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Abstract: The Dial-a-Ride Problem (DARP) consists of designing a set of routes to transport clients from
pickup node to delivery node, taking into account vehicle capacity, time windows and riding time constraints.
The Stochastic DARP (SDARP) is a practical variant of the DARP in which the travel time between nodes is
a random variable related to traffic jam, road maintenance or weather conditions. The solution robustness is
the probability that a solution remains feasible considering different distribution laws and the driving policy
which defines the driver procedure to follow when vehicle arrives earlier or later than the planned schedule.
Three policies are introduced to model the wide spread transportation industry behaviours. For stochastic
routing problems, classical approaches require either simulation based evaluation method to provide a useful
estimation of the robustness or analytical methods. Both are too time consuming to be efficiently integrated
into an iterative improvement scheme. A new method is introduced to estimate the robustness. It relies
on an indirect approach using a specific criterion which is shown to be correlated to the robustness and
which can be easily computed. This indirect approach is embedded into both an Evolutionary Local Search
(ELS) metaheuristic and a multi-criteria population-based method. The solutions obtained at the end of the
process are highly robust with respect to this criterion. Their robustness can be evaluated and confirmed
by simulation. Numerical results are presented to analyse the robustness of the best published solutions for
the DARP in the context of stochastic travel times. Many of them appear to be very sensitive to random
variations. Computational results for the ELS and the population-based algorithm for the SDARP are then
reported. They show the robustness can be significantly improved, without significant impact on the cost of
the solution.

Keywords: Dial-A-Ride, transportation, stochastic travel time, robustness, gamma distribution

Résumé : Le Problème de Transport à la Demande (PTAD) consiste à définir un ensemble de tournées pour
acheminer des clients de leur point d’origine à leur point de destination tout en respectant des contraintes
de capacité, de fenêtre de temps et de durée. Le PTAD Stochastique (PTADS) est une variante du PTAD
dans laquelle le temps de trajet entre deux points est soumis à incertitude. Il est modélisé par une variable
aléatoire pouvant représenter la variabilité des conditions de trafic (congestion due à un afflux, à des travaux
de maintenance, à des conditions climatiques, etc.). La robustesse d’une solution peut être vue comme la
probabilité de rester réalisable en tenant compte à la fois de la loi de distribution et de la politique du con-
ducteur en réponse aux variations par rapport au planing initial. Trois politiques représentant des pratiques
dans l’industrie sont considérées. Les principales approches pour les problèmes de transport stochastiques
reposent sur l’estimation de la robustesse par simulation ou sur des méthodes analytiques. Toutes deux
sont trop coûteuses pour être intégrées dans un schéma itératif de résolution. Nous proposons une approche
indirecte pour estimer la robustesse. Elle repose sur la proposition d’un critère spécifique, corrélé avec la
robustesse et qui peut être aisément calculé. Cette approche est intégrée dans une Evolutionary Local Search
(ELS) et dans une métaheuristique multi-critère à base de population. Les solutions obtenues sont très ro-
bustes par rapport à ce critère et leur robustesse est confirmée par simulation. La robustesse des meilleures
solutions du PTAD publiées dans la littérature est évaluée dans le contexte stochastique. La plupart est très
sensible aux variations aléatoires. Les solutions fournies par l’ELS et l’algorithme à base de population sur
les mêmes instances sont significativement plus robustes avec un impact modéré sur le coût de transport.

Mots clés : Transport à la Demande, transport, temps de trajet stochastique, robustesse, loi Gamma
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1 Introduction

The Dial-a-Ride Problem (DARP) consists of designing a set of routes to transport clients from their pickup

node to their delivery node, taking into account vehicle capacity, time windows and riding time constraints.

This problem is central in the transportation of persons by a flexible fleet of vehicles (taxi, on-demand services

for medical transportation, etc.) and two main versions of the DARP are considered in the literature: in the

static case, transportation requests are known in advance, while they are iteratively revealed in the dynamic

case. The DARP is NP-hard as an extension of the Vehicle Routing Problem (VRP) and was first investigated

in the late 70s by [22] who focuses on the scheduling part, i.e. assigning clients to vehicles. Partitioning

techniques with simple rules are proposed for the static case. They are then extended for the dynamic context.

For the single vehicle version, [20] proposes a heuristic, while [16] presents a dynamic programming approach.

Then [21, 14, 25] develop heuristics in the multiple vehicle case. However few publications focus on real-life

instances: [1] address the transportation of disabled people in Berlin, [17] consider dial-a-ride problems in

Bologna. Another recent publication on stochastic routing addresses the Distance Constrained VRP with

stochastic travel and service time on trip [10]. Authors propose an approach dedicated to PH Distribution

to model both service and transport time. The stochastic time model can easily take into account a given

service level.

Our contribution is to propose a new approach for the DARP with stochastic travel time which uses

an indirect estimation of the robustness and which addresses the driver policies. The robustness can be

defined as the probability to satisfy the time windows constraints for some specific law and driver policy.

Note that in recent publications, authors have included semi-triangular distribution [11] or shifted gamma

distribution [23, 24] in addition to distribution probabilities studies. Gamma distribution is of interest since

the parameter of the distribution allows a wide range of behavior, from exponential distribution for low values

to approximately normal distribution for large values. Our proposal can handle any probability law, but in

practice it is limited to continuous laws with a strictly increasing distribution function, and with a finite

variance.

Because simulation-based approach to obtain evaluation of the robustness can be time-consuming, a

new criterion is defined, and a new trip evaluation function is defined extending the Firat and Woeginger’s

algorithm [9] to maximize the robustness. For the mono-objective approach, this criterion is aggregated with

the solution cost and it is optimized by an ELS metaheuristic. The relative importance between the criterion

and the cost is adapted during the metaheuristic iterations. A population-based method is also introduced to

provide a Pareto front. Then, the robustness of existing known solutions for the DARP for two well-known

benchmarks is evaluated in the stochastic context. The numerical experiments prove that solution robustness

can be significantly improved without significant impact on the solution cost.

The remainder of this paper is organized as follows: a model for the DARP, its extension to the SDARP

and driving policies are presented in Section 2. The robustness of a solution is defined in Section 3. It

involves the reformulation of time constraints, and both an evaluation by simulation and the probabilistic

evaluation of a trip are proposed. The ELS metaheuristic and the population-based method for computing

robust solutions for the SDARP are detailed in Section 4. Numerical results in Section 5 focus on both the

robustness of best known solutions from the DARP and the behavior of the two proposed methods on two

well-known benchmarks from the literature. Concluding remarks are set in Section 6.

2 Model for the SDARP

2.1 DARP definition

The static DARP [4] is defined on a complete graph G = (V,A) corresponding to a weighted directed

transportation network. The fleet of K vehicles is assumed to be homogeneous, i.e. all the vehicles have the

same capacity Q. The set of n transportation requests is known in advance. The following notations are

used for data: V = {0, 1, . . . , 2n, 2n+ 1} is the set of nodes with 1, . . . , n the pickup nodes and n+ 1, . . . , 2n

the delivery nodes. Two copies 0 and 2n + 1 of the depot model respectively the beginning and the end of
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the trips. For convenience, given a transportation request i = 1, . . . , n, let i+ = i be its pickup node and

i− = i+ n be its delivery node. Given an arc (i, j) ∈ A, tij and cij are respectively the transportation time

and the transportation cost to go directly from i to j. A time window [ei; li] is associated to each node

i ∈ V ; ei is the earliest starting time of service while li is the latest starting time of service. The service

duration is sdi and qi is the number of customers to handle at node i. Thus, given a transportation request

i, qi > 0 at its pickup node and qi+n = −qi < 0 at its delivery node.

Each customer must be picked up at his pickup node and dropped off at his delivery node while no

transfer is allowed. Each trip starts and ends at the depot. The capacity constraint of any vehicle must hold

at any node of the trip and the beginning of service must fit the time windows at any visited node, including

nodes 0 and 2n + 1. A waiting delay is allowed before the beginning of service at any node. This can be

used to satisfy the time window constraints, the riding time constraints or the driving time constraints. No

waiting delay is allowed at the node after the service time and the vehicle leaves the node just after finishing

its service.

The problem consists of routing at most K vehicles by assigning a node list λ to each vehicle k. Let λ(i)

be the ith node of the list and nλ be the number of nodes corresponding to a transportation request. Thus

λ(0) = 0, λ(nλ + 1) = 2n+ 1 and λ(nλ) is the last node on which to perform an operation. Obviously λ(1)

is a pickup node and λ(nλ) is a delivery node. Let β(i) represent node i position in the list λ. Thus, for a

transportation request i, β(i) and β(i+n) are respectively the position of the pickup node and of the delivery

node in λ. The following variables are used for any node λ(i) (see Figure 1):

• Ai, arrival time;

• Bi, beginning of service;

• Di, departure time, defined as Di = Bi + sdi;

• Wi, waiting delay, defined as Wi = Bi −Ai;
• Ri, riding time for transportation request i, i.e. the time between the end of service at β(i) and the

beginning of service at β(i+ n). It is defined as Ri = Bβ(i+n) −Dβ(i) .

Figure 1: Description and notations [3].

Given a node list λ, Bλ is the departure time from the depot and Eλ is the return time to the depot.

The objective function is to minimize the total cost of a solution s:

c(s) =

m(s)∑
k=1

nλk∑
i=0

cλk(i)λk(i+1)

where m(s) is the number of trips of the solution, i.e. the number of node lists in λ. Then, m(s) = K if

all the vehicles are used. A solution must satisfy the following constraints:

(C1) The number of customers in the vehicle at each node cannot exceed the capacity Q;
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(C2) The beginning of service at any node i belongs to its time window, ei ≤ Bi ≤ li;
(C3) The riding time for a transportation request i cannot exceed the time limit, Ri ≤ L;

(C4) The trip duration for each vehicle is at most H.

Constraints (C3) and (C4) model the quality of service respectively for the users and for the vehicles. As

stressed by [4], the time constraints may be often tight in practice and several authors have allowed a partial

relaxation for the local search in order to investigate ”unfeasible” solutions.

2.2 Stochastic DARP

In practice, as stressed by [27, 19], many parameters are subjected to uncertainty, including customer requests,

transportation times, vehicle availability, etc. The Stochastic DARP (SDARP) variant addressed in this paper

is similar to the static DARP, except that the transportation time tij is not constant and is modeled as a

positive random variable Tij . The costs cij related to the arcs remain deterministic. A common – yet

approximate – way to solve the stochastic routing problem subject to transportation time variations consists

of considering the expected value E(Tij) for the transportation times. Based on the definition of [12], robust

solutions of stochastic problems are solutions expected to perform well with variations on uncertain data.

While the objective of the DARP is to find a minimal cost solution, the objective of the SDARP is to find a

sufficiently robust minimal cost solution.

Given an arc (i, j) ∈ A, the following notations are used:

• tij is the transportation time in the original DARP;

• Tij is the random transportation time in the SDARP;

• Tij(ω) is a realization of Tij (event ω).

Then, given a node list λ related to a trip and given a node at position i in λ:

• the deterministic transportation time from λ(0) to λ(i) is γ(i) =
∑i−1
k=0 tλ(k)λ(k+1);

• the random transportation time from λ(0) to λ(i) is Γ(i) =
∑i−1
k=0 Tλ(k)λ(k+1);

• the sum of waiting durations from λ(0) to λ(i), where A0 = e0, is X(i) =
∑i
k=0Wλ(i).

Due to the stochastic nature of the transportation times Tij(ω), some DARP constraints hold or not

depending on random event ω and some variables should be updated including for example the waiting time

on node. If Tij(ω) < tij , the vehicle should arrive at node k earlier than ek, i.e. β(k) ≥ β(j), increasing

the waiting time and ensuring constraints feasibility. Note that, aside from (C2), constraints (C3) and (C4)

can be enforced by increasing the waiting delay at node j to keep the preliminary arrival time. On the other

hand, if Tij(ω) > tij , the vehicle may arrive later than lk at some node k such that β(k) ≥ β(j). In such

situation the trip λ becomes unfeasible since some constraints do not hold. This example is illustrated in

Figure 2.

Since a variation in transportation times can create a time windows violation, a customer maximal riding

time violation or a total trip duration violation, the respective criteria w(s), t(s) and d(s) [4] are usually

defined. They are sued to maximize the robustness of a solution minimizing the probability that one constraint

does not hold. An unfeasible solution is then characterized by w(s) > 0 and/or t(s) > 0 and/or d(s) > 0.

To model variations around the expected value, the random transportation times Tij on arc (i, j) are

assumed to follow a Gaussian law. In practical applications, the transportation time on an arc is the con-

sequence of a large number of elementary vehicle transportation time variations in the traffic. Because each

measure results from a large number of small independent sources, the central limit theorem applies and the

random transportation time can be efficiently modeled by a Gaussian random variable, with one restriction

since the transportation time should remain positive.

Assuming the transportation time between two nodes is modeled by a Gaussian distribution N (tij , σ
2
ij),

the distribution is truncated to avoid negative values and, without loss of generality, the standard deviation
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Figure 2: Stochastic transportation times and time windows constraints [3].

parameter is arbitrarily set to σij = tij/ψ where ψ defines the relative importance of standard deviation

regarding the average value (for example ψ = 10 defines a standard deviation σij which is about 10 % of tij).

Because, random variables Tij for transportation time are assumed to be independent, the total stochastic

transportation time Γi from the depot to the beginning of service at node λ(i) of the trip λ can be modeled by

a Gaussian distribution N (γλ(i), σ
2
λ(i)). Assuming that the deterministic transportation times are suitable ap-

proximations of the random ones, the standard deviation parameter is set to σλ(i) =
√∑i−1

k=0(tλ(k)λ(k+1)/10)2.

Using the Gaussian laws additivity for independent random variables, Γi itself is a Gaussian with parame-

ter γλ(i).

2.3 Driving policies

A trip is defined by the sequence of visited nodes, the arrival time Ai and the beginning of service Bi at each

node i. When a realization ω of a random variables occurs, the initial schedule might be disturbed. Since

the driver is supposed to drive at the speed limit, the speed of the vehicle cannot be modified. On the other

hand, those variabilities can be handled by increasing or reducing the waiting delays as well as by updating

the starting times. These decisions are supposed to be based on a driver policy defined by the supervisor

in order to favor feasible schedule with respect to the time constraints, after the realization of the random

variables.

Let us consider the deterministic schedule of Figure 3, where, for sake of simplicity, the service time is

supposed to be zero. The vehicle starts its operations at node si−1 at time Bi−1, and immediately leaves

si−1 for the current node si with time window [ei; li]. The travel duration is tsi−1si and the vehicle arrives

at node si at time Ai. It starts its operations at time Bi after a waiting duration Wi. Such scenario clearly

defines a ”route schedule” which does not address explicitly the random events.

Figure 3: Stochastic transportation times and time windows constraints [3].
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After the realization Tsi−1si(ω), the arrival time is Aωi = Bi−1+Tsi−1si(ω). Three policies are investigated:

P1 “Keep the starting time Bi”: if Aωi < Bi, the vehicle arrives before Bi and the driver has to wait until

Bi; otherwise, the driver immediately starts his operations, i.e. Bωi = Aωi . The first case occurs in

early arrival (Aωi ≤ Ai) and preserves the beginning of service Bi since Ai < Aωi ≤ Bi, as stressed on

Figure 4a. The second case occurs for extra delay in transportation time and leads to situations where

the arrival time is greater than the scheduled starting time Bi, see Figure 4b. Whatever the arrival

date Aωi > Bi, the vehicle is assumed to leave the node at the earliest possible time. Such policy is

common in routing problems where the service time depends on both vehicle arrival time and on the

availability of extra resources. This includes skilled workers or handling tools at some specific unloading

docks which must be booked ahead. This situation is widespread in the supply of supermarkets where

the driver cannot take advantage of an earlier arrival date.

(a) early arrival (b) mild lateness

Figure 4: Impact of P1 policy.

P2 “Keep the waiting duration Wi”: the driver must set a waiting duration Wi = Bi − Ai as defined

in his initial schedule, whatever the realization Tsi−1si(ω). This might lead to infeasibility in case

of late arrival, i.e. when Aωi + Wi > li. The same situation occurs for an early arrival for which

Aωi + Wi < ei. The two situations of early arrival and mild lateness are illustrated in Figure 5. This

policy is widespread in periodic transportation systems, including subways or any automated lines. A

fixed waiting time on stations is required to handle boarding and leaving passengers.

(a) early arrival (b) mild lateness

Figure 5: Impact of P2 policy.

P3 “Keep the waiting duration for early arrival, keep the starting time otherwise”: the decision differs

according to the situation. If the vehicle arrives earlier, the waiting duration Wi is kept. Otherwise,

the driver waits until Bi after a late arrival (Figure 6). In case of significant delay, i.e. Aωi > Bi, the

service at node i is started immediately. This policy can be seen as hybridization between P1 and P2.

Other policies could be considered, depending on the context. For instance, the lower bound ei of the

time window could be taken into account to shift backwards the service time Bi. Another approach could
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Figure 6: Impact of P3 policy.

be to measure the feasibility of the current schedule after arriving at each node and to update the arrival

times and the waiting durations dynamically and iteratively. However, this could no longer be considered as

a policy, since the decision process would be too complex to be taken by the driver himself. In all situations,

the delay or the advance following Tsi−1si(ω) might lead to infeasibility on the time windows, on the riding

time constraints or on the total trip duration constraints.

3 A methodological approach for solution robustness optimization

3.1 General framework

Optimizing a problem minx∈X {h(x)} subject to stochastic variations requires the evaluation of either h(x)

–if an analytical tractable formulation exists– or h(x, r) for any solution x where r defines the number of

replications required to obtain a suitable evaluation h(x) of h(x). The computation of h(x) and/or h(x, r)

is often time-consuming and it cannot be embedded efficiently into metaheuristic optimization processes for

the evaluation of each solution.

Our proposition consists in defining an indirect criterion ρ(x), fast to compute and correlated to h(x, r),

which can be used as surrogate in a metaheuristic, since a lot of solutions need to be evaluated. This

framework is illustrated in Figure 7. A function f ′ is first defined to assign one ρ to each solution x ∈ Ω and

to consider h(x, r) only at the end of the optimization.

Figure 7: General framework for SDARP.

In the context of a deterministic DARP, any solution x ∈ Ω is related to h(x). Typically this corresponds

to the total travel time. In SDARP, this also depends on the random event ω leading to the realization Tij(ω)

and one evaluation becomes h(x, ω). As stressed before, the value h(x) used for a deterministic problem must

be replaced by h(x, r). The evaluation of h(x, r) can be replaced by a function f ′(x) which computes an

indirect criterion ρ(x). This criterion must be correlated to h(x, r) to ensure that high quality solutions

regarding ρ(x) are also high quality solutions regarding h(x, r). The key-points of this approach are:
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• definition of an indirect criterion ρ(x);

• definition of a function f ′(x).

The estimation of the correlation between the criteria h(x) or h(x, r) and the indirect criterion ρ(x)

only requires a large-enough number r of replications, since the comparison between h(x, r) and ρ(x) is a

postmortem analysis of the ρ(x) adequacy.

3.2 Definition of the indirect criterion: Theoretical considerations

In order to be feasible, a node list λ (which corresponds to a trip) in the DARP has to satisfy different time

constraints as stressed by [4]. A beginning of service time Bi must be defined for each node i ∈ λ such that

constraints (C2), (C3) and (C4) hold. As mentioned in [9], Bi can be defined as the sum of waiting durations

Xi and transportation times γi, Bi = Xi + γi. Thus Xi = Bi − γi.

Four constraints must hold for Bi (Figure 1):

(D1) Maximal time window: Bi ≥ ei, ∀i ∈ λ
(D2) Minimal time window: Bi ≤ li, ∀i ∈ λ
(D3) Maximal trip duration: Bnk −B1 ≤ H
(D4) Maximal request riding time: Bβ(λ(i)+n) −Bλ(i) ≤ sdλ(i) + L, ∀i ∈ λ

This set of constraints leads to the subsequent set of constraints introduced by [9] using Xi as variables:

(D1) (eλ(i) − γi) ≤ Xi

(D2) (lλ(i) − γi) ≥ Xi

(D3) (H − γnk) ≥ Xnk −X1

(D4) (sdλ(i) + L− (γj − γi)) ≥ Xj −Xi

In the SDARP, the deterministic value γi becomes a random variable Γi and the inequalities must be

rewritten, considering a random event ω leading to Γi(ω).

(D1’) (eλ(i) − Γi(ω)) ≤ Xi

(D2’) (lλ(i) − Γi(ω)) ≥ Xi

(D3’) (H − Γnk(ω)) ≥ Xnk −X1

(D4’) (sdλ(i) + L− (Γj(ω)− Γi(ω))) ≥ Xj −Xi

Since inequalities depend on the event ω, each inequality has a probability P(Dx′) to hold:

• P (D1′) = P
(
(eλ(i) − Γi(ω)) ≤ Xi

)
• P (D2′) = P

(
(lλ(i) − Γi(ω)) ≥ Xi

)
• P (D3′) = P ((H − Γnk(ω)) ≥ Xnk −X1)

• P (D4′) = P
(
(sdλ(i) + L− (Γj(ω)− Γi(ω))) ≥ Xj −Xi

)
The node list λ is stated valid if and only if P(D1′) ≥ ρ, P(D2′) ≥ ρ, P(D3′) ≥ ρ and P(D4′) ≥ ρ, with ρ

a positive constant. This corresponds to a reliability level and it is a parameter of the trip evaluation. Since

P(D1′), P(D2′), PP(D3′) and P(D4′) depend on Xi, the problem is to set a value for each Xi considering:

• P (D1′) ≥ ρ→ P
(
Γi ≥ −Xi + eλ(i)

)
≥ ρ

• P (D2′) ≥ ρ→ P
(
Γi ≤ −Xi + lλ(i)

)
≥ ρ

• P (D3′) ≥ ρ→ P (Γnk ≤ X1 −Xnk +H) ≥ ρ
• P (D4′) ≥ ρ→ P

(
Γj − Γi ≤ Xi −Xj + sdλ(i) + L

)
≥ ρ
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If the transportation times are Gaussian random variables, Γi ∼ N (γi, σ
2
i ) and the first constraint can be

rewritten:

P
(
Γi ≥ −Xi + eλ(i)

)
≥ ρ⇔ P

(
Γi − γi
σi

≥
(−Xi + eλ(i))− γi

σi

)
≥ ρ (1)

⇔ P
(
N (0, 1) ≥

(−Xi + eλ(i))− γi
σi

)
≥ ρ (2)

Similar remark holds for the other constraints, which leads to the following inequalities:

• P (D1′) ≥ ρ→ P
(
N (0, 1) ≥ −Xi+eλ(i)−γiσi

)
≥ ρ

• P (D2′) ≥ ρ→ P
(
N (0, 1) ≤ −Xi+lλ(i)−γiσi

)
≥ ρ

• P (D3′) ≥ ρ→ P
(
N (0, 1) ≤ X1−Xnk+H−γnk

σnk

)
≥ ρ

• P (D4′) ≥ ρ→ P
(
N (0, 1) ≤ Xi−Xj+sdλ(i)+L−(γj−γi)√

σ2
j+σ

2
i

)
≥ ρ

The cumulative probability of N (0, 1) is φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt. Let c = φ−1(ρ), which is known

if ρ ∈ [0, 1[. Under these conditions, the probability inequalities P (N (0, 1) ≤ y) ≥ ρ are equivalent to

inequalities y ≥ c and probability inequalities P (N (0, 1) ≥ y) ≥ ρ are equivalent to inequalities y ≤ −c.
Thus,

P
(
N (0, 1) ≥

−Xi + eλ(i) − γi
σi

)
≥ ρ⇔

−Xi + eλ(i) − γi
σi

≤ −c⇔ Xi ≥ cσi + eλ(i) − γi

A similar remark holds for the other constraints, which leads to the following set of constraints:

(D1”) Xi ≥ eλ(i) − γi + cσi, ∀i = 1, . . . , nk

(D2”) Xi ≤ lλ(i) − γi − cσi, ∀i = 1, . . . , nk

(D3”) Xnk −X1 ≤ H − γnk − cσnk
(D4”) Xj −Xi ≤ sdλ(i) + L− (γj − γi)− c

√
σ2
j + σ2

i , ∀(i, j)|λ(j) = λ(i) + n

Thus, a node list λ is considered valid if and only if (D1′′), (D2′′), (D3′′) and (D4′′) hold and a valid

constraint (Dx′′), x = 1, . . . , 4, induces (Dx′) ≥ ρ. If ρ = 0.5, then c = 0 and the SDARP constraints are

identical than deterministic DARP constraints.

To conclude, the main hypothesis is that the probability P(t) of a trip t being feasible depends strongly

on probability P(Cx) ≥ ρ, x = 1, . . . , 4. Thus, the probability P(s) of the solution s to be feasible is also

connected to P(t) for all the trips t ∈ s. As a consequence, computing a robust solution can be done by

maximizing the value ρ associated with its trips. Note that the ρ criterion is deterministic.

3.3 Trip evaluation

The f ′(x) function (trip evaluation() procedure) uses a binary search (Algorithm 1) to compute the largest

reliability level ρ such that a node list λ is feasible. This algorithm uses the linear time evaluation algorithm

from [9], initially introduced for the deterministic DARP to check the feasibility of a node list λ and which is

based on a conjunctive graph built with constraints (D1), (D2), (D3) and (D4). For the SDARP, a similar

graph built with constraints (D1′′), (D2′′), (D3′′) and (D4′′) is used. The Firat feasibility(λ, ρ) evaluation

takes a node list λ and a constant ρ as input. It returns true if there exists values for Xi satisfying all the

constraints with a probability P(Ci′) ≥ ρ, otherwise it returns false.

Checking a node list λ feasibility is a part of the evaluation algorithm (lines 2, 4, 10) but the real challenge

is to find the largest probability ρ ∈ [0.5, ρM ] such that λ is feasible. It is computed by a binary search.

It depends on λ and it is used to measure the trip robustness. The algorithm returns the existence of a
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Algorithm 1 Trip evaluation()
Input: λ: node list; ρM : maximal reliability; δ: numerical precision
Output: t: trip feasiblity; ρ ∈ [0.5, ρM ]: largest reliability; cost: trip cost
1: cost = compute cost(λ)
2: test = Firat feasibility(λ,ρM )
3: if test = false then
4: test = Firat feasibility(λ,0.5)
5: if test = true then
6: ρmax = ρM
7: ρmin = 0.5
8: while ρmax − ρmin > δ do
9: ρ = (ρmax + ρmin)/2
10: test = Firat feasibility(λ,ρ)
11: if test = true then
12: ρmin = ρ
13: else
14: ρmax = ρ
15: end if
16: end while
17: t = true; return {t, ρmin, cost}
18: else
19: t = false; return {t, 0.0, cost}
20: end if
21: else
22: t = true; return {t, ρM , cost}
23: end if

reliability level ρ such that λ is feasible (boolean t), the largest ρ such that λ is feasible and the cost of the

trip.

The solution evaluation (Algorithm 2) consists of evaluating all trips sequentially. The robustness ρ∗ of a

solution is then defined as the product of the value ρ for all the trips. A robust solution is assumed to have a

higher ρ∗ value and methods presented in the next section investigates solutions with high value ρ∗(s). Such

an approach complies with the hypothesis of Section 3.1. In practice, the loop in lines 1-7 stops as soon as

ft=false. In this case, the return values for ρ∗ and cost are meaningless.

Algorithm 2 Solution evaluation()
Input: s: solution
Output: f: solution feasiblity; ρ∗ ∈ [0.5, ρM ]: largest reliability; cost: trip cost
1: for all trip t ∈ s do
2: {ft,ρt,ct} = trip evaluation(t)
3: f = f ∧ ft
4: ρ∗ = ρ∗t
5: cost = cost + ct
6: end for
7: return {ft,ρt,ct}

4 ELS and NSGA-II for the SDARP

The Evolutionary Local Search (ELS) has been first proposed by [26] and has been applied to numerous

routing problem including the VRP by [15]. It basically extends the Iterated Local Search (ILS) defined

by [13]. The ELS we propose takes advantage of an indirect solution representation – an ordered list of pickup

nodes – and it relies on the ELS fully described in [2]. The second algorithm is a bi-objective population-based

optimization scheme based on the NSGA-II algorithm which computes successive generations of a population

divided into non-dominated fronts as designed by [5, 6].
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5 Numerical results

The experiments have been done on a PC with an Intel Core i7-3770 CPU 3.40 GHz with about 2529

MFlop/s according to the Linpack (http://www.roylongbottom.org.uk) and [8]. The benchmark uses the

20 Cordeau and Laporte’s instances which define the largest instances in the DARP literature. The solutions

computed by the approach are available online at http://www.isima.fr/~duhamel/SDARP/index.html.

5.1 Quality of hp(s, r) depending on r

For convenience, let us note hp(s, r) the average probability estimated after r replications on the solution s

with driver’s policy p and let us note hp(s, ω) one stochastic evaluation of s. Each replication depends on

the distribution law [7]. Depending on r, i.e. on the number of replications, hp(s, r) provides an estimation

of hp(s), i.e. the probability of a solution s to remain feasible with respect to the distribution law on travel

times and the driver’s policy p. The random variables on travel times are assumed to be independent and

the probability P(s) that solution s remains feasible is the product of the trip probability of being feasible,

i.e. P(s) =
∏
t∈s P(t).

The convergence of hp(t, r) towards the theoretical value hp(t) is illustrated on the second trip of the best

known solution for instance pr01 of [4]. This trip corresponds to the following sequence of nodes:

{0,9+,17+,9−,8+,20+,1+,17−,7+,7−,9+,20−,2+,1−,5+,13+,5−,2−,16+,4+,4−,13−,19+,23+,13−,23−,0}

The Figure 8 displays the evolution of hP1(t, r) with the number r of replications under P1 driver’s policy.

Namely, 10, 000 replications seem to be sufficient to obtain a high quality approximation. 5 runs are reported,

illustrating that the quality of hp(t, r) does not depend on the random generator seed.

Figure 8: Simulation on pr01, trip 2, with 10, 000 replications.

5.2 Robustness of the best known DARP solutions (Normal distribution)

The robustness evaluation we propose is applied to the best known solutions (BKS) of the 20 instances

introduced by [4] and Table 1 provides an estimation of the BKS using the 3 driver policies with the estimation

http://www.roylongbottom.org.uk
http://www.isima.fr/~duhamel/SDARP/index.html
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Table 1: Robustness for the best known solutions of [4] instances.

inst. c(BKS) ρ∗P1 hP1(BKS, r) ρ∗P2 hP2(BKS, r) ρ∗P3 hP3(BKS, r)

pr01 190.02 74.8% 86.4% 66.8% 25.9% 66.8% 50.0%
pr02 301.34 76.8% 85.4% 48.6% 28.4% 48.6% 72.6%
pr03 532.00 4.8% 0.1% 3.1% 0.0% 3.1% 0.0%
pr04 570.25 14.3% 0.3% 9.4% 0.0% 9.4% 0.1%
pr05 626.93 13.1% 0.7% 5.0% 0.0% 5.0% 0.7%
pr06 785.26 3.9% 0.0% 3.0% 0.0% 3.0% 0.0%
pr07 291.71 21.9% 14.7% 14.7% 0.3% 14.7% 7.9%
pr08 487.84 8.9% 0.2% 5.9% 0.0% 5.9% 0.2%
pr09 658.31 9.4% 0.4% 4.3% 0.0% 4.3% 0.3%
pr10 851.82 1.3% 0.0% 0.6% 0.0% 0.6% 0.0%
pr11 164.46 63.2% 61.0% 57.6% 36.1% 57.6% 69.0%
pr12 295.66 32.0% 5.8% 25.0% 0.2% 25.0% 3.7%
pr13 484.83 32.5% 16.5% 19.3% 0.8% 19.3% 6.2%
pr14 529.33 59.3% 64.6% 35.6% 9.2% 35.6% 27.8%
pr15 577.29 37.9% 72.0% 17.9% 1.9% 17.9% 25.1%
pr16 730.67 16.2% 11.1% 7.5% 0.2% 7.5% 3.4%
pr17 248.21 26.8% 1.6% 23.8% 0.3% 23.8% 0.9%
pr18 458.73 62.2% 72.9% 43.8% 17.0% 43.8% 54.4%
pr19 593.49 5.8% 0.0% 3.5% 0.0% 3.5% 0.1%
pr20 785.68 3.8% 0.0% 2.8% 0.0% 2.8% 0.1%

avg. 508.19 28.5% 24.7% 19.9% 6.0% 19.9% 16.1%

of hp(BKS, r) achieved with r = 10, 000 replications. For each instance, the total travel distance c(s) of the

BKS is provided with the value ρ∗p of the robustness criterion and the estimation hp(BKS, r) for each policy

p ∈ {P1, P2, P3}.

hP1(BKS, r) gives an average feasibility probability about 24.7% which is quite low, but significant

differences occur over the instances. For example, for the pr01 instance, the best known solution has a

feasibility probability about 86.4% while, for the instance pr08, the probability for the best know solution to

be feasible is less than 0.2%. Thus the former solution will remain feasible two thirds of the time, while the

latter will seldom be feasible. Similar remarks hold for policies P2 and P3 with respective average feasibility

probabilities 6.0% and 16.1%. Note that ρ∗P2 = ρ∗P3 in our context.

The correlation between the indirect criterion and the stochastic criterion can be stated as satisfactory.

For example, for the pr01 the BKS is one of the solutions with the highest feasibility probability (about 86%)

according to hP1(BKS, r) and this solution has one of the highest values of ρ∗P1 (about 74.8%). The average

gap between hP1(BKS, r) and ρ∗P1 is about 3.7%. Thus the correlation is satisfactory and the graphical

representation in Figure 9 of both ρ∗p and hp(BKS, r) confirms the global trend. Similar comments hold for

all the instances from [18]. The full set of results is available at: http://www.isima.fr/~duhamel/SDARP/

index.html.

5.3 SDARP with a Normal distribution

Tables 2 and 3 introduce the ELS results on the instances from [4, 18] respectively. The two criteria (total

travel distance and robustness criterion) are aggregated, the latter being prioritized, and optimized. For

each instance and each policy p, the total travel cost c(s) of the best found solution s, its relative gap to

the total travel cost of the BKS (gap), the value of the robustness estimator ρ∗p, the value of the estimation

hp = hp(s, r) and the CPU time in seconds are reported with r = 100, 000. Since the CPU time is identical

for al policies, it is only reported once.

From Table 2, the ELS is able to find highly robust solutions for most of the instances from [4]. It

provides a nearly 100% feasibility for all instances, and for all policies. Only solutions for the pr10 instance

with policies P2 and P3 seems to lack some robustness (63.3% and 96.2% feasibility probability respectively).

The values for the robustness criterion are correlated with the value of the estimation. At the same time,

the relative gap of the ELS solution increases on average by 13.19% for policy P1 and by 18.30% for policies

http://www.isima.fr/~duhamel/SDARP/index.html
http://www.isima.fr/~duhamel/SDARP/index.html
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Figure 9: Correlation between ρ∗p and hp(BKS, r) for the instances of [4].

Table 2: ELS results on [4] instances.

P1 policy P2 and P3 policies

inst. c(s) gap ρ∗P1 hP1 c(s) gap ρ∗
P2/P3

hP2 hP3 time

pr01 200.48 5.50% 100.0% 100.0% 202.98 6.82% 100.0% 100.0% 100.0% 0.25
pr02 307.11 1.92% 100.0% 100.0% 314.59 4.40% 100.0% 100.0% 100.0% 1.25
pr03 587.96 10.52% 100.0% 100.0% 643.53 20.96% 97.9% 96.1% 99.9% 2.30
pr04 643.75 12.89% 100.0% 100.0% 665.65 16.73% 99.5% 99.2% 100.0% 7.37
pr05 744.92 18.82% 100.0% 100.0% 767.45 22.41% 98.3% 97.3% 99.6% 12.07
pr06 979.78 24.77% 100.0% 100.0% 1109.04 41.23% 94.5% 91.2% 98.8% 21.92
pr07 306.69 5.13% 100.0% 100.0% 328.96 12.77% 100.0% 100.0% 100.0% 0.47
pr08 573.65 17.59% 100.0% 100.0% 592.72 21.50% 95.9% 93.4% 99.7% 2.68
pr09 774.53 17.65% 99.7% 100.0% 801.65 21.77% 95.4% 94.8% 99.4% 11.25
pr10 1049.23 23.18% 99.4% 99.5% 1085.67 27.45% 78.7% 63.3% 96.2% 21.33
pr11 168.81 2.64% 100.0% 100.0% 171.43 4.24% 100.0% 100.0% 100.0% 0.28
pr12 310.66 5.07% 100.0% 100.0% 324.75 9.84% 100.0% 100.0% 100.0% 1.37
pr13 527.10 8.72% 100.0% 100.0% 544.54 12.31% 100.0% 100.0% 100.0% 3.70
pr14 634.16 19.80% 100.0% 100.0% 630.64 19.14% 99.9% 99.9% 100.0% 10.20
pr15 634.08 9.84% 100.0% 100.0% 702.38 21.67% 100.0% 100.0% 100.0% 19.93
pr16 891.86 22.06% 100.0% 100.0% 882.28 20.75% 99.4% 99.4% 100.0% 32.32
pr17 266.83 7.50% 100.0% 100.0% 271.55 9.40% 100.0% 100.0% 100.0% 0.58
pr18 494.54 7.81% 100.0% 100.0% 560.83 22.26% 100.0% 100.0% 100.0% 4.32
pr19 699.70 17.89% 100.0% 100.0% 738.65 24.46% 98.5% 97.4% 99.6% 12.43
pr20 978.61 24.56% 100.0% 100.0% 989.00 25.88% 97.1% 95.5% 99.8% 31.45

avg. 588.72 13.19% 100.0% 100.0% 616.41 18.30% 97.8% 96.4% 99.7% 9.87

P2 and P3. Thus it is possible to obtain solutions which are far more robust than the BKS with a limited

increase on the cost (13.19% for policy P1 and 18.30% for policies P2 and P3).

The improvement on the robustness is also significant for the [18] set A instances, even if lower values

are obtained. The ELS provides solutions with an average feasibility probability of about 80% for policy

P1, 45% for policy P2 and 75% for policy P3. The variation in the robustness obtained over the instances

is also higher. This difference in the results from Table 2 may come from the stronger riding time limit

and the narrower pickup and delivery time windows in the [18] set A instances. Thus, the probability of a

realization ω to make a solution unfeasible is higher. One can also note the robustness is lower with policy

P2, which means P1 and P3 are better alternatives in this context.

5.4 Bi-objective SDARP with a Normal distribution

The two criteria (total travel distance and robustness) are addressed independently in the NSGA-II algorithm.
The performance of the algorithm is assessed with respect to each criterion. Thus, the solution of the Pareto
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Table 3: ELS results on [18] instances.

P1 policy P2 and P3 policies

inst. Opt c(s) gap ρ∗P1 hP1 c(s) gap ρ∗
P2/P3

hP2 hP3

a2-16 294.25 310.85 5.64% 59.1% 71.7% 305.32 3.76% 57.6% 44.4% 67.7%
a2-20 344.83 357.73 3.74% 76.5% 75.9% 361.75 4.91% 66.8% 53.5% 80.8%
a2-24 431.12 467.56 8.45% 72.0% 67.2% 463.88 7.60% 61.5% 23.9% 49.8%
a3-24 344.83 383.45 11.20% 93.0% 99.7% 391.39 13.50% 88.5% 87.8% 99.1%
a3-30 494.85 537.39 8.60% 50.9% 63.1% 525.89 6.27% 40.1% 4.1% 18.7%
a3-36 583.19 618.84 6.11% 69.7% 92.9% 630.97 8.19% 57.9% 67.6% 95.7%
a4-32 485.50 519.73 7.05% 79.1% 93.3% 518.30 6.76% 73.1% 63.8% 87.7%
a4-40 557.69 637.01 14.22% 92.8% 99.7% 651.52 16.82% 69.5% 55.8% 91.2%
a4-48 668.82 728.09 8.86% 67.4% 97.9% 752.59 12.52% 53.9% 33.8% 83.8%
a5-40 498.41 601.63 20.71% 96.6% 99.9% 603.24 21.03% 86.1% 81.4% 99.6%
a5-50 686.62 769.83 12.12% 84.2% 90.1% 741.23 7.95% 65.9% 54.6% 96.6%
a5-60 808.42 906.39 12.12% 41.6% 9.7% 890.61 10.17% 32.4% 0.1% 2.4%
a6-48 604.12 718.95 19.01% 97.1% 100.0% 698.84 15.68% 87.1% 83.5% 99.0%
a6-60 819.25 959.36 17.10% 56.8% 77.5% 917.37 11.98% 41.8% 13.2% 37.6%
a6-72 916.05 1024.69 11.86% 63.9% 55.1% 1051.81 14.82% 44.1% 20.0% 62.3%
a7-56 724.04 892.27 23.23% 83.5% 67.9% 894.21 23.50% 62.0% 64.6% 89.6%
a7-70 889.12 1091.01 22.71% 70.8% 82.6% 1030.98 15.95% 51.9% 38.6% 85.9%
a7-84 1033.37 1190.63 15.22% 67.1% 91.2% 1181.75 14.36% 47.5% 28.6% 83.8%
a8-64 747.46 896.71 19.97% 90.8% 78.5% 867.39 16.04% 78.5% 78.1% 98.0%
a8-80 945.73 1100.76 16.39% 71.9% 94.4% 1096.67 15.96% 57.0% 37.9% 93.7%
a8-96 1229.70 1396.82 13.59% 54.1% 74.1% 1398.94 13.76% 33.9% 14.5% 62.3%

avg. 671.77 767.13 13.23% 73.3% 80.1% 760.70 12.45% 59.86 45.2% 75.5%

front with the lowest total travel distance and the solution of the Pareto front with the highest robustness

are considered. They correspond respectively to the leftmost solution and the rightmost solution when the

Pareto front is displayed on the two criteria space. Table 4 presents the results for the [4] instances. For each

extreme solution (leftmost / rightmost) of the Pareto front, the total travel distance c(s), its relative gap to

the total travel distance of the BKS, the value of the ρ∗P1 robustness estimator and the evaluation hP1(s, r)

are reported. The time in seconds spent by NSGA-II is reported in the last column.

Table 4: NSGA-II results on [4] instances with policy P1.

Leftmost solution Rightmost solution

inst. c(BKS) c(s) gap ρ∗P1 hP1 c(s) gap ρ∗P1 hP1 time

pr01 190.02 190.02 0.00% 74.8% 87.3% 197.42 3.89% 100.0% 100.0% 14.95
pr02 301.34 311.51 3.37% 97.7% 99.9% 317.95 5.51% 100.0% 100.0% 74.75
pr03 532.00 556.60 4.62% 50.7% 71.0% 622.37 16.99% 100.0% 100.0% 137.54
pr04 570.25 620.31 8.78% 69.8% 62.2% 641.66 12.52% 100.0% 100.0% 440.73
pr05 626.93 675.98 7.82% 30.7% 16.1% 691.59 10.31% 100.0% 100.0% 721.79
pr06 785.26 833.78 6.18% 7.0% 0.3% 857.31 9.17% 100.0% 100.0% 1310.82
pr07 291.71 297.36 1.94% 72.2% 75.5% 304.29 4.31% 100.0% 100.0% 28.11
pr08 487.84 505.43 3.61% 33.5% 37.3% 546.28 11.98% 100.0% 100.0% 160.26
pr09 658.31 717.53 9.00% 45.0% 61.9% 758.78 15.26% 100.0% 100.0% 672.75
pr10 851.82 918.80 7.86% 12.7% 4.4% 1005.33 18.02% 100.0% 100.0% 1275.53
pr11 164.46 168.51 2.46% 72.1% 68.9% 171.44 4.24% 100.0% 100.0% 16.74
pr12 295.66 304.18 2.88% 19.0% 0.5% 312.65 5.75% 100.0% 100.0% 81.93
pr13 484.83 520.95 7.45% 93.0% 96.8% 531.94 9.72% 100.0% 100.0% 221.26
pr14 529.33 574.28 8.49% 45.9% 34.7% 584.81 10.48% 100.0% 100.0% 609.96
pr15 577.29 589.36 2.09% 96.7% 48.4% 601.13 4.13% 100.0% 100.0% 1191.81
pr16 730.67 781.06 6.90% 30.1% 16.4% 803.26 9.94% 100.0% 100.0% 1932.74
pr17 248.21 262.41 5.72% 21.8% 1.4% 273.73 10.28% 100.0% 100.0% 34.68
pr18 458.73 482.44 5.17% 95.9% 100.0% 514.56 12.17% 100.0% 100.0% 258.34
pr19 593.49 642.90 8.32% 32.9% 51.9% 677.33 14.13% 100.0% 100.0% 743.31
pr20 785.68 860.79 9.56% 22.9% 2.5% 935.25 19.04% 100.0% 100.0% 1880.71

avg. 508.19 541.06 5.65% 51.5% 46.7% 567.45 10.39% 100.0% 100.0% 590.44

On average, the cost of the leftmost solution is better than the cost of the solution computed by the ELS

(5.65% vs. 13.19%). At the same time, its robustness is worse (47.7% vs. 100%). This result comes from

the fact that ELS optimizes the robustness first, while the leftmost solution is the one with the best solution



14 G–2016–120 Les Cahiers du GERAD

considering the total travel cost in the Pareto front. On the other hand, the rightmost solution reaches the

same average level of robustness (100%) than ELS solution, but its total travel cost is lower (10.39% on

average against 13.19%). Thus NSGA-II seems to be a valuable methods to provide quality solutions. In

addition it competes with mono-criteria approaches, even if its computational time is higher.

5.5 SDARP with a Gamma distribution

The uncertainty in travel time can be modelled using other distributions with no consequence on the proposed

approach nor the design of the algorithms. Namely, any distribution can be used in our framework, provided

first it is defined on R+ and second any value X such that P(Tij ≤ X) = Y can be computed. For instance,

lately [23, 24] introduced shifted gamma distribution with shape parameter n and scale parameter λ. In order

to be consistent with the normal distribution used in the main part of the work, λ is set to obtain the same

standard deviation, i.e. σij = tij/10. Since the standard deviation and the expected value are connected in

the gamma distribution (E(Γ(n, λ)) = σij
√
n), a shift has to be done to obtain tij as expected value. Thus

the shift is set to tij − σij
√
n.

The shifted gamma distribution is a parametric law and the shape parameter n defines the number of

exponential distributions used in the composition. Thus, if n ∈ N, the gamma distribution is an Erlang

distribution. For n = 1, the gamma distribution is no more than an exponential distribution with rate

parameter 1λ. For large enough n (usually n ≥ 10) the gamma distribution converges towards a Gaussian

distribution with expected value nλ and standard deviation λ
√
n.

Table 5 reports the ELS results on the [4] instances, with n ∈ {4, 16}. For each instance and each

parameter n, the total travel distance c(s), the relative gap to the BKS, the estimation ρ∗P1 and the estimation

by simulation hP1(s, r) are reported. The P1 policy is used.

Table 5: ELS results on [4] instances for the policy P1 with 2 gamma distributions.

(G, 4, n) (G, 16, n)

inst. c(s) gap ρ∗P1 hP1 c(s) gap ρ∗P1 hP1

pr01 210.94 11.01% 97.9% 99.9% 210.48 10.77% 99.0% 100.0%
pr02 317.00 5.20% 96.0% 100.0% 324.64 7.73% 98.4% 100.0%
pr03 628.59 18.16% 76.3% 99.7% 645.29 21.29% 81.9% 99.5%
pr04 663.68 16.38% 82.2% 99.3% 679.67 19.19% 86.3% 98.3%
pr05 752.20 19.98% 75.6% 99.8% 745.58 18.93% 79.1% 99.8%
pr06 993.02 26.46% 63.9% 99.1% 918.08 16.91% 66.9% 99.6%
pr07 320.29 9.80% 95.2% 100.0% 322.17 10.44% 97.4% 100.0%
pr08 607.81 24.59% 69.6% 99.3% 602.77 23.56% 71.8% 99.6%
pr09 790.74 20.12% 50.9% 93.8% 798.34 21.27% 52.8% 100.0%
pr10 1052.57 23.57% 33.0% 76.6% 1017.61 19.46% 33.2% 92.6%
pr11 178.97 8.82% 100.0% 100.0% 175.91 6.96% 100.0% 100.0%
pr12 334.41 13.10% 99.9% 100.0% 341.08 15.36% 100.0% 100.0%
pr13 605.94 24.98% 97.9% 100.0% 561.61 15.84% 99.1% 100.0%
pr14 638.52 20.63% 94.2% 100.0% 644.46 21.75% 97.2% 100.0%
pr15 701.94 21.59% 94.2% 99.8% 682.42 18.21% 98.4% 100.0%
pr16 934.23 27.86% 82.7% 99.9% 891.59 22.02% 86.7% 100.0%
pr17 294.83 18.78% 99.5% 100.0% 288.76 16.34% 100.0% 100.0%
pr18 530.68 15.68% 94.0% 100.0% 564.12 22.97% 95.9% 100.0%
pr19 712.33 20.02% 85.8% 99.9% 706.43 19.03% 84.8% 100.0%
pr20 972.21 23.74% 64.9% 99.8% 928.72 18.21% 58.2% 98.5%

avg. 612.05 18.52% 82.7% 98.4% 602.49 17.31% 84.4% 99.4%

With n = 16, the shifted gamma distribution is close to the Normal distribution and the reported results

are close to the ones previously introduced in Table 2. The robustness is slightly better with the Normal

distribution but the difference is marginal. For small n values, for example n = 4, the shifted gamma

distribution has a larger standard deviation. As a consequence, for n = 1, the probability of a solution being

feasible is around 92.3% which is less than with n = 4 or n = 16.
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6 Conclusions

The objective of this work is to consider the DARP with uncertainty on the transportation time to ad-

dress more accurately real-life situations. The main contribution consists in defining an indirect criterion

of robustness in order to avoid time-consuming robustness evaluations during optimization. The theoretical

contribution allows us to define a generic approach for computing robust solutions of DARP with a wide

scope of distributions. The proposed robustness criterion is optimized into both an ELS based framework

and a bi-objective method based on NSGA-II algorithm.

The numerical experiments are done on the classical DARP instances, first considering Normal distribu-

tions and second Gamma distributions. They lead to the following results: (i) the robustness criterion we

defined is correlated to the robustness; (ii) the best known solution of the deterministic DARP have poor

probability to be feasible; (iii) much more robust solutions can be obtained with minimal consequences on

the cost.

The framework is generic enough to be able to handle a large number of distribution laws, including

but not limited to the normal and the shifted gamma distributions. Besides, with no modification, it could

handle correlated random variables to address predictable congestion due to commuting. It could also handle

uncertainty in service time as well. Our work is now directed into extensions of DARP with heterogeneous

fleets.
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