2) = d(u, v) + 1.

For i = 1, 2, let ai = |{u ∈ Vi : d(u, vi) = d(u, v) − 1}| and bi = |{u ∈ Vi : d(u, vi) = d(u, v) + 1}|. Since

vi ∈ Vi and d(vi, vi) = d(vi, v)−1. Now, let us express the transmisions of v1 and v2 using that of v. We have

t(v1) =
∑
u∈V1

d(u, v1) +
∑
u∈V2

d(u, v1) +
∑
u∈V3

d(u, v1) + d(v, v1)

=
∑
u∈V1

d(u, v) + b1 − a1 +
∑
u∈V2

d(u, v) + |V2|+
∑
u∈V3

d(u, v1) + |V3|+ 1

= t(v) + b1 − a1 + |V2|+ |V3|+ 1;

and (similarly)

t(v2) = t(v) + b2 − a2 + |V1|+ |V3|+ 1.

Since the graph is assumed to be transmission regular, we have t(v) = t(v1) = t(v2) and therefore{
|V2|+ |V3| = a1 − b1 − 1 ≤ a1 − 1 < |V1|
|V1|+ |V3| = a2 − b2 − 1 ≤ a2 − 1 < |V2|,

which is a contradiction. Thus G does not contain a disconnecting vertex, and therefore it is necessarily a

2-vertex-connected graph.

Theorem 8 The cycle Cn is determined by its signless Laplacian distance spectrum.

Proof. The result follows from Theorem 7, Lemma 6 and Lemma 7. In fact, a graph G on n ≥ 3 vertices is

the cycle Cn if and only if the double equality

∂Q1 (G) =
2

n
tr(DQ(G) = 2

⌊
n2

4

⌋
holds.
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[15] D. Cvetković and S. K. Simić, Towards a Spectral Theory of Graphs Based on the Signless Laplacian. I. Publ.
Inst. Math. (Beograd) 85(99) (2009) 19–33.
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