
Les Cahiers du GERAD ISSN: 0711–2440

Hyper-heuristic approaches for solving
stochastic optimization formulations
of mineral value chains

A. Lamghari,
R. Dimitrakopoulos

G–2016–105

November 2016

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2016-105) afin de mettre à jour vos données
de référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2016-105) to update your reference data, if it has
been published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2016
– Bibliothèque et Archives Canada, 2016

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2016
– Library and Archives Canada, 2016

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-105
https://www.gerad.ca/fr/papers/G-2016-105
https://www.gerad.ca/en/papers/G-2016-105
https://www.gerad.ca/en/papers/G-2016-105

Hyper-heuristic approaches for
solving stochastic optimization
formulations of mineral value
chains

Amina Lamghari a

Roussos Dimitrakopoulos a

a GERAD & COSMO Stochastic Mine Planning Labo-
ratory, Department of Mining and Materials Engineering,
McGill University, FDA Building, 3450 University Street,
Montreal, Quebec, H3A 0E8, Canada

amina.lamghari@mcgill.ca

roussos.dimitrakopoulos@mcgill.ca

November 2016

Les Cahiers du GERAD

G–2016–105

Copyright c© 2016 GERAD

ii G–2016–105 Les Cahiers du GERAD

Abstract: This paper presents three hyper-heuristic approaches for the stochastic open-pit mine production
scheduling problem with one processing stream (SMPS) and one of its generalizations, SMPS with multiple
processing streams and stockpiles (SMPS+), which aim to optimize the associated mineral value chains.
Two of the proposed hyper-heuristic approaches are refined versions of approaches that have been previously
proposed in the literature and applied to solve other optimization problems, while the third one is a novel
approach that uses some of the ideas of the first two but also includes new features aimed to overcome their
weaknesses. The three approaches are simple, fast, and general. Their performance is assessed by comparing
them to each other and to other search methodologies from the literature on benchmark instances of various
sizes and characteristics. This comparison indicates that the new proposed hyper-heuristic outperforms the
two others, providing results that are comparable to or improve on the results obtained by the state-of-the-art
problem-specific methods.

Keywords: Hyper-heuristics, mineral value chains, strategic planning, uncertainty, local search.

A mineral value chain is an integrated business that extracts materials from open-pit mines and/or underground mines,

treats the extracted materials using a set of processing facilities linked via different handling methods, and generates a

set of products that are sold to customers or on the spot market (Goodfellow and Dimitrakopoulos, 2014). When

optimizing a mineral value chain, the goal is to generate a long-term production plan that maximizes the net present

value (NPV) of the chain while meeting various physical and operational requirements at the extraction and processing

levels. These strategic level decisions affect the subsequent tactical decisions and are a key factor in determining the

profitability and efficiency of a mining operation, which involves huge capital investments.

Every mining operation has its own characteristics that may vary widely from one operation to another. The sources

of supply might be open-pit mines, underground mines, or both. The processing facilities and the processing paths

might also be different, as they depend on the main minerals in the mines, on the different products produced in the

various processing streams, on the commodity produced, and on the geographical location. Hence, there are different

mineral value chains, and the type of a mineral value chain depends on its components. The simplest and most

commonly studied one in the literature consists of one open-pit mine, one processing facility, and one waste dump.

The associated optimization problem is often referred to as the open-pit mine production scheduling problem (MPS).

A planning horizon of 𝑇 periods is considered. The mine is discretized into a set of 𝑁 blocks, each of which represents

a volume of material that can be mined. With each block 𝑖 are associated a weight 𝑤𝑖 , a metal content 𝑚𝑖, and a set of

predecessors 𝑃(𝑖) representing the set of blocks that have to be mined in order to have access to 𝑖. The MPS consists

of designing a mining sequence such that: (i) every block is mined at most once; (ii) every block is mined after its

predecessors; (iii) the total amount of material mined in period 𝑡 does not exceed 𝑊𝑡, the extraction capacity; (iv) the

total amount of ore processed in period 𝑡 does not exceed 𝛩𝑡 , the processing capacity; and (v) the NPV of the mining

operation is maximized. MPS is modelled as a linear integer program. It generalizes the constrained maximum closure

problem and is therefore NP-hard (Hochbaum and Chen, 2000; Bienstock and Zuckerberg, 2010). This makes solving

large instances of practical interest computationally challenging and beyond the scope of exact methods and general-

purpose solvers.1 This difficulty is exacerbated by the need to incorporate additional operational constraints. For

example, lower bounds on mining, processing, and metal production are often required to ensure that the resources are

utilized evenly and that the demand is satisfied at each period. While this is useful and closer to the problem

encountered in practical settings, the introduction of such constraints in the MPS formulation makes the problem harder

to solve (Cullenbine et al., 2011). Another realistic and important aspect that further complicates the solution process

is metal uncertainty. Metal uncertainty, also referred to as geological or reserve uncertainty, stems from the fact that

the metal content of the blocks is not known at the time decisions are made, but it is inferred from limited drilling data.

The benefits of integrating metal uncertainty in the optimization process are well-documented in the literature. By

taking into account the effects of metal uncertainty on present decision-making, not only is risk in meeting production

targets reduced, but also major improvements in NPV in the order of 10 to 30% are reached (Ravenscroft, 1992; Dowd,

1994; Dimitrakopoulos et al., 2002; Menabde et al., 2007; Albor and Dimitrakopoulos, 2010; Dimitrakopoulos, 2011;

Asad and Dimitrakopoulos, 2013; Marcotte and Caron, 2013; Fricke et al., 2014; Lamghari and Dimitrakopoulos,

2016b).

Over the past years, several exact and approximate methods have been proposed for optimizing mineral value

chains. Most of the literature deals with the simplest case described above and referred to as MPS, but recent years

have seen the development of solution methods for more complex mineral value chains including multiple mines,

multiple processing streams, and accounting for metal uncertainty. A branch and cut algorithm has been developed by

Caccetta and Hill (2003) for the deterministic MPS. Bienstock and Zuckerberg (2010) introduced an efficient algorithm

to solve the linear relaxation of the problem. Other exact methods that exploit the structure of the problem were

proposed by Boland et al. (2009) and Bley et al. (2010). Heuristic and metaheuristic approaches were introduced,

among others, by Ferland et al. (2007) and Cullenbine et al. (2011), while hybrid methods were proposed by Moreno

et al. (2010), Chicoisne et al. (2012), and Lamghari et al. (2015). The stochasic version of MPS that accounts for metal

uncertainty (SMPS) has been tackled mainly using metaheuristics. Godoy (2002) and Albor and Dimitrakopoulos

(2009) proposed simulated annealing algorithms. A tabu search algorithm and a variable neighborhood descent

algorithm have been developed by Lamghari and Dimitrakopoulos (2012) and Lamghari et al. (2014), respectively.

1 In practical settings, a medium-size open-pit mine consists of tens thousands of blocks, and the resulting optimization problem has hundreds of

thousands binary variables. This is far more than any of the existing exact methods can handle in a reasonable amount of time.

More complex stochastic mineral value chains involving multiple destinations for the extracted material have been

studied by Ramazan and Dimitrakopoulos (2013), Goodfellow and Dimitrakopoulos (2014), Behrang et al. (2014),

Lamghari and Dimitrakopoulos (2016a), and Montiel and Dimitrakopoulos (2015). Mineral value chains incorporating

both open-pit and underground operations have been considered by Montiel et al. (2016). Hoerger et al. (1999); Chanda

(2007); Whittle (2007, 2009); and Kawahata et al. (2015) also considered mineral value chains consisting of multiple

mines, but their studies are restricted to deterministic environments; i.e., they do not account for metal uncertainty. For

a general overview of mine planning optimization problems, see Dimitrakopoulos (2011).

To the best of our knowledge, all the approaches proposed in the literature to optimize mineral value chains either

use aggregation techniques to reduce the size of the problem so that the resulting model is of tractable size and can be

solved using exact methods, or are based on (meta)heuristics, or combine (meta)heuristics and exact methods. Each of

these approaches presents some weaknesses. Aggregation can severely compromise the validity and usefulness of the

solution (Bienstock and Zuckerberg, 2010). It causes loss of profitability and might even lead to infeasible solutions

(Boland et al., 2009). Approaches based on (meta)heuristics have been proven to be successful for solving large-scale

instances without resorting to aggregation, but they have two major flaws. First, they might involve a relatively large

number of parameters and/or algorithm choices, and they generally do not provide guidance on how to make such

choices. Therefore, it is not always clear a priori which choices will perform better in a particular situation, meaning

that tuning might be required if dealing with new instances of the same problem. Second, they are problem-specific

methods. Problem-specific methods can often obtain excellent results for the problem they have been designed for, but

they are not readily applicable to other problems or other variants of the same problem. They have to be adapted to the

new problem, and if so, they might not perform as well as on the original problem. An illustration of such a situation

can be found in the study in Lamghari and Dimitrakopoulos (2016a), which indicates that the tabu search metaheuristic

developed in Lamghari and Dimitrakopoulos (2012) to solve the SMPS with one processing stream worked well on

that particular problem but exhibits a poorer performance on the variant considering multiple destinations for the mined

material, including stockpiles (SMPS+). Some approaches that combine (meta)heuristics and exact methods are also

limited by the same weakness; that is, they are tailored to one specific case. For example, the algorithm proposed by

Moreno et al. (2010) is only applicable to the variant of the MPS with a single resource constraint per period and for

which such a constraint is an upper bound.

As is evident from the above discussion, there is a need for solution approaches that are able to tackle large-scale

instances without resorting to aggregation, that are self-managed, and that are more general than currently existing

methodologies. The latter feature is particularly important since, as mentioned earlier, the components of a mineral

value chain vary from one mining operation to another. A general algorithmic framework that is re-usable without

major structural modifications is thus more appropriate than a problem-specific approach that must be re-adapted (if

this is possible) to each new mineral value chain tackled. In response to this need, this paper proposes the use of hyper-

heuristic approaches. Operating at a level of abstraction above that of a metaheuristic, a hyper-heuristic is an emergent

search methodology that seeks to automate the process of selecting and combining simpler heuristics or of generating

new heuristics from components of existing heuristics in order to solve hard computational search problems (Burke

et al., 2003a; Ross, 2005; Burke et al., 2013). It can be seen as an algorithm that tries to find an appropriate solution

method at a given decision point rather than a solution. The ideas behind hyper-heuristics date back to the 1960’s

(Fisher and Thompson, 1963), but the term hyper-heuristic was used only in the late 1990’s. It was first used in the

context of automated theorem proving to describe a protocol that combines different Artificial Intelligence methods

(Denzinger et al., 1997), then independently in the context of combinatorial optimization to describe a high-level

heuristic to choose lower-level heuristics using only limited problem-specific information (Cowling et al., 2001). Over

the last decade, many papers presenting successful applications of hyper-heuristics to various difficult combinatorial

problems have appeared in the literature, including hyper-heuristics for personal scheduling, sports scheduling,

educational timetabling, space allocation, cutting and packing, and vehicle routing problems. For a recent and

comprehensive survey of the literature, see Burke et al. (2013).

There has been no work investigating hyper-heuristics to solve mine planning optimization problems, and the

objective of this paper is to propose such a work. There are two main categories of hyper-heuristics: heuristic selection,

which are methodologies for choosing existing heuristics, and heuristic generation which are methodologies for

creating new heuristics from a set of components of other existing heuristics (Burke et al., 2010). The three hyper-

heuristic approaches proposed in this paper fall under the first category. More specifically, they use a set of simple

perturbative low-level heuristics to improve a candidate solution. The decision of which low-level heuristic should be

applied at a given step of the search process relies on a score-based learning mechanism; that is, a score is associated

with each heuristic reflecting its past performance, and the heuristics are selected based on these scores. The scores

are updated periodically, and the process terminates when a pre-specified stopping criterion is met. While this general

framework is similar in the three hyper-heuristic approaches proposed in this paper, the score update rules and the

heuristic selection strategy are different. Two approaches are refined versions of ones previously proposed in the

literature (Burke et al., 2003b; Drake et al., 2012), while the third one is a novel approach that uses some of the ideas

of the first two but also includes new features aimed to overcome their weaknesses. The generality of the three proposed

hyper-heuristics is demonstrated by applying them to various instances of two types of mineral value chains having

different constraints and problem characteristics. Their performance is assessed by comparing them to each other and

to other search methodologies from the literature. This comparison indicates that the third hyper-heuristic outperforms

the two others, providing results that are comparable to or improve on the results obtained by the state-of-the-art

problem-specific methods.

In the next section, a description of the two mineral value chains considered in this paper is given. The proposed

hyper-heuristics are described in Section 3. Numerical results are reported in Section 4. Section 5 provides conclusions

and directions for future research.

As stated in Section 1, there are different types of mineral value chains depending on their components. The two that

are considered in this paper are described in the following sections.

 𝑺𝑴𝑷𝑺

This mineral value chain consists of one open-pit mine from which blocks are extracted,2 one processing facility where

extracted ore blocks are treated to recover the metal they contain,3 and one waste dump where extracted blocks that

cannot be processed profitably are disposed.4 Although not profitable, low-grade blocks have to be extracted to either

have access to higher-grade blocks or ensure safe wall slopes for the pit. The metal content of any given block, which

determines whether the block is an ore block to be processed or a waste block to be discarded, is not known prior to

the extraction. What is available is a number of equiprobable scenarios, each of which provides possible values of the

blocks’ metal content given the geological data and the information obtained from drilling. To generate the scenarios,

geostatistical techniques of conditional simulation are used. Those can be seen as complex Monte Carlo simulation

frameworks able to reproduce all available data and information, as well as spatial statistics of the data (Goovaerts,

1997; Chiles and Delfiner, 2012; Rossi and Deutsch, 2014; Maleki and Emery, 2015; Horta and Soares, 2010; Boucher

and Dimitrakopoulos, 2009).

The optimization problem associated with the mineral value chain described above, referred to as SMPS in the rest

of the paper, concerns the design of a mining sequence over a discrete finite planning horizon (the life-of-the-mine);

that is, deciding which blocks should be extracted at each period of the life-of-the-mine. In doing so, various constraints

must be satisfied. Logical and physical restrictions impose that each block can be extracted at most once, after all its

predecessors have been extracted. Operational restrictions require that, at each period of the life-of-the-mine, the total

amount of material extracted (ore and waste), the total amount of ore processed, and the total amount of metal produced

should lie between specific lower and upper bounds. The extraction and processing operations incur costs, while the

metal recovered from processing is sold and generates revenue. All cost and revenue components are future cash-flows

and thus must be discounted to the present, so feasible solutions are typically evaluated by their net present value

(NPV) to select the one that provides the highest value. As mentioned earlier, extraction decisions are to be made prior

to knowing the metal content of the blocks, and the latter affects: i) the amount of ore available for processing at each

period; ii) the amount of metal produced from processing at each period; and iii) the NPV. Thus, according to the

particular metal scenario realized, not only might the NPV shift upward or downward, but also ore and metal

production targets might fail to be satisfied in some or all periods (exceed the upper bound or fall under the lower

bound). Some recourse actions are available to adapt to the situation at hand, but they are subject to extra costs. For

example, if an excess in ore production occurs, extra processing capacity is required and an additional cost is incurred.

2 Recall that the mine is discretized into a set of blocks, each of which represents a volume of material that can be mined.

3 This process incurs a unit cost, so a block is processed only if the revenue from the metal recovered pays for the processing and selling costs. Such
a block is referred to as an ore block.

4 Low-grade blocks, also referred to as waste blocks.

Clearly, for better-informed decision-making, the aforementioned effects of uncertainty must be taken into account.

Because initially one has to decide on which blocks to extract, but only later, when the metal uncertainty is disclosed,

does one have to decide how best to deal with the excess and shortage in ore and metal (recourse decisions), the

problem is formulated as a two-stage stochastic programming model (Birge and Louveaux, 2011), where the overall

objective is to maximize the expected net present value of the mining operation and to minimize the future expected

recourse costs over the uncertain metal scenarios. This model is described in detail in Lamghari and Dimitrakopoulos

(2012) and is briefly recalled in Appendix A.

 𝑺𝑴𝑷𝑺 +

Unlike the mineral value chain described in the previous section that consists of one processor, this mineral value chain

consists of multiple processors and stockpiles. The stockpiles are used to absorb the excess of ore such that when such

a situation occurs, some ore is not immediately processed in the period it is mined in but rather sent to the stockpiles

from which it is reclaimed in periods where there is spare capacity. Hence, in each period, an extracted block is sent

either to one of the processors, or to one of the stockpiles, or to the waste dump. If blocks are sent to the stockpile, unit

transportation and handling costs are incurred. Costs are also incurred when reclaiming material from the stockpiles.

Thus, an optimal solution maximizes the NPV and indicates the set of blocks that should be extracted in each period,

the destination of these blocks, and the amount of material to take from the stockpiles in each period to feed the

processors. That is, compared to the optimization problem described in the previous section, this problem incorporates

the material flow aspect in addition to the mining sequence design.

In the rest of the paper, we will refer to the optimization problem associated with this particular mineral value chain

as SMPS+. SMPS+ can also be formulated as a two-stage stochastic program. The first-stage consists of designing the

mining sequence, and the second-stage consists of processing and stockpiling (i.e.; material flow decisions). The

second stage decisions are made based on the first-stage decisions (i.e, the mining sequence) and on the realized metal

scenario. A detailed description of the mathematical model is available in Lamghari and Dimitrakopoulos (2016a), and

an outline of it is provided in Appendix B.

As mentioned in Section 1, the three hyper-heuristic solution approaches proposed in this paper fall under the category

of heuristic selection (Burke et al., 2010); that is, they are methodologies for choosing existing heuristics. Burke et al.

(2010) further categorize hyper-heuristics according to the nature of the heuristic search space (constructive heuristics

versus perturbation heuristics) and the source of feedback during learning (online learning, offline learning, and no

learning). With respect to this classification, the three proposed approaches can be seen as approaches based on

perturbation low-level heuristics with online learning.

The general framework can be summarized as follows: The algorithm starts by generating an initial solution

(a random feasible solution in this paper), and then tries to iteratively improve it using different local search heuristics

(low-level heuristics). These heuristics are described in Section 3.3. To determine the appropriate heuristic to apply at

a given iteration, the algorithm relies on a score-based learning mechanism. This means that a periodically updated

score 𝑆(ℎ𝑗) is assigned to each heuristic ℎ𝑗 to measure how well ℎ𝑗 has performed during the search, and the heuristics

are selected based on these scores. Different strategies for the heuristic selection process can be used, and each leads

to a different hyper-heuristic. The strategies proposed in this paper are described in detail in Sections 3.1 and 3.2. The

selected heuristic is applied to the current solution once to obtain a new solution. Another decision that has to be made

at this point is whether or not to accept this new solution. In this paper, the new solution is always accepted,

independently of its quality. This means that this new solution becomes the new current solution. It also replaces the

incumbent solution if it has a better objective value. This procedure is iterated until the stopping criterion is met. In

this paper, the procedure terminates when a specified number of iterations, Υ𝑚𝑎𝑥 , has elapsed.

This section describes two previously developed hyper-heuristics that have been refined to improve their performance.

The first hyper-heuristic, henceforth referred to as HH1, was proposed by Burke et al. (2003b). To guide the heuristic

selection process, HH1 uses principles of reinforcement learning and tabu search metaheuristic. Let 𝐻 be the number

of low-level heuristics. Initially, each heuristic has a score equal to 0. As the search progresses, the scores increase and

decrease within the interval [0, 𝐻], and the heuristics are selected according to the updated scores. Not all heuristics

are available for selection at a given iteration. A dynamic tabu list of heuristics is maintained to temporarily exclude

some of them. Details of a typical iteration are as follows: The hyper-heuristic selects the non tabu low-level heuristic

having the highest score. It applies it once and then compares the value of the current solution to the value of the new

solution. If the new solution is better than the current solution, the heuristic is rewarded by incrementing its score by

one. If the new solution and the current solution have the same value, the heuristic is punished by decrementing its

score by one and making it tabu. Finally, if the new solution is worse than the current solution, the hyper-heuristic

proceeds as in the previous case except that the tabu list is first emptied before adding the heuristic.

Two possible implementations of the hyper-heuristic HH1 described above were considered. In one the same

strategy proposed in Burke et al. (2003b) to update the tabu list was used; that is, heuristics are included in the tabu

list on a first-in-first-out basis, and the tabu list is emptied whenever a solution worse than the current one is obtained.

The authors justify emptying the tabu list by claiming that there is no point in keeping a heuristic tabu once the current

solution has been modified. However, there is a potential drawback to this strategy: The tabu status is revoked too

soon, which might lead to choosing a relatively poor heuristic too often, thereby missing the opportunity to apply other

better performing heuristics. To clarify, since the heuristics are rewarded the same way, independently of the magnitude

of improvement they can achieve, a heuristic that is able to slightly improve the solution but also deteriorates it

occasionally can gain large rewards. It might have the highest score and making it non tabu as soon as one single other

heuristic has also been found deteriorating leads to using the same heuristic again and again (cycling behavior). This

implies that the other heuristics, which might be better performing and more appropriate at the current decision point,

have little or no chance to be selected. In the second implementation of HH1, this drawback is overcome as follows:

Whenever a heuristic is not able to improve the current solution, it is made tabu. The tabu tenure (𝛾) is chosen randomly

within a specified interval [Γ𝑚𝑖𝑛 , Γ𝑚𝑎𝑥], and the tabu list is emptied only if all heuristics are tabu. Moreover, for the

first 𝐻 iterations of the algorithm (𝐻 being the number of low-level heuristics), heuristics are not selected based on

their scores and their tabu status but rather randomly, making sure that each heuristic is selected only once. This refined

version of HH1 was found to obtain better results than the original version. We thus report in Section 4 only results

obtained with it. Algorithm 1 shows the pseudocode of the refined version of HH1.

Algorithm 1 Refined version of HH1

The second hyper-heuristic considered in this paper, henceforth referred to as HH2, has been proposed by Drake et al.

(2012). It extends the hyper-heuristic developed in Cowling et al. (2001) and differs from HH1 in that i) it does not

incorporate any mechanism at the high level to prevent choosing heuristics that did not perform well recently; and ii)

it uses a more complex score update scheme. To be more specific, rather than incrementing and decrementing the score

based on the heuristic’s ability to improve the solution as HH1 does, HH2 calculates the scores as a weighted sum of

the three following measures:

 The first measure, 𝑓1, keeps track of the performance of the heuristics. It accounts for the improvement

that each heuristic has achieved so far as well as the time it has required. Following the same notation as

in Drake et al. (2012), let 𝐼𝑛(ℎ𝑗) be the change in the objective function value obtained the 𝑛𝑡ℎ last time

ℎ𝑗 was called (applied), and let 𝑇𝑛(ℎ𝑗) be the time required. Denote by 𝜙 ∈]0,1[a weight adjustment

parameter, defining the importance given to recent performance. The value of 𝑓1(ℎ𝑗) is computed using

the following formula:

𝑓1(ℎ𝑗) =∑𝜙𝑛−1
𝐼𝑛(ℎ𝑗)

𝑇𝑛(ℎ𝑗)𝑛

 (1)

 The second measure, 𝑓2, seeks to capture any pairwise dependencies between heuristics. Whenever ℎ𝑗 is

called immediately after ℎ𝑘, the value of 𝑓2(ℎ𝑘 , ℎ𝑗) is updated as follows:

𝑓2(ℎ𝑘 , ℎ𝑗) =∑𝜙𝑛−1
𝐼𝑛(ℎ𝑘 , ℎ𝑗)

𝑇𝑛(ℎ𝑘 , ℎ𝑗)𝑛

 (2)

where, 𝜙 is as defined previously, and 𝐼𝑛(ℎ𝑘 , ℎ𝑗) and 𝑇𝑛(ℎ𝑘, ℎ𝑗) are respectively the change in the

objective function value and the time required by heuristic ℎ𝑗 at the 𝑛𝑡ℎ last call following a call to ℎ𝑘.

 The last measure, 𝑓3, accounts for the time elapsed since each heuristic was last selected. If we denote this

time by 𝜏(ℎ𝑗), then:

𝑓3(ℎ𝑗) = 𝜏(ℎ𝑗) (3)

The score associated with heuristic ℎ𝑗 is a weighted sum of the three measures (ℎ𝑘 being the heuristic called

immediately before ℎ𝑗):

𝑆(ℎ𝑗) = 𝜙𝑓1(ℎ𝑗) + 𝜙𝑓2(ℎ𝑘, ℎ𝑗) + 𝛿𝑓3(ℎ𝑗). (4)

Note that the purpose of using measures 𝑓1 and 𝑓2 is to intensify the search by favoring heuristics that have shown

good performance, while measure 𝑓3 aims to give all heuristics a chance to be selected, thus providing an element of

diversification. The weights 𝜙 and 𝛿 are parameters in the interval]0,1[used to provide a balance between

intensification and diversification. They are dynamically adjusted during the search process based on reinforcement

learning principles. This is done as follows: Once the selected heuristic has been applied, the new solution is compared

to the current solution. If it is better, then 𝜙 is rewarded by increasing its value to 𝜙𝑚𝑎𝑥, a maximum value close to the

upper bound 1, while 𝛿 is decreased to 𝛿𝑚𝑖𝑛, a minimum value close to the lower bound 0, thus promoting

intensification but reducing diversification. Otherwise, the value of 𝜙 is decreased by a linear factor 𝜅 and 𝛿 is

increased by the same factor to gradually favor diversification over intensification. In Drake et al. (2012), the authors

used the values 0.99, 0.01, and 0.01 for the parameters 𝜙𝑚𝑎𝑥, 𝛿𝑚𝑖𝑛, and 𝜅, respectively. In the numerical results

presented in Section 4, we used the values 0.9, 0.1, and 0.1, as preliminary tests showed that, for the problems addressed

in this paper, these values provide better results than the values used in Drake et al. (2012).

A particularity of the problems addressed in this paper is that their objective functions take very large values in the

order of hundreds of millions. Preliminary tests showed that, in general, the change in the objective function resulting

from applying a given heuristic is in the order of tens of thousands, and that this change is obtained in a fraction of a

second. Consequently, in Equation (4), the values of the intensification components 𝑓1 and 𝑓2 have an order of

magnitude much larger than that of the diversification component, 𝑓3. The latter component is dominated by the first

two and thus becomes obsolete when calculating the scores. To overcome this weakness, we made the two following

refinements. First, as in the refined version of HH1, in a first stage of the algorithm, a chance is given to all heuristics

to improve the solution; that is, the heuristics are selected randomly, making sure that each heuristic is selected only

once, and the values of 𝑓1, 𝑓2, and 𝑓3 are updated accordingly. Afterwards, heuristic selection is performed based on

the scores, which are computed using Equation (4), but 𝑓1, 𝑓2, and 𝑓3 are first normalised to a value in the interval

[1,10] before using them in Equation (4). This version of the hyper-heuristic was found to obtain better results than

the original version, as it provides a better balance between intensification and diversification. We thus report in

Section 4 only results obtained with this version. An outline of the pseudocode of the refined version of HH2 is given

in Algorithm 2.

Algorithm 2 Refined version of HH2

Even though it is better than the original version, the refined version of HH2 still has two drawbacks:

 It might select a heuristic that largely deteriorates the solution and requires long computational time rather

than a heuristic that slightly deteriorates the solution and requires short computational time. To clarify,

consider the following scenario with only two low-level heuristics, ℎ1 and ℎ2. Recall that the heuristics

are selected randomly at the first stage of the algorithm. Assume that ℎ1 was first applied and resulted in

𝐼1 (ℎ1) = −20 and 𝑇1 (ℎ1) = 10. Afterwards, ℎ2 was selected and resulted in 𝐼1 (ℎ2) = −1 and

𝑇1 (ℎ2) = 1. Now, at the second stage of the algorithm, the heuristics are selected based on their scores.

The scores of ℎ1 and ℎ2, after normalising 𝑓1, 𝑓2, and 𝑓3, are 𝑆(ℎ1) = 11 𝜙 + 10𝛿 and 𝑆(ℎ2) = 11 𝜙 +
𝛿, respectively. Clearly, 𝑆(ℎ1) > 𝑆(ℎ2) ∀𝜙, 𝛿 ∈]0, 1[. So, despite the fact that ℎ2 showed a relatively

better performance compared to ℎ1, the latter has the highest score and will be selected.

 Although measures 𝑓1 and 𝑓2 are defined so as to give a greater importance to recent performance, the way

the parameter 𝜙 is adjusted can lead to early performance dominating recent performance. Consider two

heuristics ℎ𝑗 and ℎ𝑘. Assume that ℎ𝑗 obtained large improvements in the early stages of the search but has

exhibited a poor performance recently, while ℎ𝑘 has yielded small improvements since the beginning of

the search. Assume also that the last iteration resulted in an improvement of the current solution and,

consequently, the value of 𝜙 was increased to 𝜙𝑚𝑎𝑥 to favor heuristics that showed good performance and

intensify the search. Now recall that the parameter 𝜙 defines not only the importance given to good

performing heuristics but also the importance given to previous performance; i.e, large 𝜙 values put more

emphasis on previous performance. So, looking back to the example above, while one would want to favor

ℎ𝑘 because the improvements it achieves, although small, are more significant at the current stage of the

search, HH2 will select ℎ𝑗 because its recent performance is dominated by its early performance and thus

has a small impact on the score value.

The two aforementioned issues are addressed in the new proposed hyper-heuristic presented in the next section.

This hyper-heuristic, referred to as HH3 in the rest of the paper, uses some of the ideas of HH1 and HH2 but also

includes new features aimed to overcome their weaknesses, outlined in the previous sections.

Similar to the refined versions of HH1 and HH2, HH3 proceeds in two stages. In the first stage, the algorithm

randomly picks a heuristic ℎ𝑗, applies it, returns the resulting change in the objective function value (𝛥𝑓(ℎ𝑗)) as well

as the time required (𝑇(ℎ𝑗)), and computes the heuristic’s initial score (𝑆(ℎ𝑗)). The initial scores reflect the order of

importance given to the heuristics. Of first importance are heuristics that are able to improve the solution. The larger

the improvement rate per unit of time is, the more important the heuristic is considered. Because heuristics that

deteriorate the solution help getting out of local optima, they are considered more important than heuristics that cannot

modify the objective function value. However, not all of them are equally important. The more a heuristic deteriorates

the solution and the more computational time it requires, the less important it is considered. Accordingly, the initial

scores are computed by the following formula:

𝑆(ℎ𝑗) =

{

𝛥𝑓(ℎ𝑗)

𝑇(ℎ𝑗)
 if 𝛥𝑓(ℎ𝑗) ≥ 0,

1

|𝛥𝑓(ℎ𝑗)|𝑇(ℎ𝑗)
 otherwise.

 (5)

The first stage of the algorithm terminates once all low-level heuristics have been considered. In the second stage,

HH3 selects the heuristics based on two factors: the heuristics’ scores and their tabu status. While the tabus are managed

and used in the same way they are in the refined version of HH1 (see Section 3.1.1), the strategy for heuristic selection

is different. Rather than selecting the non tabu heuristic having the highest score as HH1 does, HH3 uses a roulette-

wheel strategy. It associates with each non tabu heuristic ℎ𝑗 a selection probability 𝑝𝑗 calculated by dividing its score

by the total score of the non tabu heuristics (𝑝𝑗 =
𝑆(ℎ𝑗)

∑ 𝑆(ℎ𝑘)𝑘:ℎ𝑘𝑛𝑜𝑛 𝑡𝑎𝑏𝑢
). It then randomly selects a heuristic based on these

probabilities. Another noticeable difference between HH3 and the two hyper-heuristics described in the previous

sections is the frequency at which the scores are updated and the score update scheme. In HH3, the scores are updated

every 𝜁 iterations, accounting for the average performance of the heuristics during these iterations. For this purpose,

the algorithm maintains for each heuristic ℎ𝑗 two measures, 𝜋1(ℎ𝑗) and 𝜋2(ℎ𝑗). Such measures are initially equal to 0.

Whenever ℎ𝑗 is applied, either 𝜋1(ℎ𝑗) or 𝜋2(ℎ𝑗) is increased. The increase is related to the obtained change in the

objective function value (𝛥𝑓(ℎ𝑗)). Specifically, if 𝛥𝑓(ℎ𝑗) > 0 (i.e., if ℎ𝑗 improves the current solution),
𝛥𝑓(ℎ𝑗)

𝑇(ℎ𝑗)
is added

to 𝜋1(ℎ𝑗); if 𝛥𝑓(ℎ𝑗) < 0 (i.e., if ℎ𝑗 deteriorates the current solution),
1

|𝛥𝑓(ℎ𝑗)|𝑇(ℎ𝑗)
 is added to 𝜋2(ℎ𝑗); and if 𝛥𝑓(ℎ𝑗) =

0 (i.e., if ℎ𝑗 cannot modify the value of the current solution), both 𝜋1(ℎ𝑗) and 𝜋2(ℎ𝑗) remain unchanged. Let 𝜂(ℎ𝑗) be

the number of times heuristic ℎ𝑗 has been selected in the last 𝜁 iterations, and 𝛼 and 𝛽 be two weight adjustment

parameters in [0, 1]. The scores are recalculated as follows:

𝑆(ℎ𝑗) ∶= {

𝑆(ℎ𝑗) if 𝜂(ℎ𝑗) = 0,

 (1 − 𝛼)𝑆(ℎ𝑗) + 𝛼
𝛽𝜋1(ℎ𝑗) + (1 − 𝛽)𝜋2(ℎ𝑗)

𝜂(ℎ𝑗)
 otherwise.

 (6)

Clearly, 𝛼 defines the importance given to recent performance, while 𝛽 defines the importance given to heuristics

that were recently able to improve the solution. In this paper, the value of 𝛼 is set to 0.7 to decrease the weight of

previous performance (recall that one of the weaknesses of HH2 is that early performance sometimes dominates recent

performance). On the other hand, the parameter 𝛽 is self-adjusted during the search process. The value of 𝛽 is initially

set equal to 0.5, and it is modified every 𝜁 iterations based on whether or not a new incumbent solution has been found

during the last segment of search: If a new solution better than the incumbent is found during the last 𝜁 iterations, 𝛽 is

increased to 1; otherwise, it is decreased to max(𝛽 – 0.1, 0). This way of proceeding ensures that emphasis is put on

intensification if a new incumbent is found, while focus is gradually shifted to diversification otherwise. Indeed, when

the value of 𝛽 is increased, the score of heuristics that were recently able to improve the solution is also increased, so

such heuristics are more likely to be selected, leading to an intensification of the search. As the value of 𝛽 decreases,

the effect is the opposite, leading to a diversification of the search. Once the value of 𝛽 is updated, the scores are

calculated with Equation (6), 𝜋1(ℎ𝑗), 𝜋2(ℎ𝑗) and 𝜂(ℎ𝑗) are reset to zero for each ℎ𝑗, the tabu list is emptied, and a new

segment of search is initiated for another 𝜁 iterations. This process is repeated until the stopping criterion is met. An

overview of the solution procedure is provided in Algorithm 3.

Algorithm 3 HH3

To produce new solutions, the three hyper-heuristics described in the previous section use 24 simple perturbative low-

level heuristics, each of which examines a subset of one of the following four neighborhoods, previously proposed in

the literature:

 Single-Shift (Lamghari and Dimitrakopoulos, 2012): This neighborhood involves moving a single block

from its current period 𝑡 to another period 𝑡′ ≠ 𝑡.
 Swap (Lamghari et al., 2014): This neighborhood allows exchanging blocks between periods and can be

seen as two simultaneous changes associated with the Single-Shift neighborhood. More specifically, it

involves moving two blocks: block 𝑖 from its current period 𝑡 to another period 𝑡′ ≠ 𝑡 and another block

𝑖′ from 𝑡′ to 𝑡.
 Shift-Before (Lamghari et al., 2014): Here multiple blocks; namely, a block 𝑖 and its predecessors mined

in the same period, are moved from their current period 𝑡 ≠ 1 to the preceding period (𝑡 − 1). Recall

that a predecessor of block 𝑖 is a block that has to be extracted to have access to 𝑖. In what follows, we

will refer to the set formed by a block 𝑖 and its predecessors mined in the same period as the inverted cone

whose base is 𝑖.
 Shift-After (Lamghari et al., 2014): This neighborhood also allows moving multiple blocks. A block and

its successors mined in the same period are moved from their current period 𝑡 to the next period (𝑡 + 1).
Note that 𝑗 is a successor of 𝑖 if and only if 𝑖 is a predecessor of 𝑗. In what follows, we will refer to the set

formed by a block 𝑖 and its successors mined in the same period as the cone whose apex is 𝑖.

Not only do the proposed heuristics examine different subsets of the four neighborhoods described above (different

sub-neighborhoods), but they also use different functions to evaluate solutions in these sub-neighborhoods and

different strategies to select one of them to become the new current solution. Generating only subsets of the

neighborhoods and using different evaluation functions and selection strategies serves three main purposes: to reduce

the computational effort, to drive the search to interesting parts of the search space, and to ensure intensification and

diversification.

To simplify the discussion, the heuristics are classified in three different groups. The first group contains heuristics

that select block(s) from a random period and move them either earlier or later. The second group contains heuristics

that select block(s) from a specific period, as opposed to a random period, and move them either earlier or later. Clearly,

heuristics in these two groups do not allow for any changes in the set of extracted blocks. Heuristics in the third group

allow for such changes by either dropping block(s) from the schedule or adding unscheduled block(s) to the schedule.

Heuristics in the three groups consider only moves that yield a feasible solution. Below, additional details about the

heuristics are provided.

Heuristics that choose blocks from a random period

 ℎ1: This heuristic explores a subset of the Single-Shift neighborhood. It starts by randomly selecting a

period 𝑡. It then identifies blocks currently scheduled in t that can be moved either earlier or later without

violating the constraints. Moves are evaluated based on the change produced in the objective function

value, and the best move is selected.

 ℎ2: Similar to ℎ1 except that it considers only blocks that can be moved earlier. Furthermore, the

evaluation of a move is based on the total economic value of the block and all its successors. This

evaluation function can be seen as a measure of attractiveness used to identify potential blocks that if

advanced will entail advancing high-grade ore blocks. Thus, ℎ2 explores a smaller subset of the Single-

Shift neighborhood compared to ℎ1, and to orient the search, it does not use the objective function of the

problem but an auxiliary function, the value of the block and all its successors.

 ℎ3: Unlike the two previous heuristics, which move a single block, this heuristic simultaneously moves

multiple blocks; more specifically, it advances the extraction of an inverted cone whose base block is

currently scheduled in 𝑡, from 𝑡 to 𝑡 − 1. Only inverted cones having a positive economic value are

considered, and the heuristic selects the one with the highest unit economic value. Thus, ℎ3 explores a

subset of the Shift-Before neighborhood, and to orient the search, it uses another auxiliary function, the

unit economic value.

 ℎ4: Similar to ℎ3 except that all inverted cones are considered, among which one is chosen at random.

This heuristic induces some form of diversification.

 ℎ5: Similar to ℎ4, but the moves are evaluated based on the change produced in the objective function

value, and the best move is selected.

 ℎ6: This heuristic also allows simultaneously moving multiple blocks. However, rather than changing the

period of an inverted cone from 𝑡 to 𝑡 − 1, it changes the period of a cone whose apex is currently

scheduled at 𝑡, from 𝑡 to 𝑡 + 1, which means that it explores a subset of the Shift-After neighborhood.

Only cones having a non-positive economic value are considered, and the heuristic selects the one with

the smallest unit economic value.

 ℎ7: Similar to ℎ6 except that all cones are considered, among which one is chosen at random. Like ℎ4, ℎ7

is used for diversification purposes.

 ℎ8: Similar to ℎ7, but the moves are evaluated based on the change produced in the objective function

value, and the best move is selected.

 ℎ9: Similar to ℎ8, but the blocks to be moved are not necessarily related to each other via precedence, and

they are moved sequentially. At each iteration, a single block is selected and moved from 𝑡 to 𝑡 + 1, and

this process is repeated as long as there is improvement in the objective function value. Therefore, ℎ8

explores a subset of the Single-Shift neighborhood using a best-improvement descent. It acts as a trimming

mechanism to free some capacity in t for hopefully more interesting blocks.

 ℎ10: This heuristic also moves blocks that are not related to each other via precedence. It exchanges blocks

𝑖 and 𝑖′ currently scheduled in periods 𝑡 and 𝑡 + 1, respectively. That means that ℎ10 explores a subset

of the Swap neighborhood. Moves are evaluated based on the change produced in the objective function

value and selected using a first improving strategy.

Heuristics that choose blocks from a specific period

Unlike the previous heuristics (ℎ1 − ℎ10), the following three heuristics do not select blocks from a random period

but rather from a specific period in an attempt to reduce either soft constraints violations or the tightness of the hard

constraints. The first heuristic explores a subset of the Single-Shift neighborhood, while the last two explore subsets of

the Shift-After or Shift-Before neighborhoods. The way these subsets are chosen and explored is explained below.

 h11: This heuristic first identifies the period with the highest penalty cost (incurred by violation of the soft

constraints). It moves a single block currently mined in t either later or earlier. The moves are evaluated

based on the change produced in the objective function value, and the best move is selected.

 h12: This heuristic first identifies the period with the highest mining utilization, t (the mining utilization

is calculated as the total amount mined in period t in the current solution divided by the mining capacity).

It then determines the adjacent period with the most residual capacity, t′. If t′ = t − 1, then the heuristic

selects an inverted cone whose base is currently scheduled in t; otherwise (i.e., if t′ = t + 1), it selects

a cone whose apex is currently scheduled in t. The (inverted) cone is selected at random and its period is

changed from t to t′.
 h13: Similar to h12 except for the way t is selected. Here t is selected among the periods with high penalty

cost, not among those with high mining utilization. Also, t is not chosen in a greedy manner but using

roulette wheel selection.

Heuristics that modify the set of scheduled blocks

The heuristics described above change the periods of scheduled blocks. However, they do not allow for any changes

in the set of extracted blocks. Such changes are obtained with the heuristics presented below.

 h14: This heuristic starts by identifying blocks that are currently unscheduled then adds one of them to the

schedule. Moves are evaluated based on the change produced in the objective function value, and the best

one is selected.

 h15: Similar to h14, but only improving moves are considered.

 h16: Similar to h14 but more aggressive in the sense that it induces greater solution changes than h14. It

adds to the schedule inverted cones (a block and its predecessors) rather than a single block.

 h17: Similar to h16, but only improving moves are considered.

 h18: This heuristic considers only inverted cones having a positive economic value, among  which it

selects the one with the highest unit economic value.

The following heuristics drop block(s) from the schedule.

 h19: His heuristic drops a single block from the schedule. Moves are evaluated based on the change

produced in the objective function value. Only improving moves are considered, and the best one is

selected.

 h20: Similar to h19, but it does not terminate after dropping a single block. The process is repeated until

no improvement is possible.

 h21: Like h20, this heuristic also drops multiple blocks from the schedule. However, these blocks are

related to each other by precedence. It removes a cone whose apex is currently scheduled in the last period

of the horizon (a block and its successors). Moves are evaluated based on the change produced in the

objective function value, and the best one is selected.

 h22: Similar to h21 except that only improving moves are considered.

 h23: Similar to h21, but evaluates moves based on the unit economic value of the cones. Only cones having

a non-positive value are considered, and the one with the smallest value is selected.

 h24: Similar to h19, but also simultaneously drops a single block from the schedule. In other words, it

exchanges an unscheduled block with a scheduled block. The neighborhood is explored using a first-

improving strategy.

To assess the efficiency and the robustness of the three proposed hyper-heuristic approaches, numerical experiments

have been performed on four benchmark test sets, including a total of 33 instances of different sizes and characteristics.

These benchmark datasets are briefly described below and summarized in Table 1. The first three are those in Lamghari

and Dimitrakopoulos (2016a), while the fourth one is a new dataset that contains larger instances.

Table 1: Overview of the instances in the four benchmark datasets

Dataset S1 S2 S3 S4

Number of
instances 10 3 10 10

Number of

blocks (𝑁) 4,273 ≤ 𝑁 ≤ 40,762 14,118 ≤ 𝑁 ≤ 48,821 21,965 ≤ 𝑁 ≤ 22,720 40,900

Number of

periods (𝑇) 3 ≤ 𝑇 ≤ 13 6 ≤ 𝑇 ≤ 16 11 ≤ 𝑇 ≤ 12 21

Number of

scenarios (𝑆) 20 20 ≤ 𝑆 ≤ 25 20 20

Number of

processors (𝑃) 1 2 2 2

Number of

stockpiles 1 2 2 2

Metal type Copper and Gold Copper and Gold Copper Copper

Block weight

(𝑤𝑖) in tonnes 5,625 ≤ 𝑤𝑖 ≤ 10,800 5,625 ≤ 𝑤𝑖 ≤ 10,800 10,000 10,000

Mining

capacity (𝑊𝑡) ⌈1.20
∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉  ⌈1.20

∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉  ⌈

∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉ ⌈

∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉

Processing

capacity (𝛩𝑝
𝑡) ⌈1.05

∑ ∑ 𝜋𝑠𝜃𝑖𝑝𝑠
𝑆
𝑠=1 𝑤𝑖

𝑁
𝑖=1

𝑇
⌉ ⌈

∑ ∑ 𝜋𝑠𝜃𝑖𝑝𝑠
𝑆
𝑠=1 𝑤𝑖

𝑁
𝑖=1

𝑇
⌉ ⌈

∑ ∑ 𝜋𝑠𝜃𝑖𝑝𝑠
𝑆
𝑠=1 𝑤𝑖

𝑁
𝑖=1

𝑇
⌉ ⌈

∑ ∑ 𝜋𝑠𝜃𝑖𝑝𝑠
𝑆
𝑠=1 𝑤𝑖

𝑁
𝑖=1

𝑇
⌉

 The first set of benchmark instances, S1, consists of 10 small to large size instances from two real deposits:

a copper deposit and a gold deposit. They all contain one processor and one stockpile. Each period is one

year long, and it is assumed that the production capacities are identical in all periods. For each instance,

it is possible to extract a total of 𝑊𝑡 = ⌈1.20
∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉ tonnes per year (i.e., 1.20

total tonnage

Number of periods
), of which

the waste is sent to the waste dump (having an unlimited capacity), and the ore is sent to a processor p

(having a capacity of 𝛩𝑝
𝑡 = ⌈1.05

∑ ∑ 𝜋𝑠𝜃𝑖𝑝𝑠
𝑆
𝑠=1 𝑤𝑖

𝑁
𝑖=1

𝑇
⌉ ; i. e. , 1.05

Expected amount of ore

Number of periods
).

 The second set of benchmark instances, S2, consists of three instances representing three different real

deposits: two copper deposits and a gold deposit. The size of these instances is larger than those in the

first benchmark set. Furthermore, the instances in this set contain two processors and two stockpiles (as

opposed to one processor and one stockpile in the first set). Finally, the processing capacities are set to a

value 5% smaller than for the instances in the first set so as to make the satisfaction of the processing

constraints more difficult and thus force the use of the stockpiles.

 The third set of instances, S3, consists of 10 medium-size instances from a copper deposit with two

processors and two stockpiles. They are similar to those in the second set, S2, except for the mining

capacities, which are much tighter here. They are set to a value 20% smaller than for the instances in the

first and second sets (i.e., 𝑊𝑡 = ⌈
∑ 𝑤𝑖
𝑁
𝑖=1

𝑇
⌉).

 The fourth set of instances, S4, consists also of 10 instances from a copper deposit with two processors

and two stockpiles. They are similar to those in the third set, S3, except that they are larger.

All algorithms were coded in C++ and the experiments were run on on an Intel(R) Xeon(R) CPU X5675 computer

(3.07 GHz) with 96 Go of RAM running under Linux.

In this section, we examine how the three hyper-heuristic approaches (HH1, HH2, and HH3), described in Section 3

and summarized in Algorithms 1-3, perform on the ten bench- mark instances in the set S1. We compare the hyper-

heuristics to each other and also to other problem-specific methods that have been recently proposed in the literature.

These methods are the tabu search heuristic proposed in Lamghari and Dimitrakopoulos (2012) (TS), the variable

neighborhood descent heuristic proposed in Lamghari et al. (2014) (VND), and the network-flow based algorithm

presented in Lamghari and Dimitrakopoulos (2016a) (NFA).

Recall that the three hyper-heuristics terminate when a specified number of iterations, Υ𝑚𝑎𝑥, has elapsed. We set

Υ𝑚𝑎𝑥 = 1000 + 0.25𝑁, 𝑁 being the number of blocks. This value was selected based on preliminary tests. Preliminary

tests also showed that it is preferable to set Γ𝑚𝑖𝑛 = 0.5𝐻 and Γ𝑚𝑎𝑥 = 𝐻 (recall that 𝐻 is the number of low-level

heuristics and that [Γ𝑚𝑖𝑛 , Γ𝑚𝑎𝑥] is used to choose the tabu tenure; that is, the number of iterations during which a

heuristic that has not performed well recently is made tabu). So, these values are used for both HH1 and HH3. For TS

and NFA, we used the same parameter settings as in the original papers (Lamghari and Dimitrakopoulos, 2012, 2016a).

VND does not have any parameters. All 6 methods (HH1, HH2, HH3, TS, VND, and NFA) start with a random initial

solution generated using the heuristic in Lamghari and Dimitrakopoulos (2012), and also make other random choices

during the improvement phase. Hence, each of them was applied to each instance 10 times. The results are summarized

in Tables 2 and 3. Table 2 reports the values of the best solutions found by the different methods (Z∗), while Table 3

provides a comparison of the optimality gaps and the computational times. The formula used to calculate the gaps is

%𝐺𝑎𝑝 =
𝑍∗−𝑍𝐿𝑅

𝑍𝐿𝑅
, where 𝑍𝐿𝑅 is the linear relaxation optimal value, computed using CPLEX 12.5. The time required

by CPLEX is given in the last column of Table 3 (column LR). All the results reported (except the computational time

of CPLEX) are the averages of the results obtained over the 10 runs. The best results obtained for each instance are

indicated in bold. The name of the instances and their sizes (number of blocks (𝑁) and number of periods (𝑇)) are

given in the first three columns of each table.

Table 2: Average values of the solutions obtained by the different solution methods on the first benchmark dataset, S1

 Z*($)

 N T TS VND NFA HH1 HH2 HH3

S1-C1 4,273 3 154,223,830 165,492,629 164,651,308 165,473,283 165,442,186 165,554,172

S1-C2 7,141 4 168,851,400 199,000,195 197,950,908 199,199,888 199,196,593 199,257,683

S1-C3 12,627 7 184,358,854 227,752,677 227,077,936 190,778,228 229,131,920 229,010,596

S1-C4 20,626 10 189,216,220 246,231,092 250,031,265 195,276,209 250,606,858 250,845,094

S1-C5 26,021 13 199,655,746 234,576,578 242,582,733 165,399,729 244,166,092 243,662,065

S1-G1 18,821 5 299,015,026 410,919,230 408,328,422 351,863,885 411,113,417 411,055,283

S1-G2 23,901 7 232,012,207 442,929,365 439,453,687 424,955,753 443,491,029 443,419,350

S1-G3 30,013 8 302,936,318 478,190,545 475,943,671 432,973,259 479,413,511 478,968,252

S1-G4 34,981 9 321,253,155 485,560,331 482,066,328 375,809,791 487,117,548 486,860,462

S1-G5 40,762 11 317,545,664 461,422,921 461,821,448 382,959,684 466,327,117 465,976,753

Table 3: Average optimality gaps and average computational times for the ten instances in the first benchmark
dataset, S1

 Gap (%) CPU (Minutes)

 N T TS VND NFA HH1 HH2 HH3 TS VND NFA HH1 HH2 HH3 LR

S1-C1 4,273 3 6.93 0.13 0.63 0.14 0.16 0.09 4.27 1.05 3.26 1.02 0.90 1.06 0.23

S1-C2 7,141 4 15.40 0.29 0.82 0.19 0.19 0.16 9.52 3.26 8.09 1.64 2.63 2.60 5.68

S1-C3 12,627 7 19.84 0.98 1.27 17.05 0.38 0.43 29.46 13.00 19.29 3.85 5.26 4.38 139.01

S1-C4 20,626 10 25.57 3.14 1.65 23.19 1.42 1.33 68.76 43.95 45.20 7.23 21.27 11.84 1540.61

S1-C5 26,021 13 19.08 4.92 1.68 32.96 1.04 1.24 112.76 72.91 55.06 7.97 24.73 17.68 3470.63

S1-G1 18,821 5 27.49 0.35 0.98 14.67 0.30 0.32 31.37 17.34 78.97 14.04 28.12 24.78 187.77

S1-G2 23,901 7 47.93 0.59 1.37 4.63 0.47 0.48 55.78 31.92 100.71 24.36 35.00 26.20 323.75

S1-G3 30,013 8 37.10 0.71 1.18 10.10 0.46 0.55 80.04 57.29 168.68 27.01 44.82 40.59 2459.00

S1-G4 34,981 9 34.41 0.86 1.57 23.27 0.54 0.59 104.95 80.46 188.84 52.32 90.54 58.50 1179.05

S1-G5 40,762 11 32.40 1.77 1.69 18.47 0.73 0.80 149.47 115.06 239.51 50.60 79.06 75.09 2394.03

The following observations can be derived from Tables 2 and 3:

 In terms of solution quality, HH2 and HH3 outperform HH1 and the other three methods previously

proposed in the literature. On average, the optimality gaps for HH2 and HH3 are 0.57% and 0.60%,

respectively compared to 14.47% for HH1, 26.61% for TS, 1.37% for VND, and 1.28% for NFA.

 HH2 and HH3 are comparable in terms of solution quality, but HH3 requires slightly less computational

times (on average, 26.27 minutes as opposed to 33.23 minutes). Both methods are faster than TS (64.64

minutes on average), VND (43.62 minutes on average), and NFA (90.76 minutes on average).

 Among the 6 methods, HH1 is the one that requires the least computational time (19 minutes on average),

but it was not successful in solving large instances.

 As expected, all 6 methods outperform CPLEX in terms of solution time. The differences are more

pronounced as the size of the instances increases.

In this section, we report the results obtained for the second set of benchmark instances, S2. The instances in this set

are larger than the instances in the first set and also more difficult to solve (Lamghari and Dimitrakopoulos, 2016a).

The results are summarized in Tables 4 and 5, which have the same structure as Tables 2 and 3, respectively. In these

tables, a dash “-” indicates that CPLEX was not able to solve the linear relaxation of the problem within the time limit

(4 weeks), and thus neither the computational time of CPLEX nor the linear relaxation optimal value used to compute

the gap are known.

From Table 4, it appears that among the 6 methods, HH1 is the one that provides the worst results. Moreover, its

performance is far inferior to the other methods. HH2 is not as good as it was for the instances in the first dataset. In

particular, for the largest instance, S2-G1, HH2 is dominated by VND, NFA, and HH3; for S2-C2, it is dominated by

NFA and HH3; and for the smallest instance, S2-C1, it obtains solutions slightly better but comparable to those

obtained by NFA and HH3. Results in Table 5 indicate that HH3 and NFA also outperform HH2 in terms of solution

time. On average, HH2 runs 2.5 and 1.4 times longer than do HH3 and NFA, respectively. As was the case for the

instances in the first dataset, HH1 is the fastest method. However, its short computational times do not compensate for

the relatively poor quality of the solutions it provides. We can then conclude that, for the instances in the second

benchmark dataset, regarding both solution quality and solution time, the new hyper-heuristic HH3 seems to be the

best choice.

Table 4: Average values of the solutions obtained by the different solution methods on the second benchmark
dataset, S2

 Z* ($)

 N T TS VND NFA HH1 HH2 HH3

S2-C1 14,118 6 19,636,316 26,951,280 27,717,050 17,459,273 27,742,072 27,678,106

S2-C2 28,154 16 175,562,546 211,541,744 224,243,744 111,268,140 222,996,672 224,323,036

S2-G1 48,821 14 333,885,325 446,586,205 469,765,792 174,228,176 402,188,005 471,381,554

Table 5: Average optimality gaps and average computational times for the three instances in the second benchmark
dataset, S2

 Gap (%) CPU (Minutes)

 N T TS VND NFA HH1 HH2 HH3 TS VND NFA HH1 HH2 HH3 LR

S2-C1 14,118 6 34.09 9.53 6.96 41.40 6.88 7.09 28.24 42.94 27.46 4.49 11.61 13.07 932.00

S2-C2 28,154 16 - - - - - - 150.16 223.07 74.43 8.38 51.18 40.76 -

S2-G1 48,821 14 - - - - - - 227.84 252.56 243.64 58.03 410.24 136.79 -

We next compare the 6 methods on the ten instances of the third benchmark dataset, S3. The same comparison criteria

as above are used; that is, the average values of the solutions obtained by each method (Table 6), as well as the average

optimality gaps and computational times (Table 7). Again, the best results obtained for each instance are indicated

in bold.

Some of the observations made in the previous sections can be confirmed from the results in Tables 6 and 7. First,

all 6 methods solve the problems in a very reasonable time, in the order of a few minutes, which is significantly smaller

than the 36.44 hours that CPLEX requires on average to solve the linear relaxation. Second, although HH1 is the fastest

method, requiring 7.61 minutes on average, the quality of the solutions obtained with this hyper-heuristic is far from

the quality obtained by the other methods. On average, the optimality gap for HH1 is 43.35% as opposed to 13.15%,

4.13%, 1.70%, 0.81%, and 1.02% for TS, VND, NFA, HH2, and HH3, respectively. HH2 and HH3 perform better

than do the other methods, obtaining solutions very close to optimality, as can be seen from the small values of the

gaps. When comparing these two hyper-heuristics, it appears that HH2 reaches slightly better solutions than does HH3,

but it requires slightly more computational time (average times are 23.33 and 17.77 minutes for HH2 and HH3,

respectively).

Table 6: Average values of the solutions obtained by the methods on the third benchmark dataset, S3

 Z* ($)

 N T TS VND NFA HH1 HH2 HH3

S3-C1 22,549 12 228,321,444 242,493,693 248,498,492 83,935,248 251,555,912 250,129,283

S3-C2 22,388 12 224,771,619 240,539,508 246,829,312 145,062,692 248,975,295 247,982,137

S3-C3 22,285 12 214,564,681 240,704,518 246,612,938 143,484,757 247,039,304 248,641,198

S3-C4 22,302 12 217,846,604 240,001,209 245,435,806 175,070,760 248,962,810 248,237,888

S3-C5 21,965 11 211,982,629 246,525,911 252,350,522 180,248,250 253,890,092 253,414,323

S3-C6 22,246 12 227,033,349 240,482,997 246,536,398 89,316,962 247,831,088 247,437,335

S3-C7 22,716 12 223,665,078 241,887,794 249,101,276 181,818,044 252,396,077 251,522,448

S3-C8 22,529 12 220,337,305 243,777,965 250,106,451 130,638,347 253,237,604 252,009,598

S3-C9 22,253 12 216,507,929 244,400,981 250,292,824 177,589,529 251,774,218 251,256,550

S3-C10 22,720 12 208,301,681 240,699,371 247,146,615 124,755,694 249,670,386 249,342,299

Table 7: Average optimality gaps and average computational times for the ten instances in the third benchmark dataset,
S3

 Gap (%) CPU (MINUTES)

 N T TS VND NFA HH1 HH2 HH3 TS VND NFA HH1 HH2 HH3 LR

S3-C1 22,549 12 9.66 4.05 1.68 66.79 0.47 1.03 90.20 121.81 46.01 7.24 22.35 17.72 3586.66

S3-C2 22,388 12 10.44 4.16 1.65 42.20 0.79 1.19 89.55 125.44 51.27 6.36 21.31 16.88 2421.27

S3-C3 22,285 12 14.52 4.11 1.76 42.84 1.59 0.95 89.14 115.70 49.79 5.15 18.13 17.10 1420.44

S3-C4 22,302 12 13.00 4.15 1.98 30.08 0.58 0.86 89.21 122.06 44.01 6.46 22.77 18.71 3518.42

S3-C5 21,965 11 17.28 3.80 1.53 29.66 0.93 1.11 80.54 111.33 49.67 11.08 23.91 16.21 1464.72

S3-C6 22,246 12 9.28 3.91 1.49 64.31 0.97 1.13 88.99 117.20 54.40 4.90 16.93 15.12 1593.52

S3-C7 22,716 12 11.82 4.63 1.79 28.32 0.49 0.83 90.87 121.71 49.17 9.97 31.97 19.44 1986.17

S3-C8 22,529 12 13.41 4.20 1.71 48.66 0.48 0.96 90.12 121.68 45.91 10.10 32.10 19.18 1878.28

S3-C9 22,253 12 14.95 3.99 1.68 30.24 1.10 1.30 89.01 129.62 29.09 5.69 17.06 17.78 1807.55

S3-C10 22,720 12 17.17 4.28 1.72 50.39 0.71 0.85 90.88 121.02 51.09 9.12 24.42 19.53 2184.68

Finally, we compare the 6 methods on the instances of the fourth benchmark dataset, S4, which are larger than those

in the third dataset, S3. Tables 8 and 9 summarize this comparison.

Although HH2 and HH3 perform similarly on the instances of S3 (c.f. previous section), for the larger instances in

S4, the differences between the two hyper-heuristics are more pronounced. HH3 outperforms HH2 both in terms of

solution quality and solution time. In particular, for the instance S4-C7, HH3 is significantly better than HH2,

improving the value of the objective function by 24.07%. For the other 9 instances, the solutions found by HH3 are

comparable to or better than those produced by HH2, very close to optimality, with an average gap of 0.36%. In

general, HH2 finds better solutions than NFA, but NFA provides more consistent results in addition to being relatively

faster (average solution times are 112.37 and 166.73 for NFA and HH2, respectively). Both HH2 and NFA obtain

significantly better solutions than VND, TS, and HH1. The latter again gives very poor results and ranks last in terms

of solution quality, but first in terms of solution time.

Table 8: Average values of the solutions obtained by the different solution methods on the fourth benchmark dataset, S4

 Z* ($)

 N T TS VND NFA HH1 HH2 HH3

S4-C1 40,090 21 187,240,274 193,293,330 207,895,000 55,841,661 209,773,023 210,963,617

S4-C2 40,090 21 187,667,839 191,649,430 206,154,000 107,754,109 209,431,022 209,677,364

S4-C3 40,090 21 185,647,986 192,529,050 206,859,000 108,982,799 209,353,576 209,897,938

S4-C4 40,090 21 187,590,230 190,326,879 206,050,000 89,424,434 207,193,028 209,285,381

S4-C5 40,090 21 185,890,808 190,465,025 205,583,000 51,185,270 207,322,888 208,361,121

S4-C6 40,090 21 181,784,804 191,922,194 206,324,000 35,729,883 209,423,226 209,476,860

S4-C7 40,090 21 187,069,039 192,783,890 208,036,000 88,850,992 170,282,855 211,262,172

S4-C8 40,090 21 192,459,132 194,323,896 209,326,000 55,019,252 208,418,071 212,170,908

S4-C9 40,090 21 181,557,188 195,070,133 209,333,000 91,733,866 212,080,454 213,040,675

S4-C10 40,090 21 186,477,431 191,091,037 206,526,000 99,422,873 209,505,997 209,628,748

Table 9: Average optimality gaps and average computational times for the ten instances in the fourth benchmark
dataset, S4

 Gap (%) CPU (Minutes)

 N T TS VND NFA HH1 HH2 HH3 TS VND NFA HH1 HH2 HH3 LR

S4-C1 40,090 21 11.56 8.71 1.81 73.63 0.92 0.36 280.64 468.67 117.93 18.28 122.36 109.48 3586.66

S4-C2 40,090 21 10.80 8.90 2.01 48.78 0.45 0.33 280.64 473.36 108.75 28.65 116.44 108.54 2421.27

S4-C3 40,090 21 11.91 8.64 1.84 48.29 0.66 0.40 280.65 469.24 109.24 33.22 178.15 129.07 1420.44

S4-C4 40,090 21 10.66 9.35 1.86 57.41 1.32 0.32 280.64 472.00 116.84 22.13 156.54 120.87 3518.42

S4-C5 40,090 21 11.07 8.88 1.65 75.51 0.82 0.32 280.64 470.74 109.91 13.49 185.60 124.98 1464.72

S4-C6 40,090 21 13.55 8.73 1.88 83.01 0.40 0.38 280.64 469.23 113.41 20.33 184.66 111.92 1593.52

S4-C7 40,090 21 11.78 9.09 1.89 58.10 19.70 0.37 280.64 473.44 112.12 35.50 328.46 104.19 1986.17

S4-C8 40,090 21 9.61 8.74 1.69 74.16 2.12 0.35 280.64 474.70 113.26 23.53 109.06 101.13 1878.28

S4-C9 40,090 21 15.08 8.76 2.09 57.09 0.81 0.36 280.64 466.37 112.54 29.21 142.17 122.10 1807.55

S4-C10 40,090 21 11.41 9.22 1.89 52.77 0.47 0.41 280.63 467.51 109.70 29.55 143.90 103.95 2184.68

Mineral value chain optimization involves solving very large stochastic mixed-integer programming problems. To

efficiently address these problems, this paper investigated three hyper-heuristic approaches and applied them to two

different mineral value chains with different components. Hyper-heuristics offer a practical alternative to the problem-

specific state-of-the art search methodologies, as they operate on a search space of heuristics rather than a search space

of problem solutions, and thus are more generally applicable to a variety of problems.

The three proposed hyper-heuristic approaches fall under the category of perturbative hyper-heuristics with online

learning; that is, they use a set of simple perturbative low-level heuristics to improve a candidate solution, and a score-

based learning mechanism is used to decide which low-level heuristic should be applied at a given step of the search

process. Two of the proposed approaches are approaches previously proposed in the literature to which some

enhancements have been introduced to improve their performance, while the third one is a novel approach that uses

some of the ideas of the first two but also includes new features aimed to overcome their weaknesses. To assess the

performance of the three hyper-heuristics, extensive numerical experiments were performed on 33 benchmark

instances of various sizes and characteristics. The three approaches were compared to each other and to three problem-

specific search methodologies from the literature; namely, a tabu search heuristic (TS), a variable neighborhood

descent heuristic (VND), and a network-flow based algorithm (NFA). The major conclusions of this study are that i)

the refined version of the tabu search hyper-heuristic (HH1), although being the fastest, cannot compete with any of

the other 5 methods in terms of solution quality; ii) the refined version of the choice function hyper-heuristic (HH2)

and the new hyper-heuristic (HH3) outperform the other methods; iii) HH2 performs as well as HH3 or slightly better

on some instances, but HH3 is substantially better than HH2 on the larger and most difficult instances; iv) HH3 requires

shorter computational times than do HH2, TS, VND, and NFA; and v) HH3 is the most robust approach, exhibiting

consistent performance for different problems and instances.

We believe that hyper-heuristic approaches hold much promise. They do not require problem-specific knowledge

and therefore can address different classes of problems instead of solving just one problem. In line with the work in

this paper, the next step is to further explore single-point perturbative hyper-heuristics with online learning. To be

more specific, machine learning, data mining, and data analytics techniques will be investigated to design new

mechanisms to choose low-level heuristics. This should enable the generation of better learning schemes and thus more

efficient hyper-heuristics. Developing frameworks to enable the use of multi-point-based search methodologies and

metaheuristics as low-level heuristics (meta-hyper-heuristics) will also be examined. Meta-hyper-heuristics are

particularly promising as they provide a more diverse and powerful set of algorithms to the high-level strategy. In a

second stage of development, heuristic generation hyper-heuristics, which are approaches that create new heuristics

from a set of other existing heuristics, will be investigated. The hybridization of heuristic selection and heuristic

generation hyper-heuristics will also be explored. Such combination could lead to a more efficient and more robust

search scheme.

The model is described in detail in Lamghari and Dimitrakopoulos (2012), and we only briefly recall it here. The

following notation is used to formulate the first stage of the problem:

 N: the number of blocks considered for scheduling.

 i: block index, 𝑖 = 1,… , 𝑁.

 T: the number of periods over which blocks are being scheduled (horizon).

 t: period index, 𝑡 = 1,… , 𝑇.

 𝑃𝑖: the set of predecessors of block i; i.e., blocks that should be removed before i can be mined.

 𝑊𝑖: the weight of block i (in tonnes).

 𝑊𝑡: lower bound on mining (minimum amount that should be mined during period t considering both ore

and waste blocks).

 𝑊𝑡: upper bound on mining (maximum amount that can be mined during period t - mining equipment

capacity).

To formulate the second stage, the following notation is used for each scenario:

 S: the number of scenarios used to model metal uncertainty.

 s: scenario index, 𝑠 = 1,… , 𝑆 .

 𝑜𝑖𝑠: parameter indicating the group of block i under scenario s.

 𝑚𝑖𝑠: the metal content of block i under scenario s.

 𝑣𝑖𝑡𝑠: the discounted economic value of block i if mined during period t, and if scenario s occurs. If we

denote by 𝑑1 the discount rate and by 𝑝𝑖𝑠 the economic value of block i under scenario s, then 𝑣𝑖𝑡𝑠 is given

by the following formula:

𝑣𝑖𝑡𝑠 =
𝑝𝑖𝑠

(1 + 𝑑1)
𝑡

The economic value of a block is defined as being the net profit associated with it. The net profit differs

according to whether the block is ore or waste. In the first case, it is equal to the value of the metal content

of the block less the mining, processing, and selling costs. In the second case, it is equal to minus the cost

of mining the block. Furthermore, it is assumed that ore blocks are processed during the same period when

they are mined and that the profit is also generated during that period.

Furthermore, for each period t, the following notation is used:

 𝑂𝑡: lower bound on processing (minimum amount of ore required to feed the processing plant during

period t).

 𝑂𝑡: upper bound on processing (maximum amount weight of ore that can be processed in the plant during

period t - processing plant capacity).

 𝑐𝑡
𝑜−: unit shortage cost associated with the failure to meet 𝑂𝑡 during period t (𝑐𝑡

𝑜− =
𝑐𝑜−

(1+𝑑2)
𝑡 where 𝑐𝑜− is

the undiscounted unit shortage cost, and 𝑑2 represents the risk discount rate).

 𝑐𝑡
𝑜+: unit surplus cost incurred if the total of ore extracted during period t exceeds 𝑂𝑡 (𝑐𝑡

𝑜+ =
𝑐𝑜+

(1+𝑑2)
𝑡).

 𝑀𝑡: lower bound on metal production (minimum amount of metal that should be produced during period

t).

 𝑀𝑡: upper bound on metal production (maximum amount of metal that can be sold during period 𝑡).

 𝑐𝑡
𝑚−: unit shortage cost associated with the failure to meet 𝑀𝑡 during period t (𝑐𝑡

𝑚− =
𝑐𝑚−

(1+𝑑2)
𝑡).

 𝑐𝑡
𝑚+: unit surplus cost incurred if the metal production exceeds 𝑀𝑡 (𝑐𝑡

𝑚+ =
𝑐𝑚+

(1+𝑑2)
𝑡).

The variables used to formulate the problem are as follows:

 A binary variable is associated with each block i for each period t:

𝑥𝑖𝑡 = {
1 if block 𝑖 is mined during period 𝑡,
0 otherwise.

 In modeling the processing constraints, we use the variables 𝑑𝑡𝑠
𝑜− and 𝑑𝑡𝑠

𝑜+ to denote the shortage and the

surplus in the amount of ore mined during period t if scenario s occurs, respectively.

 Finally, the variables 𝑑𝑡𝑠
𝑚− and 𝑑𝑡𝑠

𝑚+ measure the shortage and the surplus in metal production during

period t under scenario s, respectively.

Note that the 𝑥𝑖𝑡 are the first-stage decision variables. They are scenario-independent since they must be fixed

before knowing the values of the uncertain parameters. The deviation variables 𝑑𝑡𝑠
𝑜−, 𝑑𝑡𝑠

𝑜+, 𝑑𝑡𝑠
𝑚−, and 𝑑𝑡𝑠

𝑚+ are the second-

stage (recourse) decision variables. Their values depend both on the realization of the uncertain parameters and on the

values of the first-stage decision variables.

Using this notation, the SMPS can be modeled as follows.

(1)

(M) Subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

 (10)

 (11)

The objective function (1) includes two elements to maximize the expected net present value of the mining

operation, and to minimize the expected recourse costs incurred whenever the stochastic constraints are violated due

to metal uncertainty. We assume that all scenarios have an equal probability of occurrence and hence the coefficient
1

𝑆

represents the probability that scenario s occurs. Constraints (2)-(5) are related to the non-stochastic constraints and

thus are scenario-independent. Constraints (2) guarantee that each block i is mined at most once during the horizon

(reserve constraints). The mining precedence is enforced by constraints (3). Constraints (4) and (5) ensure that the

requirements on the mining levels are respected during each period of the horizon.

Constraints (6)–(9) are related to the stochastic constraints and thus are scenario-dependent. Constraints (6) and (7)

are related to the requirements on the processing levels. For each scenario s, the target is to have the total weight of

ore blocks mined during any period t in the interval [𝑂𝑡 , 𝑂𝑡]. If it is equal to a value smaller than 𝑂𝑡 (respectively,

larger than 𝑂𝑡), then the shortage penalty cost is equal to 𝑐𝑡
𝑂−𝑑𝑡𝑠

𝑂− (respectively, the surplus penalty cost is equal to

𝑐𝑡
𝑂+𝑑𝑡𝑠

𝑂+). Finally, constraints (8) and (9) indicate that, during any period t, the target is to have the metal production

in the interval [𝑀𝑡 ,𝑀𝑡]. Otherwise, the shortage penalty cost is equal to 𝑐𝑡
𝑚−𝑑𝑡𝑠

𝑚− or the surplus penalty cost is equal

to 𝑐𝑡
𝑚+𝑑𝑡𝑠

𝑚+.

The model is described in detail in Lamghari and Dimitrakopoulos (2016a), and we only briefly recall it here. The

following notation is used:

Indices:

 N: the number of blocks considered for scheduling.

 i: block index, 𝑖 = 1,… , 𝑁.

 T: the number of periods over which blocks are being scheduled (horizon).

 t: period index, 𝑡 = 1,… , 𝑇.

 P: the number of processors. Note that since a stockpile is associated with each processor, the number of

stockpiles is equal to the number of processors.

 p: processor index, 𝑝 = 1,… , 𝑃.

 S: the number of scenarios used to model metal uncertainty.

 s: scenario index, 𝑠 = 1,… , 𝑆.

Variables:

 A binary variable is associated with each block i for each period t:

𝑥𝑖
𝑡 = {

1 if block 𝑖 is mined by period 𝑡,
0 otherwise.

This means that if block i is mined in period 𝜏, then 𝑥𝑖
𝑡 = 0 for all 𝑡 = 1, … , 𝜏 − 1 and 𝑥𝑖

𝑡 = 1 for all 𝑡 =
 𝜏, … , 𝑇. If i is not mined during the horizon, then 𝑥𝑖

𝑡 = 0 for all 𝑡 = 1, … , 𝑇.. To simplify the notation in

the rest of this section, we introduce a set of N dummy decision variables 𝑥𝑖
0 (𝑖 = 1,… , 𝑁), each having a

fixed value equal to 0.

 𝑦𝑝𝑠
𝑡+: surplus in the amount of ore mined during period t that can be processed in p if scenario s occurs

(i.e., the amount to send from the mine to the stockpile associated with 𝑝)

 𝑦𝑝𝑠
𝑡−: amount of ore to take in period t from the stockpile associated with processor p, if scenario s occurs

(i.e., the amount to send from the stockpile to the processor).

 𝑦𝑝𝑠
𝑡 : amount of ore in the stockpile associated with processor p at the end of period t under scenario s. It

is assumed that the stockpile is empty at the beginning of the first period but might not be empty at the

end of the planning horizon.

Parameters:

 𝜋𝑠: probability that scenario s occurs, with ∑ 𝜋𝑠 = 1
𝑆
𝑠=1 .

 𝑃𝑟𝑒𝑑(𝑖): the set of predecessors of block i; i.e., blocks that have to be removed to have access to block i

(𝑃𝑟𝑒𝑑(𝑖) ⊆ {1, … , 𝑁})
 𝑤𝑖: weight of block i in tonnes (tonnage).

 𝑊𝑡: maximum amount of material (waste and ore) that can be mined during period t (mining capacity in

tonnes).

 𝑐̅: undiscounted cost of mining a tonne of material.

 𝑐𝑝: undiscounted cost of processing a tonne of ore in processor p.

 𝜃𝑖𝑝𝑠 = {
1 if 𝑖 is processed in 𝑝 under scenario 𝑠,
0 otherwise.

 Θ𝑝
𝑡 : maximum amount of ore that can be processed in processor p during period t (processing capacity of

𝑝 in tonnes).

 𝑟𝑖𝑠: undiscounted revenue of an already mined block i if sent immediately for processing (i.e., during the

same period it is mined), and if scenario s occurs (𝑟𝑖𝑠 = 0 if 𝑖 is waste block under scenario 𝑠).
 𝑐𝑝

+: undiscounted cost of sending a tonne of ore to the stockpile associated with processor p (transportation

cost plus handling cost). It is assumed that when a block arrives at the stockpile, it is mixed with the other

material already there. The cost of this operation is included in 𝑐𝑝
+.

 𝑐𝑝
−: undiscounted cost of taking a tonne of ore from the stockpile associated with processor p

(transportation cost plus loading cost).

 �̃�𝑖𝑠: an approximation of the undiscounted revenue to be generated if a tonne of ore in the stockpile

associated with p is processed, and if scenario s occurs.

 d: the discount rate per period for cash flows.

The two-stage stochastic programming model can be summarized as follows:

(1)

(M) Subject to

 (2)

(3)

(4)

(5)

 (6)

 (7)

 (8)

(9)

(10)

The objective function (1) maximizes the NPV of the mine. It includes four rms:

1. The first term (−∑
1

(1+𝑑)𝑡
∑ 𝑤𝑖𝑐̅
𝑁
𝑖=1

𝑇
𝑡=1 (𝑥𝑖

𝑡 − 𝑥𝑖
𝑡−1)) evaluates the total discounted cost of the extraction

(discounted cost of the first stage solution).

2. The second term (∑
1

(1+𝑑)𝑡
∑ ∑ 𝜋𝑠

𝑆
𝑠=1 𝑟𝑖𝑠

𝑁
𝑖=1

𝑇
𝑡=1 (𝑥𝑖

𝑡 − 𝑥𝑖
𝑡−1)) gives the total expected discounted revenue

generated if all the ore mined is sent directly for processing during the period in which it is mined (first

type of recourse). Note that waste blocks do not contribute to this term because, as mentioned earlier, if i

is a waste block under scenario s , then 𝑟𝑖𝑠 = 0.

3. The third term (−∑
1

(1+𝑑)𝑡
∑ ∑ 𝜋𝑠

𝑆
𝑠=1

𝑃
𝑝=1

𝑇
𝑡=1 (�̃�𝑝𝑠 + 𝑐𝑝

+)𝑦𝑝𝑠
𝑡+) gives the total expected discounted cost of

sending ore to the stockpiles, including both the revenue lost because the ore is not processed in the period

where it is available and the cost of transportation to the stockpiles (second type of recourse).

4. The fourth term (∑
1

(1+𝑑)𝑡
∑ ∑ 𝜋𝑠

𝑆
𝑠=1

𝑃
𝑝=1

𝑇
𝑡=1 (�̃�𝑝𝑠 − 𝑐𝑝

−)𝑦𝑝𝑠
𝑡−) represents the total expected discounted net

revenue to be generated from processing ore taken from the stockpiles; that is, revenue minus loading and

transportation costs (third type of recourse).

Constraints (2)-(4) are scenario-independent. Constraints (2) guarantee that each block i is mined at most once

during the horizon. The mining precedence is enforced by constraints (3). Constraints (4) impose an upper bound 𝑊𝑡

on the amount of material (waste and ore) mined during each period t. Constraints (5) are related to the requirements

on the processing levels and therefore are senario-dependent. They stipulate that for each scenario s and each

processor p, if the total weight of ore blocks mined during any period t is greater than the processing capacity at that

period, Θ𝑝
𝑡 , then the surplus 𝑦𝑝𝑠

𝑡+ is sent to the stockpile associated with the processor p, inducing a penalty cost equal

to
(�̃�𝑝𝑠+𝑐𝑝

+)

(1+𝑑)𝑡
 𝑦𝑝𝑠
𝑡+. If it is smaller than Θ𝑝

𝑡 and there is material in the stockpile, then an amount equal to 𝑦𝑝𝑠
𝑡− (maximum

possible such that neither the capacity of the processor nor the amount available in the stockpile is exceeded) is taken

from the stockpile and added to feed the processor, generating a net profit equal to

(�̃�𝑝𝑠−𝑐𝑝
−)

(1+𝑑)𝑡
 𝑦𝑝𝑠
𝑡−. Finally, constraints (6)

balance the flow at each stockpile and are also scenario-dependent. They ensure that for each scenario s, at the end of

any period t, the amount of ore in the stockpile associated with each processor p is equal to the amount that was in the

stockpile at the end of the previous period (𝑡 − 1) plus the amount added to the stockpile during t minus the amount

taken from the stockpile during t (i.e., the amount sent from the stockpile for processing, if any). The initial amount in

the stockpile, 𝑦𝑝𝑠
0 , is assumed to be equal to 0.

Albor, F., Dimitrakopoulos, R. (2009) Stochastic mine design optimization based on simulated annealing: Pit limits, production schedules, multiple
orebody scenarios and sensitivity analysis. IMM Transactions, Mining Technology, 118(2) : 80–91.

Albor, F., Dimitrakopoulos, R. (2010) Algorithmic approach to pushback design based on stochastic programming: Method, application and

comparisons. IMM Transactions, Mining Technology, 119(2) : 88–101.

Asad, M., Dimitrakopoulos, R. (2013) Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply

and demand. Journal of the Operational Research Society, 64 : 185–197.

Behrang, K., Hooman, A., Clayton, D. (2014) A linear programming model for long-term mine planning in the presence of grade uncertainty and a
stockpile. International Journal of Mining Science and Technology, 24 : 451–459.

Bienstock, D., Zuckerberg, M. (2010) Solving LP relaxations of large-scale precedence constrained problems. Lecture Notes in Computer Science,

6080 : 1–14.

Birge, J., Louveaux, F. (2011) Introduction to stochastic programming, Second Edition. Springer.

Bley, A., Boland, N., Fricke, C., Froyland, G. (2010) A strengthened formulation and cutting planes for the open pit mine production scheduling

problem. Computers & Operations Research, 37(9) : 1641–1647.

Boland, N., Dumitrescu, I., Froyland, G., Gleixner, A. M. (2009) LP-based disaggregation approaches to solving the open pit mining production
scheduling problem with block processing selectivity. Computers & Operations Research, 36 : 1064–1089.

Boucher, A., Dimitrakopoulos, R. (2009) Block simulation of multiple correlated variables. Mathematical Geosciences, 41(2) : 215–237.

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R. (2013) Hyperheuristics: A survey of the state of the art. Journal of

the Operational Research Society, 64 : 1695–1724.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S. (2003a) Hyperheuristics: An emerging direction in modern search technology.

In: Handbook of Metaheuristics, Glover F and Kochenberger G (eds), Kluwer: 457–474.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J. (2010) A classification of hyper-heuristic approaches. In: Handbook of
metaheuristics - Second Edition, Springer, New York: 449–468.

Burke, E., Kendall, G., Soubeiga, E. (2003b) A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics, 9(3) : 451–470.

Caccetta, L., Hill, S. (2003) An application of branch and cut to open pit mine scheduling. Journal of Global Optimization, 27(2-3) : 349–365.

Chanda, E. (2007) Network linear programming optimization of an integrated mining and metallurgical complex. In: Proceedings of Orebody

Modelling and Strategic Mine Planning: Uncertainty and risk management models, The Australasian Institute of Mining and Metallurgy

Spectrum Series 14, 2nd Edition: 149–155.

Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., Rubio, E. (2012) A new algorithm for the open-pit mine production scheduling problem.
Operations Research, 60 : 517–528.

Chiles, J., Delfiner, P. (2012) Geostatistics: Modeling Spatial Uncertainty, Second ed. John Wiley & Sons., New Jersey.

Cowling, P., Kendall, G., Soubeiga, E. (2001) A hyperheuristic approach for scheduling a sales summit. Lecture Notes in Computer Science, 2079 :

176–190.

Cullenbine, C., Wood, R., Newman, A. (2011) A sliding time window heuristic for open pit mine block sequencing. Optimization Letters, 5(3) :

365–377.

Denzinger, J., Fuchs, M., Fuchs, M. (1997) High performance ATP systems by combining several AI methods. In: Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI 97), Morgan Kaufmann, CA, USA: 102–107.

Dimitrakopoulos, R. (2011) Stochastic optimization for strategic mine planning: A decade of developments. Journal of Mining Science, 47(2) : 138–

150.

Dimitrakopoulos, R., Farrelly, C., Godoy, M. (2002) Moving forward from traditional opti- mization: grade uncertainty and risk effects in open pit
mine design. IMM Transactions, Mining Technology, 111(1) : A82-A88.

Dowd, P. (1994) Risk assessment in reserve estimation and open-pit planning. Transactions of the Institution of Mining and Metallurgy, 103 : A148-

A154.

Drake, J., Ozcan, E., Burke, E. (2012) An improved choice function heuristic selection for cross domain heuristic search. Lecture Notes in Computer

Science, 7492 : 307–316.

Ferland, J. A., Amaya, J., Djuimo, M. S. (2007) Application of a particle swarm algorithm to the capacitated open pit mining problem. In:
Autonomous Robots and Agents, Mukhopadhyay S. and Sen Gupta G. Ed. Springer-Verlag: 127–133.

Fisher, H., Thompson, G. (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Industrial Scheduling, Muth, J.F.,

Thompson, G.L. (eds.), Prentice- Hall, New Jersey: 225–251.

Fricke, C., Velletri, P., Wood, R. (2014) Enhancing risk management in strategic mine planning through uncertainty analysis. In: Proceedings of

Orebody Modelling and Strategic Mine Planning Symposium 2014, The Australasian Institute of Mining and Metallurgy: 275–279.

Godoy, M. (2002) The effective management of geological risk. Ph.D. thesis, University of Queensland, Australia.

Goodfellow, R., Dimitrakopoulos, R. (2014) Stochastic optimisation of mineral value chains- Developments and applications for the global
optimisation of mining complexes with uncertainty. In: Orebody Modelling and Strategic Mine Planning, Ed. The Australasian Institute of

Mining and Metallurgy: 13–21.

Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

Hochbaum, D., Chen, A. (2000) Improved planning for the open-pit mining problem. Operations Research, 48(6) : 894–914.

Hoerger, S., Hoffman, L., Seymour, F. (1999) Mine planning at Newmont’s Nevada operations. Mining engineering, 51(10) : 26–30.

Horta, A., Soares, A. (2010) Direct sequential co-simulation with joint probability distributions. Mathematical Geosciences, 42(3) : 269–292.

Kawahata, K., Schumacher, P., Fein, M. (2015) Strategic mine planning and production scheduling optimization at Newmont’s twin creeks

operation. In: Proceedings of the 37th International Symposium Application of Computers and Operations Research in the Mineral Industry
(APCOM), Fairbanks, Alaska: 1052–1060.

Lamghari, A., Dimitrakopoulos, R. (2012) A diversified tabu search approach for the open- pit mine production scheduling problem with metal

uncertainty. European Journal of Operational Research, 222(3) : 642–652.

Lamghari, A., Dimitrakopoulos, R. (2016a) Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting

for metal uncertainty. European Journal of Operational Research, 250(1) : 273–290.

Lamghari, A., Dimitrakopoulos, R. (2016b) Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for
reserve uncertainty. European Journal of Operational Research, 253(3) : 843–855.

Lamghari, A., Dimitrakopoulos, R., Ferland, J.A. (2015) A hybrid method based on linear programming and variable neighborhood descent for

scheduling production in open-pit mines. Journal of Global Optimization, 63(3) : 555–582.

Lamghari, A., Dimitrakopoulos, R., Ferland, J.A. (2014) A variable descent neighborhood algorithm for the open-pit mine production scheduling

problem with metal uncertainty. Journal of the Operational Research Society, 65(9) : 1305–1314.

Maleki, M., Emery, X. (2015) Joint simulation of grade and rock type in a stratabound copper deposit. Mathematical Geosciences, 47(4) : 471–495.

Marcotte, D., Caron, J. (2013) Ultimate open pit stochastic optimization. Computers & Geosciences, 51 : 238–246.

Menabde, M., Froyland, G., Stone, P., Yeates, G. (2007) Mining schedule optimization for conditionally simulated orebodies. Orebody Modelling
and Strategic Mine Planning, The Australasian Institute of Mining and Metallurgy, Spectrum Series, 14 : 379–384.

Montiel, L., Dimitrakopoulos, R. (2015) Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-

based approach. European Journal of Operational Research, 247(1) : 166–178.

Montiel, L., Dimitrakopoulos, R., Kawahata, K. (2016) Globally optimising open-pit and underground mining operations under geological

uncertainty. Mining Technology, 125(1), 2–14.

Moreno, E., Espinoza, D., Goycoolea, M. (2010) Large-scale multi-period precedence constrained knapsack problem: A mining application.
Electronic Notes in Discrete Mathematics 36 : 407–414.

Ramazan, S., Dimitrakopoulos, R. (2013) Production scheduling with uncertain supply: A new solution to the open pit mining problem. Optimization

and Engineering, 14 : 361–380.

Ravenscroft, P. (1992) Risk analysis for mine scheduling by conditional simulation. Transactions of the Institution of Mining and Metallurgy,

Section A: Mining Technology: A104–A108.

Ross, P. (2005) Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Burke EK
and Kendall G (eds), Springer: 529–556.

Rossi, M., Deutsch, C. (2014) Mineral Resource Estimation. Springer, New York.

Whittle, G. (2007) Global asset optimization. In: Proceedings of Orebody Modelling and Strategic Mine Planning: Uncertainty and risk management

models, The Australasian Institute of Mining and Metallurgy Spectrum Series 14, 2nd Edition: 331–336.

Whittle, J. (2009) The global optimizer works-what next? In: Proceedings of Advances in Orebody Modelling and Strategic Mine Planning: old and

new dimensions in a changing world, The Australasian Institute of Mining and Metallurgy Spectrum Series 17, 1st Edition: 3–5.

	GERAD2016_ENG
	G16105_WORD

