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Abstract: Trade flows on High-Voltage Direct Current (HVDC) interconnections between two jurisdictions
are frequently assessed as suboptimal, which can be explained in part by a light inter-jurisdictional regulation
along with strong local regulation. More Specifically, transmission-right releasing rules, such as use-it-or-lose-
it (UoL), require the enforcement of a consistent international regulatory framework. We ask whether it is
beneficial for regulators, as local welfare maximizers, to cooperate in order to enforce such consistency. In
the absence of releasing rules, we study the strategic withholding of physical transmission rights (PTRs). We
model a two-settlement market and solve the model by backward induction. We show that any allocation
of PTRs is associated to a specific market regime: competitive, monopolistic or duopolistic. We then show
that, for extreme allocations of PTRs, regulators are not willing to cooperate in developing an international
regulatory framework to enforce global optimality.

Keywords: HVDC interconnection, physical transmission rights, Cournot, withholding, regulation, un-
bundling
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1 Introduction

The integration of power markets makes it possible to take advantage of complementary generation tech-

nologies or consumption patterns. It is well known, for example, that integrating two markets with different

peaks reduces the need for generating capacity, since imports can be used as a substitute. Improving market

integration naturally requires, additional capacity in the interconnection. In addition to facilitating exchange

between markets, interconnections can also increase competition (Borenstein et al (2000)). However, alternate

current (AC) networks are subject to loop-flows, which reduces the benefits of power exchanges (Cardell et al

(1997); Neuhoff et al (2005)). High Voltage Direct Current (HVDC) interconnections prevent such loops and

directly connect low-price zones to load pockets over long distances with controllable flows. Consequently, the

number of HDVC interconnection projects has substantially increased in recent years. For example, in 2014,

the European Union listed 30 HVDC initiatives as projects of common interest for security of supply (EC

(2014)). In 2015, there were eight official merchant projects between Canada and the US (IEA (2015)). But

trade on such lines has been persistently assessed as inefficient, which may be explained by various factors:

imperfect coordination (Pineau and Lefebvre (2009); Turvey (2006); Meeus (2011)), incomplete information

(Turvey (2006); Antweiler (2016)), market power, either through withholding strategies (Bunn and Zachmann

(2010); Balaguer (2011)), or information asymmetry (Gebhardt and Höffler (2013)).

In this paper, we analyze the potential for strategic behavior in inter-jurisdictional merchant intercon-

nections. The debate whether interconnection’s investment should be merchant or regulated has been vivace

in the past years. It could be grossly summarized as whether markets failures are more important than

regulatory failures (see among others Joskow and Tirole (2005); Brunekreeft (2005); de Hautecloque and

Rious (2011); Littlechild (2012); van Koten (2012); Boffa et al (2015)). Joskow (2010) suggests that these

two approaches are imperfect substitutes, the pros and cons of each of them should be carefully weighted for

each project. Hogan et al (2010) propose a two-part tariff based on Financial Transmission Rights to mix

the two approaches: the fixed part being regulated and the variable part being based on nodal prices.

But the regulated model is hardly applicable for inter-jurisdictional interconnection projects. To be

efficient, inter-jurisdictional trade indeed supposes the coordination of two regulated system operators. This

point has been highlighted in IEA (2016) as a condition for further integration. On the one hand, this

coordination can be seen as a harmonization of the market designs, which is more-or-less far from current

realities. On the other hand, such a coordination suggests that the regulators at both ends of the line

cooperate in order to enforce a competitive framework for inter-jurisdictional trade. Since a regulator’s task

is to maximize the welfare in its region, he is driven by local interests, which may be contradictory to a global

cooperation. Hence, merchant projects would more likely appear to satisfy the need for inter-jurisdictional

interconnection. It also suggests that each regulator may not be willing to cooperate in order to promote

efficient trade, as it is consistent with a wealth transfer. Consequently, power trade at borders is often

inefficient, especially between market and non-market areas Spees and Pfeifenberger (2012).

Hence, assuming those projects to be merchants, private owners recover their initial investment by selling

transmission rights to traders, the value of which rights depends on the price spread between the two markets.

Financial rights associated with implicit auctions are known to increase the competitiveness of trade between

markets (Joskow and Tirole (2000); Ehrenmann and Neuhoff (2009)). These rights are purely financial:

holders obtain the price differential times their number of rights, while the physical management is done

by a regulated operator. However, such a design requires a high level of coordination between the two

markets, which is generally not the case with inter-jurisdictional trade.1 Thus, the approach of Hogan et al

(2010) might not be applied. Alternatively, access can be provided through the sale of Physical Transmission

Rights (PTRs), which allow holders to inject/retrieve power directly at one end of the line. As such, each

agent actively participates in managing the line. Hence, holding a relatively large share of the PTRs de facto

1 An implicit auction requires a relatively homogeneous market design at both ends of a line in order to efficiently assess
the price differential (Hogan (1992)). By contrast, inter-jurisdictional trade often takes place between a regulated area and a
market, for example between Quebec and the Northeastern US markets. But even trade among the Northeastern US markets is
reported as suboptimal (see regional market reports). The Nortwestern Europe (NWE) market is a very specific case, and this
multinational area may be considered a single jurisdiction. The European Commission enforces a regulatory framework, notably
through the Third Energy Package. Consequently, there are institutions enforcing cooperation between regulators (ACER) and
coordination between system operators (ENTSO-E) (de Hautecloque and Rious (2011)).
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procures a dominant position (Joskow and Tirole (2000)). This dominant position on the interconnection is

then used to reinforce local dominant positions of power marketers. We argue that this approach is not correct

anymore. Indeed, the research has focused its effort on the local market power issue (see for example Wilson

(2002); Wolak (2003); Cramton (2004); Hortaçsu and Puller (2008)), to the point where power markets are

measured to be efficient, at least in the US (see regional market reports such as ISONE (2016); Patton et al

(2016); PJM (2016)). Thus, designed rules are efficient in mitigating potential for existing dominant-positions

abuses from a local perspective, in that, to a certain extent, firms cannot take advantage of their PTRs to

directly mark-up their price. On the other hand, to assume that agents are price-takers on the interconnection

is also, we argue, an incorrect approach because of the possible lack of coordination between the regulators

at both ends of the interconnection, as exposed previously (see Doorman and Froystad (2013); Billette de

Villemeur and Pineau (2016); Newberry et al (2016) for some recent examples of interconnections evaluation

using a price-taker assumption).

For example, releasing rules, such as a Use-it-or-Lose-it (UoL) rule, theoretically correct the market-power

failure by preventing potential PTR withholding through the promotion of free entry (Joskow and Tirole

(2000)). But to implement them require a strong inter-jurisdictional regulatory framework (de Hautecloque

and Rious (2011)). Furthermore, these rules can be circumvented if their definition lacks granularity. For

example, the UoL rule is defined on a daily basis whereas the product is delivered on, e.g., a half-hourly basis

(Bunn and Zachmann (2010)). The UoL rule also makes PTRs a very rigid instrument under uncertainty. An

initial holder would thus run the risk of losing potentially valuable rights under this rule, in a context where

uncertainty may cause dumping as an insurance strategy (Antweiler (2016)). Hence, the releasing provision

of a PTR may be triggered just before gate closure. For example, US regulator FERC, decided to apply

the UoL rule just before real-time in the case of the Neptune cable between PJM and Long Island (FERC

(2003)). Unused rights are thus available from noon to five p.m. one day before start of service (PJM (2015)).

Such a restricted operational window tends to reduce the effectiveness of the UoL rule. Finally, UoL would

be void if not coupled with a must-offer provision for the line investor and initial holder of the rights. But,

Brunekreeft and Newberry (2006) show that such a provision would largely impede merchant investment

under uncertainty. In a context where investment is lacking, such a provision tends to be undesirable.

Consequently, the extent to which HVDC interconnection is subject to imperfect arbitrage has been largely

demonstrated empirically (see Pineau and Lefebvre (2009); Bunn and Zachmann (2010); Balaguer (2011);

Meeus (2011); Gebhardt and Höffler (2013); Antweiler (2016)).

Taking all these elements into accounts, we try to answers the following questions:

1. Is there a local regulation that offers an alternative to releasing rules in making interconnection man-

agement more competitive?

2. Given an efficient local regulation, what impact does the allocation of PTRs have on the behavior of

producer-traders on the interconnection?

3. Given an efficient local regulation, under what conditions the two local regulators would be willing to

cooperate in order to enforce competitive behaviors of the producer-traders on the interconnection?

We answer these questions by developing a two-stage trading game, where the power trade is constrained

by an HVDC interconnection with controllable flows. In the first stage, strategic producer-traders set their

exports in order to maximize their profits in the local and foreign markets. Their action may be constrained

by the number of PTRs they own, which is considered as given. To be consistent with our preliminary

discussion, those PTRs are not subject to a releasing rule. In the second stage, each producer maximizes

its profit on the local market. This model fundamentally has the same structure as the one in Joskow and

Tirole (2000), in a non-commitment situation. We make two important modification to fit our model to

realistic situations that are not covered in the literature. First, we modify the framework in Joskow and

Tirole (2000) by making the local market subject to marginal-cost pricing. This is, by definition, an efficient

regulation of local market power.2 Second, we assume that the strategic producer-traders in the first stage

2In an auction setting, firms may not reveal their true marginal costs in their bids to the market operator (see, e.g., Cramton
(2004); Hortaçsu and Puller (2008); Wolak (2003)). However, we ignore this possibility, and instead follow the observations
from the market reports. Indeed, local market power represents such a credible threat since the California crisis that most U.S.
power markets have designed rules to mitigate it. Consequently, prices and behaviors in those markets are highly monitored
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are local price-takers. Indeed, anticipation of the price setting would result in dumping in order to raise the

price locally (Debia and Zaccour (2016)). However, power in the interconnection could flow against the price

differential during critical events. We consider that such situations, e.g., where a local producer exports even

when the local price is higher than the foreign price, to be unacceptable from a regulatory point of view, since

it would disadvantage local consumers, whose protection is one of the primary goals of efficient regulation.

For example, the native-load-commitment provision requires utilities to commit to serving the local load at

a predefined price before setting their exports (FERC (2012)). This type of regulation separates local from

foreign incentives, which is what is modeled through our local price-taking assumption. This assumption

can also be thought of as an unbundling regulation, without which a firm’s operations department can

communicate its supply function to its trading department. With the regulation, communication is limited

to a threshold price below which a firm should import rather than export.

The contributions of this paper are the following. First, we show that, in our present framework, power

always flows in the direction of the price differential, as an unbundled trader would lose the local incentive

for dumping. To that extent, the unbundling of trade and production activities is efficient in mitigating

anti-arbitrage behavior. Second, we extend the analysis not only to extreme allocations corresponding to

monopoly situations, but also to any allocation of rights between the players and a competitive fringe of

traders. Indeed, in the case where PTRs are initially sold through a discriminatory price auction, a result

of Joskow and Tirole (2000) is that the players would randomize their strategy, which implies that any

allocation may be finally distributed. Such a case has not been dealt with in the interconnection literature,

even if it is a natural outcome of such auctions. We then characterize different market regimes as a function

of PTR allocation, and of the size of the interconnection. Third, we demonstrate that, in our setting, and for

relatively extreme rights allocation, the local regulators have no incentive to cooperate in order to promote

free entry. However, for relatively homogeneous allocations, the equilibrium outcome is Pareto-dominated

by the competitive one from the local welfare perspective. In these situations, both local markets would be

better off cooperating.

The rest of the paper is organized as follows: In Section 2, we introduce the model and characterize the

Cournot-Nash equilibrium. In Section 3, we show that these market regimes directly impact the local welfare,

by doing comparative statics over the rights allocation. Section 4 briefly concludes.

2 PTRs and interconnection management

2.1 The model

Each player is a local monopolist at node i, which generates an amount of power yi. A portion xi is sold

in the other node, and the rest (yi − xi) is sold locally at marginal cost. The model has two stages. The

first stage corresponds to the interconnection game. The players set their level of trading between the two

nodes. They face a “make-or-pay” decision, such that the quantity traded may be positive or negative. A

competitive fringe of traders is present. They are price-takers, such that they realize perfect arbitrage. The

fringe and the players’ actions are constrained by the quantity of PTRs they own. They maximize their profit

against the price differential between the two nodes. The second stage corresponds to the local electricity

market, in which physical production and consumption happen. We assume this stage to be regulated, such

that each producer sells to local consumers at marginal cost.

These stages replicate most of the interconnection time frame, because exports to other jurisdictions are

usually decided upon before local markets are. Figure 1 illustrates typical timing for the trading process

between different power markets. Trading over the interconnections is usually decided upon before any

bidding on spot markets occurs. A similar timeline can be seen in Gebhardt and Höffler (2013). The model

is solved by backward induction: we solve the second stage and then the first. Thus, for all agents (players

and competitive fringe) the decision variables of the second stage are expressed as implicit functions of the

decision variables of the first stage.

and considered competitive (see regional market reports, e.g. ISONE (2016); Patton et al (2016); PJM (2016)). It is therefore
consistent to consider a game where local production is subject to marginal-cost pricing, as this is the competitive benchmark in
economics. We thus implicitly assume that regulation is locally efficient, and we focus on the management of the interconnection.
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Figure 1: Model timeline.

2.1.1 The lower-stage competitive equilibrium

The inverse demand function is assumed to be affine. This type of functional form is widely used in theoretical

papers for simplicity of exposure. We represent the cost function as quadratic. Whereas the cost in the power

system would be better represented with an increasing linear-by-part function, this form is not continuously

derivable. Hence, a quadratic cost function is usually considered an acceptable approximation (see e.g.

Antweiler (2016)). More precisely, let us assume the following functional forms for the cost and inverse

demand functions, respectively:

Ci(yi) =
ci
2
y2i , ci > 0, Pi(yi, Xi) = ai − bi(yi −Xi), ai, bi > 0,

where Xi,the total net exports of node i, is considered fixed at this stage. Given the marginal-cost-pricing

architecture of the market, we obtain the generation as a function of the net exports Xi, that is,

ŷi(Xi) =
ai + biXi

bi + ci
, (1)

and the price as

Pi(Xi) =
ci (ai + biXi)

bi + ci
, (2)

which is increasing in the net exports.

2.1.2 Unconstrained Nash equilibrium

Let assume, without loss of generality, that node 1 experiences a (weakly) lower price than node 2 in autarky,

that is, P1(0) ≤ P2(0). Accordingly, we could define the export direction as being from node 1 to node 2,

such that

X = X1 = x1 + x2 + xf = −X2,

and the price differential as

δ(X) = A−BX > 0, where A =
a2c2
b2 + c2

− a1c1
b1 + c1

and B =
b1c1
b1 + c1

+
b2c2
b2 + c2

(3)

In a preliminary step, we characterize the interior Nash equilibrium. At the first stage, the producer-traders

maximize their profit considering the local price as a parameter pi, that is, for the player at node 1:

Π1(X) = ŷ1(X)p1 − Ci (ŷ1(X)) + x1(P2(X)− p1). (4a)

And correspondingly, for the player at node 2,

Π2(X) = ŷ2(X)p2 − Ci (ŷ2(X)) + x2(p2 − P1(X)). (4b)

The interior Nash equilibrium without fringe is characterized as follows:
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Result 1 Assuming quadratic cost function, affine inverse demand function and absence of the competitive

fringe the interior Nash equilibrium is characterized by, for i = 1, 2

x∗i =
ADi

B2 +D1D2
, (5a)

and the price differential as

δ(X∗) =
AD1D2

B2 +D1D2
(5b)

where

Di =
bici
bi + ci

> 0 such that B = D1 +D2.

This equilibrium is unique.

Proof. See Appendix A.1.

The strategy here consists in exporting such that there still exists a non-zero price differential, that is,

the arbitrage is imperfect. However, the players never arbitrage against the price differential. Indeed, xi has

the same sign as A which is equal to the price differential in autarky. In order to link this result with the

existing literature, we make the following remark:

Remark 1 In a case where traders and producers within a firm are not unbundled, we get the following

first-order condition:

∂Πi

∂xi
=
∂Pi(Xi)

∂xi
(ŷi(Xi)− xi) +

∂Pj(Xi)

∂xi
xi + Pj(Xi)− Pi(Xi) = 0.

The first term of this equation is positive, such that generator i has more incentive to export. To the extent

that the local price Pi(.) is more sensitive to exports than is the foreign price Pj(.), and that exports represent

a relatively small share of the production, a player is willing to dump its product. Such behavior is analyzed

in Debia and Zaccour (2016), a companion paper, in a general setting of international trade. In the present

case, by assuming local price-taking behavior from the strategic traders, this first term is removed, such that

dumping is not a possible equilibrium strategy.

Because of the absence of dumping, adding a competitive fringe in an unconstrained setting comes down

to a competitive equilibrium where strategic players are absent of the market.3

2.2 Constrained Nash equilibrium and market regimes

Let us now assume that each player owns an amount of PTRs zi ≥ 0, where z1 + z2 + zf = T , T being

the available transmission capacity. Given our definition of the arbitrage direction, and given that there is

no dumping in this model, such a definition of rights is sufficient. Hereafter, the allocation z = {z1, z2, zf},
z ∈ V, is said to be in the arbitrage direction. Thus, the strategy set of each player is bounded. Provided

that they arbitrage in the correct direction, for every other player’s action, the feasible actions become

x∗i = max

{
0,min

{
zi,

A−B(x∗j + x∗f )

B +Dj

}}
(6)

where x∗f is the optimal solution of the competitive fringe. Following from the previous subsection, it arises

that, if the fringe experiences an interior solution, then the strategic players are absent from the market. Let

us define T ∗ to be the volume of PTRs needed by the fringe to exercise perfect arbitrage. That is, T ∗ is

defined such that

P2(T ∗)− P1(T ∗) = 0 =⇒ T ∗ =
A

B
. (7)

3This result is obtained using the same method as for Result 1.
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Because of these boundaries, the equilibrium becomes highly sensitive to the value of the parameters, and

in particular to the access structure of the interconnection z. For example, for a relatively low nonzero value

of z1, x1 is bounded above. However, player 2 takes this constrained strategy of player i into account and can

act as a monopolist on the residual demand of the interconnection market. By contrast, when xi is interior,

player k also plays à la Cournot. Hence the market outcome is characterized by different regime, in the spirit

of the subgame in Kreps and Sheinkman (1983). The following proposition provides a characterization of the

equilibrium strategies.

Proposition 1 The equilibrium strategy x∗i depends on the allocation z and is defined for any player i,

with j 6= i:

Monopolistic: x∗i =
A−B(T − zi)

B +Dj
⇐⇒ z ∈ SMi

Duopolistic: x∗i =
Di(A−Bzf )

B2 +DiDj
⇐⇒ z ∈ SD

Constrained: x∗i = zi ⇐⇒ z ∈ SMj ∪ zi ≤ σMi
Non-participating: x∗i = 0 ⇐⇒ zf ≥ T ∗

where

SMi =
{
z ∈ V | zf < T ∗ ∩ zi > σMi ∩ zj ≤ σDj , i 6= j

}
SD =

{
z ∈ V | zf < T ∗ ∩ zi > σDi , i = 1, 2

}
and

σMi = max

{
0,
A−BT
Dj

}
σDi = max

{
0,
Di(A−B(T − zj))

Dj(B +Dj)

}
.

Proof. See Appendix A.2

This proposition characterizes the whole space of the players’ strategy at the Nash equilibrium of the

game. For zi > σDi , player i plays à la Cournot. For zi below that threshold, the strategy is constrained.

The other player takes this into account and acts as a monopolist over the residual demand. In other words,

if zi ≤ σDi , then player j considers player i to be part of the competitive fringe.

According to this strategy characterization, the interconnection market may follow four different regimes.

A duopoly regime appears when both players own sufficient rights to withhold them and then act upward

on the price. A monopoly regime for player i appears when it owns a relatively large quantity of rights and

player j has too few to represent a credible threat. In this case, monopolist i maximizes his revenue against

the residual demand curve. Finally, the market may also be competitive, in the sense that no withholding

strategy appears, because the strategic players have insufficient rights (x∗i = zi,∀n) or because there is a

sufficiently high allocation to the competitive players (z∗f ≥ T ∗ such that x∗i = 0). In other words, there is a

set of rights allocations SP such that the equilibrium will be of perfect arbitrage.

Definition 1 Let SP be the set of perfect arbitrage equilibrium, that is

SP = V\
{
SMi ∪ SMj ∪ SD

}
=
{
z ∈ V | zf ≥ T ∗ ∪ zi ≤ σDi , i = 1, 2

}
.

In this set, the allocation of rights to the strategic players may not be null. Indeed it is sufficient that their

allocation be low enough that both players’ actions are constrained. Figure 2 gives an example of how the

strategy space defines the market-regime space. It is noteworthy that a larger interconnection capacity in the

arbitrage direction T does not necessarily mean more opportunity for perfect arbitrage. The area where the
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Figure 2: Market regime space.

interconnection market yields a competitive outcome decreases as T increases, up to the point T = T ∗ = A/B.

At this point, only a full allocation to the fringe would yield a perfect arbitrage outcome. After this point,

the area grows in T . For a relatively low value of T compared to the demand on the interconnection market,

the price spread is high enough that it is not profitable to withhold many rights. Indeed, up to the point

where T is sufficiently low compared to the demand, i.e.,

T ≤ A

B +Dj
,

the only strategy that maximizes player i’s profit is to use all the producer’s rights, i.e., xi = zi. In this case,

all the capacity T is used. Moreover, for

T >
AB

B2 +DiDj
,

a duopoly regime—where both players play an unconstrained strategy—exists. As T increases, this subset

increases. This may be explained by a competitive effect. The market’s output is larger in a duopoly than

in a monopoly. In our framework, the market outcome is constrained by T , such that, as T increases, there

is more room for competition. Consequently, σDi decreases with T in terms of zi for all i, and the array of

rights allocation leading to a duopolistic market regime is extended.

2.3 Discussion

The existence of price-making behavior does not necessarily lead to the withholding of PTRs. Whether or

not withholding by a strategic producer is an equilibrium strategy depends on three factors.

First, the relative fundamentals of each market, which are summarized by A, Di, and Dj provide the

primary incentives to the players. A represents the difference in reserve price between nodes 2 and 1, each

weighted by the supply-quantity sensitivity. The higher is A, the higher the price spread and the greater the

quantity supplied by a strategic exporter. Di could be interpreted as the ability of player i to manipulate

the price of market j. If Di is high then strategic player i has an incentive to withhold its output in order to

let the price at importing node j rise to a high level.

Second, the PTR allocation z defines the degree of competition in the interconnection market, ranging

from perfect competition to monopoly. For relatively low values of the rights, the strategic generators play

perfect arbitrage as a dominant strategy. Indeed, they define their strategy duopolistically or monopolis-

tically depending on the allocation of the other players. For example, if zi is large enough for player i to

play Cournot–Nash, a withholding strategy emerges. But if zj increases, zi being constant, it impacts the

threshold σDi , such that zi < σDi . Player i would then play a constrained strategy, while player j plays a

monopolistic strategy.
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Third, the size of the interconnection T determines the size of the market. A large value of T (relatively

to A) increases the zone of perfect arbitrage, but it also increases the expectation that the value of trade

could be null. Hence, a large value of T is a necessary condition for a competitive interconnection market.

However, it is not sufficient: if T is large, but no PTR is allocated to the competitive fringe of traders, then

the market will be at best a duopoly.

In this configuration, withholding strategies are likely to appear when fundamental differences between

the two markets are not very large relative to the interconnection capacity, i.e., when T > T ∗. Hence,

withholding would likely appear during periods when prices are relatively close between the two nodes. The

next section provides further analysis of the strategies and their associated payoffs in terms of local welfare.

3 Regulators’ interest in perfect arbitrage

Unbundling must be enforced by regulators at the local level, which may be easier to implement than

inter-jurisdictional regulation. Assuming that the main achievement of the latter type of regulation is to

enforce perfect arbitrage between nodes, then most of the rights allocations will result in a Pareto-dominated

equilibrium for the perfect arbitrage solution. Hence, it is usually profitable for the system operators at

the two nodes to coordinate, to prevent strategic behavior by their respective monopolists. However, if any

player at a node owns a sufficient number of PTRs, then this equilibrium maximizes the local welfare at this

node. Hence, the regulator may not be eager to cooperate in this case.

Since x∗i (z) is continuous despite the change in regimes, it follows that any function that is continuous

in xi is also continuous in z at equilibrium. Let the non-normalized local welfare function at node i be the

sum of the local welfare and the power sold by local generators to the foreign market and the power sold by

the local market to other traders. Let δi(z) be the non-normalized price differential (Pj(.)− Pi(.)).

Definition 2 The local welfare function at node i is

Wi(.) =

∫ ŷi(z)−Xi(z)

0

Pi(ξi) dξi − Ci(ŷi(z)) +Xi(z)Pi(z) + xi(z) [Pj(z)− Pi(z)] .

After normalization of the functions (as previously, we assume that node 1 is the exporting node), the local

welfare function at equilibrium can be given within a constant for any i:4

W ∗i =
1

2

[
a2i

bi + ci
+Di [X∗(z)]

2

]
+ x∗i (z)δ∗(z).

The first term, which is a monotone convex-increasing function of X, represents the welfare from local

production and consumption. The second term is the additional value earned on the interconnection market.

We compare the local welfare at equilibrium with the same function, assuming that inter-jurisdictional

regulation enforces perfect arbitrage. In this case, strategic traders become price-takers regardless of the

allocation of rights. Let XP and δP be the value of total exports and price differential in the competitive

situation. The normalized local welfare in the latter case is

WP
i =

1

2

[
a2i

bi + ci
+Di

[
XP
]2]

+ ziδ
P ,

where5

XP = min {T ;T ∗} =⇒ δP = max {A−BT ; 0} .

4At equilibrium x∗i (z) and δ∗(z) have the same sign for all z, and X∗(z) is squared, so the corresponding terms are always
positive.

5Since XP and δP are constant, WP
i (z) is linear in z and constant if δP = 0.
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Definition 3 Let Fi(z) be the local-welfare-difference function at node i, such that

Fi(z) = W ∗i −WP
i =

Di

2

[
[X∗(z)]

2 −
[
XP
]2]

+ x∗i (z)δ∗(z)− ziδP .

The function Fi compares local welfare at node i with and without inter-jurisdictional regulation. A negative

function Fi means that the regulator at node i would be better off with this type of regulation. Hence, it

would be willing to cooperate with the regulator at the other node in order to enforce competition. Figure 3
shows Fi(z) as an example where T > T ∗.

Figure 3: Local welfare: Equilibrium vs. perfect arbitrage.

The interconnection market has four regimes. Each triggers different player strategies, and consequently,

different payoffs. From this example, we see that Fi is not monotonic in zi when player i acts as a monopolist

or a duopolist. Under these regimes, the local welfare is characterized by a global minimum and local maxima.

First, let us prove that xi is continuous in z for all i. This property will be used to prove subsequent results.

Lemma 1 xi(z) is continuous in zk, k = 1, 2, f .

Proof. See Appendix A.3.

Proposition 2 Let Fi be the local-welfare-difference function at node i, i = 1, 2, and z be the allocation

of PTRs.

(i) Fi = 0 for any z ∈ SP .

(ii) Fi < 0 for any z ∈ SD.

(iii) Fi < 0 for any z ∈ SMj .

(iv) If z ∈ SMi , there exists a threshold z̃i such that Fi < 0 for every zi < z̃i, where

z̃i > T − ADj

B2 +DiDj
.

Proof. See Appendix A.4.

If the equilibrium is perfectly arbitraged, then Fi is obviously null. Moreover, if the market is in the

monopoly j regime, then the local welfare at node i at equilibrium is strictly dominated by the perfect
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arbitrage solution. However, even if node i’s generator is in its own monopolistic regime, there exists an

allocation of PTRs in this subset such that the equilibrium strategy is strictly dominated by the perfect

arbitrage solution. This result seems quite counterintuitive. For zi = T , the value of W ∗i corresponds to the

maximum of the local welfare by construction, since at this point, marginal utility and marginal cost equate

at node i, which in turn equates the marginal revenue perceived by the monopolist at node j. However, there

always exists a threshold in SMi such that Fi < 0. The intuition for this result should be put in conjunction

with the observation that Fi < 0 for any allocation z in the duopoly regime SD. As the system operator

enforces unbundling, each player doesn’t see the variations in the local price when setting its strategy. Hence,

the players are missing a piece of information about the impact of the others’ strategy on their profit. The

extent to which they can internalize the others’ strategy, which is already imperfect in a usual Cournot game,

is thus even more limited. The deadweight losses at node i resulting from these externalities increase with

the allocation to player j. The firms’ profits decrease to the point where consumers’ relative losses w.r.t. the

competitive case outweigh the producers’ extra profits.

This characterization in terms of local welfare implies that a large set of allocations leads to a Pareto-

dominated equilibrium from a local welfare point of view.

Corollary 1 There exists a set VD ⊂ V such that, for any z ∈ VD, the equilibrium is strictly Pareto-dominated

by the perfect arbitrage solution from the local welfare perspective, that is,

VD = {z ∈ V | Fi(z) < 0, i = 1, 2} =
{
z ∈ V\SP | zi < z̃i, i = 1, 2

}
.

This implies SD ⊂ VD and SMi ∩ VD 6= {ø}, i = 1, 2.

Proof. See Appendix A.5.

Thus, any equilibrium in this region is Pareto-dominated by the competitive situation. In other words, if

the rights are allocated relatively homogeneously among the players, then each node would be better off to

cooperate. These cases correspond to situations of sub-perfect-competition where the deadweight losses are

relatively evenly distributed between the two nodes. Figure 4 illustrates Corollary 1 for a case where T < T ∗.

Figure 4: Local welfare: Pareto dominance.

The right-hand graph shows the associated F1, and the left-hand graph shows the corresponding set VD, in

blue. Comparing Figure 4 and the corresponding case in Figure 2 (the left-hand graph, which assumes the

same parameter value), we can see that VD include a significant share of the sets SMi and SMj .

This result is of prime importance in a context where the system operator is not gamed. The goal

of regulation is to maximize welfare, but in most cases, this is not achieved. By emphasizing the service

of local consumption at a minimal cost, and thereby enforcing regulation at a local level, the regulated

market operator fails to compare the exporter’s marginal willingness to pay and its consumers’ marginal
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willingness to receive in exchange for this export. This is implicitly because the physical market operator is a

quantity-taker of the interconnection game’s outcome, provided that the local monopolist does not game it.

Therefore, the market operator cannot arbitrage efficiently. We could view this effect as a non-internalized

market externality.

To conclude this section, a local regulator may not wish to implement an efficient cross-border regulation

if it has already enforced unbundling between trading and production activities. This is especially true if its

local player owns a significant share of the PTRs. Indeed, by unbundling its local player, the regulator is

ensured that the strategic trader will not dump its product in a foreign country, in order to raise the local

price. That is, the local firm makes extra profit on exports without jeopardizing the local welfare at its node.

However, such a case only happens for relatively extreme distributions of PTRs. For most PTR allocation,

a node would be better off with a competitive situation. To that extent, the local player being a dominant

player on the interconnection is not sufficient to ensure higher local welfare.

4 Conclusion

We model a power-trading game between two markets linked by a finite HVDC interconnection with con-

trollable flows. The strategic trading parametrizes an implicit physical power market. Our assumption of

locally regulated markets is in line with the regulatory framework in the U.S., where markets are strongly

monitored. Our assumption of local price-taking behavior of producer-traders is consistent with situation

where a native load commitment provision applies. In the absence of such native load commitment, the

local price-taking assumption is interpretable as functionnal unbundling, a situation where communication

is restricted between producers and traders within a generation company. Without unbundling, Debia and

Zaccour (2016) have shown in a more general international-trade model that trading may create inefficiencies

caused by players’ willingness to dump their product in the foreign market. We show that such behavior may

be mitigated by unbundling. In this sense, to generalize unbundling between trade and production, not only

to utilities but to all producer-traders, is desirable.

Under this regulation, and in the absence of a releasing rule such as UoL, we show that trade always goes

in the same direction as the price spread, but that the withholding of rights exists under relatively weak

conditions. We demonstrate different market regimes depending on PTR allocations. For most allocations,

the equilibrium outcome is dominated by the competitive one from a local welfare point of view. Hence,

the local regulators would be better off to cooperate in order to enforce competitive behavior by their

local producers on the interconnection market for these allocations, provided that the cost of international

regulation is low enough. On the other hand, each regulator would increase its wealth if its local producer

owned an amount of rights greater than a certain threshold. To that extent, they are not willing to cooperate,

and an releasing rules may not be enforced.

Such an unbundling regulation can have negative effects which are not modeled here. For example, in

a world with uncertainty and where agents are risk averse, one of the main goal of trading is to hedge the

production on the financial markets. An unbundling regulation would make this type of behavior less efficient.

This work could be extended by adding a third stage where rights are auctioned. This would allow an

examination of what are the most credible allocations of rights in this setting. With enforcement of local

regulation and without the UoL rule, one could expect different results than those in Joskow and Tirole

(2000). Another interesting extension, which could be done in conjunction with the previous one, would be

to develop a meta-game between the regulators. This would allow further analyses of the regulators’ incentive

to cooperate in order to enforce perfect arbitrage on the interconnection.
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A Proofs

A.1 Proof of Result 1

Proof. Trivially, the value at equilibrium is given by calculating the first order condition (FOC) which is,

after aggregating the parameters,

∂Πi

∂xi
= A−Bxj − (B +Dj)xi = 0, ∀i.

We get the closed-form solution from there. From the second derivative, it comes that

∂2Πi

∂x2i
= −(B +Dj) < 0,

∂2Πi

∂xi∂xj
= −B < 0.

Thus, the equilibrium is unique. We get the price differential by replacing the value accordingly.

A.2 Proof of Proposition 1

Proof. For zf ≥ T ∗, we have P2(x∗f ) − P1(x∗f ) = 0 and consequently xi = 0 for any i. We therefore focus

on the case where zf < T ∗, such that x∗f = zf . Given this, each player always exercises a strictly positive

export. Using Equation (6), the strategy is thus the best response

xi(x
∗
j ) = min

{
zi,

A−B(x∗j + zf )

B +Dj

}
In this case, the closed-form strategy for player i, when the two players have an interior solution, is

x∗i =
Di(A−Bzf )

B2 +DiDj
. (8a)

If x∗j > zj , then player i is a monopolist and equates his marginal cost to the marginal revenue received from

the interconnection market’s residual demand. Replacing x∗j and x∗f in (6) by zj and zf , respectively, and

since zj + zf = T − zi, we finally end up with

x∗i =
A−B(T − zi)

B +Dj
. (8b)

For xj to be strictly greater than zj , it must be the case that

zj <
Dj(A−Bzf )

B2 +DiDj
. (8c)

Replacing zf by T − zi − zj in (8c), we obtain a necessary condition for the two players to play an interior

equilibrium. That is, it is necessary that

zj > σDj =
Dj (A−B (T − zi))

Di (B +Di)
, i = 1, 2, j 6= i, (8d)

which naturally leads to the definition of SD. If zj ≤ σDj , player i acts as a monopolist if he has a sufficient

amount of zi. That is, using Equation (8b),

zi ≥ σMi =
A−BT
Dj

. (8e)

Comparing the two thresholds σMi and σDi , we obtain

σMi ≥ σDi ⇐⇒ zj ≤ σDj .

These two elements lead to the definition of SMi .
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A.3 Proof of Lemma 1

Proof. According to Definition 3, Fi(X) is continuous in X, which in turn is continuous in xi for every i.

It is thus sufficient to show continuity of xi(z) in z for every i. Within each strategy regime defined in

Proposition 1, the function xi(z) is continuous in z. Thus, we must check continuity at the limit of each

transition point. From the interior (monopolistic or duopolistic) solutions to the constrained solution, the

function is, by definition of the thresholds σDi and σMi , continuous in zi. Continuity at the transition point

between the monopolistic and duopolistic strategies remains to be checked. We have

z ∈ SMi ⇐⇒ zi > σMi and zi ≤ σDj
z ∈ SD ⇐⇒ zi > σDi and zi > σDj

zi = σDj ⇐⇒ σMi = σDi .

Since SD is an open set in the space (zi; zj), we show that xDi (x∗i iff z ∈ SD) converges to xMi (x∗i iff z ∈ SMi )

as zi tends to σDj . This is sufficient since at this point zi > σMi ⇐⇒ zi > σDi , and SMi is bounded in the

space (zi; zj). We calculate

lim
zi=σD

j

xDi =
Dj(A−B(T − zi − σDj ))

B2 +DiDj
.

Replacing σDj by its mathematical expression, the required equality is found: limzi=σD
m
xDi = xMi ∀n. Hence

xi(z) is continuous in z, i = 1, 2, f . In turn X(z) is the sum of all xi, which sum preserves continuity. This

implies that FiX(z) is continuous in z.

A.4 Proof of Prop 2

Proof. Following Definition 3, Fi has the following gradient:

5Fi = 5X∗DiX
∗(z) +5x∗

i
δ∗(z) +5δ∗x∗i (z)−

1
0
0

 δP , (9)

(i) z ∈ SP =⇒ Fi = 0. Trivial since by definition XP = X∗.

(ii) z ∈ SD =⇒ Fi < 0.

Implicit variables are functions of zf only, that is,

x∗ =


Di(A−Bzf )
B2+DiDj
Dj(A−Bzf )
B2+DiDj

zf

 , X∗ =
AB +DiDjzf
B2 +DiDj

, δ∗ =
DiDj(A−Bzf )

B2 +DiDj
. (10a)

The derivative for each function w.r.t. zf are

∂x∗i
∂zf

=
−BDi

B2 +DiDj
,

∂X∗

∂zf
=

DiDj

B2 +DiDj
,

∂δ∗

∂zf
=
−BDiDj

B2 +DiDj
. (10b)

Consider first F̃i = Fi + ziδ
P . F̃i is a function of zf only. We have

∂F̃i
∂zf

=
D2
iDj

(B2 +DiDj)2
(
−AB + zf (DiDj + 2B2)

)
.

The second derivative is strictly positive, such that F̃i is strictly convex in zf , and the optimum is a minimum.

Setting the first derivative to zero, we obtain

zf =
AB

DiDj + 2B2
> 0.
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Hence, there is a local maximum of F̃i on the border of SD where zf = 0, such that T = zi + zj . Since F̃i is

an affine projection of Fi, this is also true for Fi.

For any given zf = a, an increase in zj corresponds to a reduction of same order in zi. The gradient of

Fi|zf=a with respect to zi, zj , for all a such that {zi, zj , a} ∈ SD, is

5Fi
=

[
−δP
δP

]
,

such that Fi|zf=a, zi→σD
i
≥ Fi|zf=a, zj=→σD

j
.

In particular, Fi|zf=0, zi→σD
i

is a local maximum of a convex function. Calculating Fi at this point, that

is, for

zi = σDi =
ADi

B2 +DiDj
= x∗i ,

Fi is equal to

Fi|zf=0, zi→σD
i

=
Di

2

[(
AB

B2 +DiDj

)2

−
(
XP
)2]

+
ADi

B2 +DiDj

(
ADiDj

B2 +DiDj
− δP

)
.

Replacing δP by A−BXP , Fi(.), we finally obtain

Fi|zf=0, zi→σD
i

=
−Di

2

(
XP −X∗

)2
< 0. (10c)

This implies that Fi|zf=zf < 0, such that limz→SP = 0−, z ∈ SD , SD. Hence, the maxima on every bound

of SD are negative, such that Fi < 0∀z ∈ SD.

(iii) z ∈ SMj =⇒ Fi < 0.

First, note that for zi = 0, we see, by comparing X∗ and XP , that Fi(z) < 0. The values of individual

exports, total exports and price differentials (in the arbitrage direction) in this regime are

x∗ =

 zi
A−B(T−zj)

B+Di

zf

 , X∗ =
A+Di(T − zj)

B +Di
, δ∗ =

Di (A−B(T − zj))
B +Di

. (11a)

Notice that zf is the residual part of zi and zj . A two-dimensional representation of Fi(z) is sufficient to

describe the value space of the function, namely, in zi and zj . This is equivalent to assuming that every

addition to (removal from) zi or zj is removed from (added to) zf . Accordingly, the gradients for each

function of z are

5x∗
i

=

[
1
0

]
, 5X∗ =

[
0
1

]
−Di

B +Di
, 5δ∗ =

[
0
1

]
BDi

B +Di
. (11b)

Hence, we have

5Fi =

[
0
1

](
Di

B +Di

)
(−DiX

∗ +Bzi) +

[
1
0

] (
δ∗ − δP

)
. (11c)

If zi = T − zj , we have

−DiX
∗ +Bzi ≤ 0 =⇒ zi ≤

Di

B
X∗ =⇒ zi ≤

Di

B

A+Dizi
B +Di

=⇒ zi ≤
AB

D2
i

zi ≤ σDi =⇒ zi ≤
Di(A−Bzi)
Dj(B +Di)

=⇒ zi ≤
ADi

B2 +DiDj
.

From this, we conclude that

zi ≤ σDi =⇒ −DiX
∗ +Bzi ≤ 0, ∀ z ∈ SMj , (11d)
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and thus that any Fi is monotonically decreasing in zj for any z ∈ SMj . By continuity, limzj→σM
j
Fi = 0−

since z→ SP . For the other bound SMj , that is, for

zi = σDi =
Di(A−Bzf )

B2 +DiDj
,

we’ve seen in part (ii) that Fi < 0. Hence, for any allocation z ∈ SMj , Fi(z) < 0.

(iv) z ∈ SMi =⇒ ∃ z̃i ∈ SMi such that Fi|zi<z̃i < 0.

In this regime, the individual and total exports and the price differential are

x∗ =

A−B(T−zi)
B+Dj

zj
zf

 , X∗ =
A+Dj(T − zi)

B +Dj
, δ∗ =

Dj(A−B(T − zi))
B +Dj

. (12a)

Hence, Fi is a function of zi only. The first and second derivatives are

∂Fi
∂zi

=
Dj

B +Dj
[A− (T − zi)(B +Di)]− δP (12b)

∂2Fi
∂z2i

=
Dj(B +Di)

B +Dj
> 0 (12c)

Hence Fi is strictly convex in zi, such that there exists a global minimum zi:

zi =

{
if T < T ∗, then

AB−T (B2−DiDj)
Dj(B+Di)

< T if T > A
B+Dj

if T ≥ T ∗, then T − A
B+Di

< T,

where T > A
B+Dj

is a necessary condition for SMi to exist (see Proposition 1). Below a threshold z̃i the value

function Fi is always negative. To show this, we calculate the value function at each bound of SMi and the

associated gradient. For the upper bound zi = T ,

Fi|zi=T =

(
A

B +Dj

)2(
Di

2
+Dj

)
−XP

(
A−BXP +

Di

2
XP

)
> 0

if T > A
B+Dj

, which is a necessary condition for SMi to exist. Since zi < T and Fi is strictly convex, Fi
decreases with a reduction in zi.

In part (ii) of the proof, we saw that Fi|zj=σD
j
≤ Fi|zi=σD

i
< 0. In particular, the greatest value of zi on

this border is for zf = 0. Hence,

z̃i > T − ADj

B2 +DiDj
.

By strict convexity and continuity, we finally have that limz→SP Fi = 0−, z ∈ SMi . Hence, the threshold z̃i
exists in SMi and is unique, such that Fi|zi<z̃i < 0, z ∈ SMi .

A.5 Proof of Corollary 1

Proof. Using Lemma 1, continuity of xi(z) implies that Fi(z) is continous in V. Following Proposition 2,

both Fi and Fj are negative for z ∈ SD, and thus, the equilibrium is always Pareto-dominated from a local

welfare viewpoint in this set. When z ∈ SMi , Fj < 0, and for zi < z̃i, Fi < 0 also, these allocations correspond

to Pareto-dominated equilibria. The same situation, but reversed, occurs when z ∈ SMj . From there, the

definition of VD comes naturally.
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