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Université du Québec à Montréal, as well as the Fonds de recherche du
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-101
https://www.gerad.ca/fr/papers/G-2016-101
https://www.gerad.ca/en/papers/G-2016-101
https://www.gerad.ca/en/papers/G-2016-101




Updating short-term material
flow optimization in a mining
complex with new information

Cosmin Paduraru a

Roussos Dimitrakopoulos a , b

a COSMO Stochastic Mine Planning Laboratory,
Department of Mining and Materials Engineering, McGill
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Abstract: With the advent of inexpensive sensors and digital storage, increasing amounts of data about
a mining complex can be collected. This can include camera imaging, mill sensors, blasthole analysis, GPS
devices etc. This paper shows how the reduction in uncertainty resulting from this data can be incorporated
into stochastic short-term decision-making. This is done through the use of adaptive decision-making policies,
which encode recipes for responding to new information as it comes along. Focusing on short-term planning,
the paper describes how adaptive policies for allocating the extracted material can be computed in conjunction
with optimizing the schedule. The resulting plan can be applied across different short-term time scales,
marking an important step towards simultaneously optimizing different time scales. An implementation of
the proposed method for a copper-gold deposit shows that it can improve over simple heuristic approaches.



 

An increasing array of devices for measuring material flow in a mining complex has become available in recent years. 

Near-infrared reflectance spectroscopy placed on conveyor belts have been shown to provide accurate measurements 

of mineral concentration and other properties (Goetz et al., 2009). Camera images can also be used for inferring various 

mineral properties using machine learning methods (Horrocks et al., 2015; Chatterjee, 2013). Fleet location data is 

increasingly collected thanks to the widespread use of GPS devices. 

 

All of this data, together with more traditional information such as blasthole and in-fill drilling analysis, can greatly 

reduce the uncertainty regarding the properties of the extracted and processed material. In practice, decisions made by 

mine operators do adapt to this uncertainty reduction - for instance, the mill will not be fed material that is revealed to 

be unsuitable, even if the long-term plan might require it. However, mine planning methods are not currently equipped 

for including this type of adaptation into their models. 

 

This paper proposes a mechanism for optimizing material destination policies that respond to progressively-

revealed information about the extracted material, and shows how to integrate the resulting adaptive policies with 

short-term production planning. The optimization step can increase value by determining the best way to adapt to new 

information; the integration with scheduling can lead to a more realistic assessment of mineral value, and therefore to 

a better schedule. 

 

The key concept for computing the adaptive policies described herein is that of state, which is a numerical summary 

of the system's properties. For destination policies, this can include information about the block being allocated, as 

well as information about the status of the different processing destinations. An adaptive policy can then be defined as 

a mechanism that outputs a decision (in our case, a destination decision) for every state that the system (in our case, 

the mining complex) might be in. 

 

Since this work deals with responding to uncertainty reduction, it is naturally set within a stochastic mine planning 

context. There has been significant progress in recent years in the optimization of mining complexes under uncertainty 

(Hoerger et al., 1999; Whittle, 2007, 2010; Stone et al., 2007; Dimitrakopoulos, 2011; Peevers and Whittle, 2013; 

Goodfellow, 2014; Montiel, 2014). However, few works study how the mining complex should adapt to new 

information and to the resulting decrease in uncertainty, and most of the ones that do only consider long-term (strategic) 

planning. For instance, Dimitrakopoulos and Sabour (2007) and Del Castillo and Dimitrakopoulos (2014) consider a 

real option valuation framework for analyzing the impact of using stochastic programming (MSP) in order to plan for 

how a long-term schedule should be updated as new information is obtained. The same methodology is used by 

Armstrong et al. (2012) in order to develop contingency plans for incidents that lead to production interruptions, and 

by Pimentel et al. (2013) for examining the option of adding new supply stations and ports to a regional supply chain. 

Boland et al. (2008) use multi-stage stochastic programming for designing a production schedule that provides 

contingencies for different future realizations of uncertainty. Paduraru and Dimitrakopoulos (2014) use an approximate 

dynamic programming approach for computing adaptive destination policies in a long-term planning context. 

 

In contrast to the works above, the work presented in this paper focuses on short-term time scales. The adaptive 

destination policies introduced herein respond to new information obtained at a high temporal resolution (roughly 

corresponding to the time it takes to extract a block of material). This ensures consistency between different time 

scales, allowing for mutually consistent plans for different short-term time scales (e.g. months, weeks, days) to be 

produced by a simple process of temporal aggregation. 

 

The closest existing work is perhaps that of Benndorf et al. (2014), who propose a general framework for integrated 

updates of the model and the plan based on new information. This includes a proposal to perform simulation-based 

optimisation for updating the short-term production plan in response to the new information. However, this has not yet 

been implemented, their case study focusing solely on the model update component. 

 

This paper presents a complete algorithm for computing adaptive state-dependent policies that update short-term 

decisions given new information. The algorithm is implemented for computing state-dependent destination policies 

for a copper-gold case study, with the results illustrating the benefits of using the optimized policies.  



 

 

This section shows how to compute state-dependent short-term policies that encode how the mining complex should 

adapt to new information. Throughout the section, destination policies will be used as an illustrative example (a 

destination policy is a mechanism for deciding which destination each block will be sent to). However, many of the 

concepts are general and can be applied for computing other types of policies as well. 

 

As mentioned in the introduction, most previous work on adapting to new information in a mining complex has focused 

on long-term planning aspects. While undoubtedly important, the long-term view can nevertheless miss important 

details that have a significant impact on the final value obtained. 

 

As an example, consider the problem of computing destination policies for a mining complex composed of a mine 

and two processing destinations, a mill and a heap leach. Assume that a long-term production schedule is available, so 

that it is known what blocks will be extracted in any given year. A destination policy for this example must decide 

whether to send each ore block to the mill or to the heap leach. 

 

Figure 1 illustrates a typical way of evaluating a destination policy within the long-term view. For each year, there 

are two main steps to perform: compute the destinations for each block scheduled during that year, and compute the 

cumulative effect of sending the blocks to their respective destinations. Reducing the evaluation to these two steps 

simplifies the problem, but it may miss details that are ultimately important. For instance, it fails to identify situations 

where there is enough suitable material for meeting mill demand within the whole year, but due to physical constraints 

most of that material can only be extracted in the second part of the year. This can lead to the mill not operating at 

capacity during the first part of the year, and to subsequent loss of production that is not accounted for in the long-term 

view. This issue could be addressed by modelling a feed pile for the mill (from which material processed by the mill 

at a constant rate), and keeping track of the amount of ore in the feed pile as time progresses during the year, rather 

than only looking at total capacity for the year. A similar issue may arise when dealing with non-linear recovery curves. 

The amount of recovered metal computed at the end of the year under the long-term view will be based on the average 

grade for that year, which may not be equal to the total recovered amount throughout the year.  

 

 

Figure 1: The typical way to evaluate destination decisions only considers what happens at the end of the year, not what happens 
throughout the year. 

The short-term view is also better suited for answering the question of how to respond to new information obtained 

during the operation of the mining complex. New information is obtained at different time scales, but most of these 

are shorter than the yearly time scale used by long-term planning. Therefore, this information should be combined with 

the type of detailed short-term modelling discussed in the previous paragraph. This is illustrated by Figure 2, which 

shows how the available information changes after each block allocation. This new information can be used by a 

destination policy that, rather than only selecting destinations based on the initial uncertainty, updates its decisions as 

more information is obtained. The decisions could be made based on data collected about the block itself (e.g. material 

type), as well as information about the status of the different destinations at the point in time when the block is 

allocated. Notice how more detailed short-term modelling (such as using the feed pile rather than the mill as a 

destination) goes hand in hand with incorporating new information. 



 

 

 

Figure 2: A short-term view of information flow for the block destination problem. At the time of each allocation, the destination policy 
can use information about the block that is being allocated, as well as about the material at the two destinations. 

 

This section introduces state-dependent policies that can explicitly encode how to respond to new information. State-

dependent policies take their name from the concept of system state. The state of a system at some point in time can 

be informally described as a numerical representation containing all the necessary information about that system that 

can be extracted from data obtained up to that point in time. For a more in-depth and theoretical discussion of the 

concept of state, see Chapter 5 of Powell (2007). 

 

Once again, the destination policy example from the previous section will be used for illustration and for 

introducing the concepts. In order to mathematically formalize destination policies, this paper assumes that extracted 

material can be described using a set of additive properties, similarly to Goodfellow (2014). Examples of such 

properties are total tonnage and metal tonnage; non-linear properties such as metal grade can be computed based on 

the additive properties if needed. 

 

The details for the state-based destination policy example are as follows. Each time point t corresponds to sending 

a new block to its destination, and there are a total of T blocks in the period of interest. Given an order in which the 

blocks are sent for processing, they can be labelled 𝑏𝑙𝑜𝑐𝑘1, … 𝑏𝑙𝑜𝑐𝑘𝑡 , … 𝑏𝑙𝑜𝑐𝑘𝑇 corresponding to this order. The data 

obtained up until t can be used to compute the material properties of 𝑏𝑙𝑜𝑐𝑘1, … 𝑏𝑙𝑜𝑐𝑘𝑡 (note that uncertainty still 

remains regarding the properties of the blocks that need to be allocated from t onwards). The question of how the 

properties for the first t blocks are computed based on particular types of data is beyond the scope of this paper and 

will be left for future work. 

 

The state at time t (denoted by 𝑠𝑡) needs to summarize the information available up to time t in a way that is suitable 

for decision making. The properties of 𝑏𝑙𝑜𝑐𝑘𝑡 (total tonnage 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡) and metal tonnage 𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡) for this 

example) are certainly important for the allocation decision at time t, so they will be included in 𝑠𝑡. The properties of 

blocks 𝑏𝑙𝑜𝑐𝑘1, … 𝑏𝑙𝑜𝑐𝑘𝑡−1 are important insofar as they affect the status of the processing destinations. For the mill, 

the tonnage of the material in the feed pile at time t (denoted 𝑇𝑇(𝐹𝑃𝑡)) is important because the mill has to stop 

processing if the feed pile is empty, and also in order to make sure that sending 𝑏𝑙𝑜𝑐𝑘𝑡 to the mill does not result in 

exceeding feed pile capacity. The heap leach tonnage (denoted 𝑇(𝐻𝐿𝑡)) is also important in order to make sure capacity 

is not exceeded. In addition, the metal tonnage at both destinations is important for computing the head grade and 

therefore the recovery at time t. Therefore, the state at time t is the vector 

 

𝑠𝑡 = [𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡),𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡), 𝑇𝑇(𝐹𝑃𝑡),𝑀𝑇(𝐹𝑃𝑡), 𝑇𝑇(𝐻𝐿𝑡),𝑀𝑇(𝐻𝐿𝑡)]. 

 

Note that the total tonnage and the metal tonnage for both destinations can be computed based on the total tonnage 

and metal tonnage of the blocks allocated before time t. 

 

A state-dependent policy is any mechanism for making decisions based on the state. State-based policies are 

typically represented as functions from the state space to the decision space. For the example used here, the decision 

space is composed of two possible decisions for each block: sending it to the mill (𝑑𝑀) or sending it to the heap 



 

leach (𝑑𝐻𝐿). Therefore, a state-dependent destination policy for this example is a function 𝑑𝑝 such that, for any state 

𝑠𝑡, 𝑑𝑝(𝑠𝑡) ∈ {𝑑𝑀 , 𝑑𝐻𝐿}. More generally, if there are 𝐷 destinations denoted 𝑑1, … 𝑑𝐷, the destination policy would 

have to be such that 𝑑𝑝(𝑠𝑡) ∈ {𝑑1, … 𝑑𝐷} for any state 𝑠𝑡. 

 

The first step to optimizing a state-dependent policy requires expressing the objective function and constraints in terms 

of that policy. For traditional optimization problems each potential solution is a finite-dimensional decision vector, 

and the objective function can be written as a mathematical function of the variables in the decision vector. For state-

dependent policies, the decision vector may be infinitely dimensional if the number of states is not finite. The reason 

for this is that a different decision must be specified for each potential state value. This problem can be addressed by 

ensuring that the policy (rather than the decision vector) can be expressed using a finite number of parameters. 

 

Let us use the two-destination example once again for illustration. A very simple type of destination policy is a cut-

off grade policy. On the two-destination example, a cut-off grade policy for deciding whether an ore block should be 

processed by the mill or the heap leach can be written as 

 

𝑑𝑝𝑔(𝑠𝑡) =  

{
 
 

 
 𝑑𝑀, 𝑖𝑓 

𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡)

𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡)
≥ 𝑔 

𝑑𝐻𝐿 , 𝑖𝑓 
𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡)

𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡)
< 𝑔 

 

 

where 𝑔 is a parameter denoting the cut-off grade. Assume that the mill and the heap leach have constant recovery 

factors of 𝑟𝑀 and 𝑟𝐻𝐿, respectively, that the processing costs per tonne are 𝑐𝑀and 𝑐𝐻𝐿 for the two destinations, that the 

price per tonne of concentrate is 𝑝, and that the objective is to maximize revenue minus processing cost. In addition, 

in order to represent uncertainty, denote each scenario (where each scenario corresponds to one realization of the 

uncertainty model) by 𝑠𝑐, the number of scenarios by |𝑆𝐶| and the total tonnage and metal tonnage for 𝑏𝑙𝑜𝑐𝑘𝑡 under 

scenario 𝑠𝑐 by 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐) and 𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐) respectively. Then the optimization problem amounts to 

maximizing over 𝑔 the expected sum of mill profit (first term) and heap leach profit (second term): 

 

1

|𝑆𝐶|
∑  

|𝑆𝐶|

𝑠𝑐=1

[∑𝟏𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡,𝑠𝑐)
𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡,𝑠𝑐)

≥𝑔 
𝑡

(𝑏𝑙𝑜𝑐𝑘𝑡)(𝑟𝑀 ∗ 𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐) ∗ 𝑝 − 𝑐𝑀 ∗ 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐)) 

+ ∑𝟏𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡,𝑠𝑐)
𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡,𝑠𝑐)

<𝑔 
𝑡

(𝑏𝑙𝑜𝑐𝑘𝑡)(𝑟𝐻𝐿 ∗ 𝑀𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐) ∗ 𝑝 − 𝑐𝐻𝐿 ∗ 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡 , 𝑠𝑐))] 

 

where for any variable 𝑥 and predicate 𝐴𝑥 the symbol 𝟏 denotes the indicator function 

 

𝟏𝐴𝑥(𝑥) =  {
1, 𝑖𝑓 𝐴𝑥𝑖𝑠 𝑇𝑅𝑈𝐸
0, 𝑖𝑓 𝐴𝑥𝑖𝑠 𝐹𝐴𝐿𝑆𝐸

  . 

 

Note that there is no discounting in the objective function above because the problem considered is short-term. Any 

constraints could also be written as a function of the policy, similarly to the objective function. 

 

The cut-off grade policy used for this example is extremely simple, and ignores many components of the state 

vector that may have an impact on the final value. Nevertheless, it illustrates the point about representing a finite set 

of policy parameters rather than a decision vector: instead of explicitly representing a decision for each possible state 

(or block grade), there is a single parameter to optimize over (the cut-off grade 𝑔). However, this approach also results 

in additional issues that need to be considered. The first one is finding a suitable parametric representation for the 

policy, ideally such that a near-optimal policy can be found within the parameter space used. An example of a more 

complex state-dependent destination policy will be used for the case study in Section 3. The second issue is that, as 



 

the space of parameterized policies become more complex, the optimization problem becomes more difficult as it has 

to deal with a larger number of variables and complex, highly non-linear terms. 

 

Despite these difficulties, or perhaps because of them, a large number of methods have been proposed for 

optimizing state-dependent policies under uncertainty. A good place to start understanding existing approaches is the 

literature review / tutorial titled “Clearing the Jungle of Stochastic Optimization” (Powell, 2014). In it, the author 

clarifies the terminology used across different disciplines that study these types of problems, identifies four main types 

of state-dependent policies, and reviews existing approaches for representing and optimizing these policies. 

 

Due to the wealth and breadth of existing approaches, this paper will not attempt to provide a review of existing 

methods. They all amount to some sort of search in the space of policy parameters, which can be performed through a 

variety of methods ranging from many variations of gradient-based optimization to heuristic search and approximate 

dynamic programming. Instead, the current paper focuses on a conceptual understanding of state-dependent policies 

and their potential applications to the optimization of mining complexes, and uses a combination of grid search and 

the simplex method (Nelder and Mead, 1964) for optimizing policy parameters. 

 

Destination policies are only one of several interacting components of a mining complex. Figure 3 contains a 

conceptual diagram describing the interaction of production scheduling and state-dependent destination policies. It can 

be seen from the diagram that both overall system behaviour (i.e. what material gets processed and where) as well as 

the value of the objective function (which is a function of the revenue and the costs) depend on both the scheduler and 

the destination policy. Therefore, the optimization of state-dependent policies should ideally be integrated with 

production scheduling.  

 

 

Figure 3: Integrating destination policies and production scheduling. The solid lines represent material and information flow, the dashed 
lines represent information that informs the optimizer, while the dotted lines represent decision-making. 

Similar considerations arise for the remaining components of the mining complex (processing options, 

transportation, further material flows etc.). As discussed in the Introduction, this type of global optimization has been 

the focus of an increasing body of recent work, although it is typically not addressed from an adaptive perspective. 

This paper proposes the simple iterative approach outlined below in order to integrate production scheduling and 

adaptive destination policies: 

 

1. Generate n random feasible schedules 𝑠𝑐ℎ𝑒𝑑1, … 𝑠𝑐ℎ𝑒𝑑𝑛 

2. Find the destination policy 𝑑𝑝∗ that maximizes over 𝑑𝑝 

 

1

𝑛
∑

1

|𝑆𝐶|
∑ 𝑂𝑏𝑗(𝑑𝑝, 𝑠𝑐ℎ𝑒𝑑𝑖 , 𝑠𝑐)

|𝑆𝐶|

𝑠𝑐=1

𝑛

𝑖=1

 (1) 

 

where 𝑂𝑏𝑗(𝑑𝑝, 𝑠𝑐ℎ𝑒𝑑𝑖 , 𝑠𝑐) is the value of the objective function (cash flows, NPV etc.) for destination policy 

𝑑𝑝, schedule 𝑠𝑐ℎ𝑒𝑑𝑖, and scenario 𝑠𝑐 

3. Find a schedule 𝑠𝑐ℎ𝑒𝑑∗ that maximizes over 𝑠𝑐ℎ𝑒𝑑 

 



 

1

|𝑆𝐶|
∑ 𝑂𝑏𝑗(𝑑𝑝∗, 𝑠𝑐ℎ𝑒𝑑, 𝑠𝑐)

|𝑆𝐶|

𝑠𝑐=1

 (2) 

 

4. Generate n random perturbations 𝑠𝑐ℎ𝑒𝑑1, … 𝑠𝑐ℎ𝑒𝑑𝑛 of 𝑠𝑐ℎ𝑒𝑑∗ and go to Step 2 

5. Stop according to an appropriate criterion (e.g. small changes in objective function or maximum number of 

iterations) and output 𝑠𝑐ℎ𝑒𝑑∗ and 𝑑𝑝∗ 
 

Generating randomized perturbations of 𝑠𝑐ℎ𝑒𝑑∗ in Step 4 aims to ensure that the final destination policy 𝑑𝑝∗ is 

robust with small changes to the schedule. This is important for situations where the schedule cannot be implemented 

exactly as planned due to unforeseen circumstances and practical constraints. 

 

This section presents an implementation of short-term planning using state-dependent policies for a copper-gold mine. 

The case study is based on the one used by Goodfellow and Dimitrakopoulos (2013), but it is modified in order to 

include more details relevant to short-term planning. 

 

The mine complex under consideration consists of a single mine from which the extracted blocks can be sent to 

one of six initial destinations. The material extracted from the mine is comprised of three main groups (sulphides, 

transition and oxides), each of which is divided into two sub-groups, as illustrated o the left side of Figure 4. There are 

six destinations to which the material can be sent: a sulphide mill, a sulphide heap leach, a sulphide dump leach, a 

transition heap leach, an oxide heap leach and an oxide waste dump. The sulphide mill produces both copper and gold, 

and the leaches produce either copper or gold, as shown in Figure 4. The destinations are selective about the types of 

material they accept, as illustrated in Figure 4.  

 

 

Figure 4: Graphical representation of the various material types and destinations. Each destination only accepts material types 
corresponding to the arrows pointing to it. 

The sulphide mill is modelled to include a feed pile with a capacity of 500,000 tonnes. There is a ramp-up period 

of one month, during which no material is processed at the mill and any material sent to the mill accumulates on the 

feed pile. After the ramp-up period, the mill processes material from the feed pile at a fixed rate, unless there is no 

material left on the feed pile in which case it is stopped and restarted once material is deposited on the feed pile again. 

In order to provide a high level of detail, this process is simulated at a high temporal resolution. Thus, each time 

increment corresponds to the time between the extraction of two consecutive blocks. The amount that the mill processes 

at each of these time increments (assuming there is sufficient material on the feed pile) is equal to 2,066 tonnes. This 

results in a yearly mill processing capacity of 3 million tonnes. For the heap leaches (including the sulphide dump, 

which acts as a heap leach), material is piled on until the leach contains 1,000,000 tonnes of material, at which point 

leaching occurs.  

 

The amount of concentrate produced by the different destinations is computed according to the grade-recovery 

curves shown in Figure 5. For the mill, the recovery at each point in time is computed based on the average grade in 

the feed pile at that point. The recovery for the heap leaches is computed based on the average grade of the material 

that has been piled on before leaching occurs. The processing costs (relative to a “base cost”) and metal prices used 

can be found in Table 1. 



 

 

 

Figure 5: Grade-recovery curves for the various destinations. Recoveries expressed as percentage of maximum recovery for 
confidentiality purposes. Figure reproduced from Goodfellow and Dimitrakopoulos (2013). 

 
Table 1: Processing costs and economic parameters. Note that all costs are expressed relative to a base cost (𝒙) that is not disclosed. 

Processing costs (relative to base cost x) 

Sulphide mill $11.30*x/tonne 

Sulphide heap leach $2.98*x/tonne 

Sulphide dump leach $1.87*x/tonne 

Transition heap leach $2.15*x/tonne 

Oxide heap leach $2.06*x/tonne 

Economic parameters 

Copper price (including  

selling and G&A costs) 

$2.88 /lb Cu recovered 

Gold price (including  

G&A costs) 

$1480 /oz Au recovered 

 

The iterative process combining short-term production scheduling and state-dependent destination policy 

optimization described at the end of Section 2.3 was applied to this case study. In order to model geological uncertainty, 

50 pre-computed equiprobable orebody simulations were used. Each of these simulations contains spatially correlated 

realizations for the block property values, namely the tonnage, the amount of gold and copper contained, and the 

material type. In order to avoid overfitting, the first 30 simulations were used for optimizing the schedule and the 

policy parameters, and the remaining 20 were used for computing risk profiles. 

 

Remember that the iterative optimization involves the optimization of a function of the form 

 

1

|𝑆𝐶|
∑ 𝑂𝑏𝑗(𝑑𝑝, 𝑠𝑐ℎ𝑒𝑑, 𝑠𝑐)

|𝑆𝐶|

𝑠𝑐=1

, 

 

where 𝑂𝑏𝑗(𝑑𝑝, 𝑠𝑐ℎ𝑒𝑑, 𝑠𝑐) is the value of the objective function for destination policy 𝑑𝑝, schedule 𝑠𝑐ℎ𝑒𝑑, and scenario 

𝑠𝑐. For the current case study, 𝑂𝑏𝑗 corresponds to short-term cash flows and has the general form 

 

∑(𝑅𝑒𝑣𝑡(𝑀𝑖𝑙𝑙) − 𝑃𝑟𝑜𝑐𝐶𝑜𝑠𝑡𝑡(𝑀𝑖𝑙𝑙) − 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑡(𝑀𝑖𝑙𝑙) − 𝐶𝑎𝑝𝑃𝑒𝑛𝑡(𝐹𝑃) 

𝑇

𝑡=1

+∑(𝟏𝑇𝑇(𝐻𝑇𝑡)>𝐿𝑇(𝑅𝑒𝑣𝑡(𝐻𝐿) − 𝑃𝑟𝑜𝑐𝐶𝑜𝑠𝑡𝑡(𝐻𝐿)))

𝐻𝐿

) 

(3) 
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In the equation above, 𝑡 is the time increment (corresponding to the time it takes to extract one block), and 𝑇 is the 

total number of time increments (blocks) in the period of interest (e.g. year). For the results shown below, the period 

of interest is the second year of production. Note that, because the problem considered is short-term, there is no 

discounting. The mill stopping cost 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑡(𝑀𝑖𝑙𝑙) is equal to $308,000 ∗ 𝑥 for the first time step the mill 

needs to be closed, and $61,500 ∗ 𝑥 for each subsequent time step, where 𝑥 is the base cost mentioned above.1 The 

inner sum reflects the fact that revenue for the heap leaches occurs when the unleached material exceeds the “leaching 

tonnage” LT (once leached, that material is subtracted from the total tonnage for that heap leach). In order to write out 

the revenue and processing cost for each destination, as well as the penalty for surpassing feed pile capacity 

(𝐶𝑎𝑝𝑃𝑒𝑛𝑡(𝐹𝑃)), the following quantities are defined: 

 

 𝑇𝑇(𝐹𝑃𝑡) is the amount on the feed pile at time 𝑡. Because the mill processes a fixed tonnage (2,066 tonnes) 

from the feed pile at each time step if sufficient material is available, 𝑇𝑇(𝐹𝑃𝑡) changes over time according to 

 

𝑇𝑇(𝐹𝑃𝑡+1) = {
𝑇𝑇(𝐹𝑃𝑡) + 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡) −  min (2066, 𝑇𝑇(𝐹𝑃𝑡)), 𝑖𝑓 𝑑𝑝(𝑠𝑡) = 𝑑𝑀

𝑇𝑇(𝐹𝑃𝑡) −  min (2066, 𝑇𝑇(𝐹𝑃𝑡)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 𝐶𝑢𝑇(𝐹𝑃𝑡) is the amount of copper on the feed pile at time 𝑡. The feed pile is assumed to be homogenized, 

therefore 𝐶𝑢𝑇(𝐹𝑃𝑡) changes over time according to  

 

𝐶𝑢𝑇(𝐹𝑃𝑡) =  

{
 
 

 
 𝐶𝑢𝑇(𝐹𝑃𝑡) + 𝐶𝑢𝑇(𝑏𝑙𝑜𝑐𝑘𝑡) −  

min(2066, 𝑇𝑇(𝐹𝑃𝑡))

𝑇𝑇(𝐹𝑃𝑡)
∗  𝐶𝑢𝑇(𝐹𝑃𝑡), 𝑖𝑓 𝑑𝑝(𝑠𝑡) = 𝑑𝑀

𝐶𝑢𝑇(𝐹𝑃𝑡) −
min(2066, 𝑇𝑇(𝐹𝑃𝑡))

𝑇𝑇(𝐹𝑃𝑡)
∗  𝐶𝑢𝑇(𝐹𝑃𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 𝐴𝑢𝑇(𝐹𝑃𝑡) is the amount of gold on the feed pile at time 𝑡, and it changes over time similarly to 𝐶𝑢𝑇(𝐹𝑃𝑡) 
 𝑖𝑛𝑡

𝑇𝑇(𝑑𝑒𝑠𝑡) is the total tonnage processed at destination 𝑑𝑒𝑠𝑡, and is computed as follows: 

o for the mill, 𝑖𝑛𝑡
𝑇𝑇(𝑀𝑖𝑙𝑙) =  min (2066, 𝑇𝑇(𝐹𝑃𝑡)) 

o leaching occurs when enough material has been heaped since the last leaching; therefore, 

𝑖𝑛𝑡
𝑇𝑇(𝑑𝑒𝑠𝑡) = ∑ 𝑇𝑇𝐿𝐿𝑡≤𝑖<𝑡 (𝑏𝑙𝑜𝑐𝑘𝑖) for each heap leach, where 𝐿𝐿𝑡 is the last time step when 

leaching occurred for 𝑑𝑒𝑠𝑡 
 𝑖𝑛𝑡

𝐶𝑢(𝑑𝑒𝑠𝑡) is the total copper tonnage processed by destination 𝑑𝑒𝑠𝑡 in period 𝑡, computed as follows: 

o 𝑖𝑛𝑡
𝐶𝑢(𝑀𝑖𝑙𝑙) =  

min(2066,𝑇𝑇(𝐹𝑃𝑡))

𝑇𝑇(𝐹𝑃𝑡)
∗  𝐶𝑢𝑇(𝐹𝑃𝑡)  

o 𝑖𝑛𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) = ∑ 𝐶𝑢𝑇𝐿𝐿𝑡≤𝑖<𝑡 (𝑏𝑙𝑜𝑐𝑘𝑖) if 𝑑𝑒𝑠𝑡 ≠ 𝑀𝑖𝑙𝑙  

 𝑖𝑛𝑡
𝐴𝑢(𝑑𝑒𝑠𝑡) is the total gold tonnage processed by destination 𝑑𝑒𝑠𝑡 in period 𝑡, and is computed similarly to 

𝑖𝑛𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) 

 𝑜𝑢𝑡𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) =  𝑖𝑛𝑡

𝐶𝑢(𝑑𝑒𝑠𝑡)  ×  𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑑𝑒𝑠𝑡(𝑖𝑛𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) , 𝑖𝑛𝑡

𝑇𝑇(𝑑𝑒𝑠𝑡)) is the total copper produced at 

𝑑𝑒𝑠𝑡 (for destinations that produce only gold, 𝑜𝑢𝑡𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) = 0) 

 𝑜𝑢𝑡𝑡
𝐴𝑢(𝑑𝑒𝑠𝑡) =  𝑖𝑛𝑡

𝐴𝑢(𝑑𝑒𝑠𝑡) ×  𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑑𝑒𝑠𝑡(𝑖𝑛𝑡
𝐴𝑢(𝑑𝑒𝑠𝑡), 𝑖𝑛𝑡

𝑇𝑇(𝑑𝑒𝑠𝑡)) is the total gold produced at 𝑑𝑒𝑠𝑡 
(for destinations producing only copper, 𝑜𝑢𝑡𝑡

𝐴𝑢(𝑑𝑒𝑠𝑡) = 0) 

 𝑝𝐶𝑢  and 𝑝𝐴𝑢 are the selling prices for copper and gold, respectively 

 𝑐𝑝𝑟𝑜𝑐
𝑑𝑒𝑠𝑡  and 𝑐𝑠𝑒𝑙𝑙

𝑑𝑒𝑠𝑡 are the processing and selling costs, respectively, for 𝑑𝑒𝑠𝑡 

 

  

                                                           
1 The reason why the stopping cost appears to be so large is that 𝑥 is expressed as a cost per tonne, whereas the stopping cost is incurred for 

every time step, which corresponds to the time it takes to process a whole block. Blocks weigh around 14,000 tonnes on average. 



 

The revenue and processing cost for each destination can now be written as: 

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡(𝑑𝑒𝑠𝑡) = 𝑝𝐶𝑢 ×  𝑜𝑢𝑡𝑡
𝐶𝑢(𝑑𝑒𝑠𝑡) + 𝑝𝐴𝑢 ×  𝑜𝑢𝑡𝑡

𝐴𝑢(𝑑𝑒𝑠𝑡) 

𝑃𝑟𝑜𝑐𝐶𝑜𝑠𝑡𝑡(𝑑𝑒𝑠𝑡) = (𝑐𝑝𝑟𝑜𝑐
𝑑𝑒𝑠𝑡 + 𝑐𝑠𝑒𝑙𝑙

𝑑𝑒𝑠𝑡) ×  𝑖𝑛𝑡
𝑇𝑇(𝑑𝑒𝑠𝑡) 

 

The penalty for surpassing feed pile capacity is 

 

𝐶𝑎𝑝𝑃𝑒𝑛𝑡(𝐹𝑃) =  25 ∗ max(0, TT(FPt) − 500,000)
1.05   

 

The state 𝑠𝑡 for this problem includes the material type, tonnage and metal content of 𝑏𝑙𝑜𝑐𝑘𝑡, the tonnage and metal 

content for the feed pile material at time 𝑡, as well as the total tonnage and metal content of the unleached material for 

each of the heap leaches at time 𝑡. Based on this, a state-dependent policy is constructed using a problem-specific 

parameterization. Namely, the policy assigns 𝑏𝑙𝑜𝑐𝑘𝑡 to the destination that optimizes the trade-off between sending 

𝑏𝑙𝑜𝑐𝑘𝑡 to the destination that results in the largest improvement in the objective function and ensuring that the mill 

feed pile does not run out of material. In order to formally write the policy, denote by 𝑂𝑏𝑗𝑡 the term of the objective 

function in Equation 3 corresponding to time step 𝑡, and by 𝑇𝑇(𝐹𝑃𝑡) the feed pile tonnage at time 𝑡. The policy then 

has the parametric form 

 

𝑑𝑝(𝑠𝑡) = argmax
d
[(𝑂𝑏𝑗𝑡+1 − 𝑂𝑏𝑗𝑡) + 𝑐 ∗ (max(0, 𝑇𝑇𝑚𝑖𝑛 −  𝑇𝑇(𝐹𝑃𝑡))

𝑝
)] (4) 

 

where 𝑐, 𝑇𝑇𝑚𝑖𝑛 and 𝑝 are the parameters to be optimized. The max is taken over the destinations d that 𝑏𝑙𝑜𝑐𝑘𝑡 can be 

sent to. Several things to note are: 

 

 The first term represents the immediate increase in objective function resulting from sending 𝑏𝑙𝑜𝑐𝑘𝑡 to 

destination d. The second term is there to balance this immediate benefit against the risk of having to close 

the mill at a future time due to insufficient material on the feed pile. 

 𝑂𝑏𝑗𝑡+1, 𝑂𝑏𝑗𝑡 and 𝑇𝑇(𝐹𝑃𝑡) can be readily computed using knowledge of 𝑠𝑡 and d, the destination where 

𝑏𝑙𝑜𝑐𝑘𝑡 is sent to. 

 The inner optimization over d is computationally trivial to perform, amounting to comparing a small number 

of different values (as many as there are destinations that accept 𝑏𝑙𝑜𝑐𝑘𝑡’s material type). 

 

This section presents results obtained by comparing different destination policies for the case study described above. 

The “optimized policy” is obtained by optimizing the parameters 𝑐, 𝑇𝑇𝑚𝑖𝑛 and 𝑝 for the state-dependent destination 

policy 𝑑𝑝 in Equation 4. The resulting optimization problem is non-linear, non-smooth, and non-convex, exhibiting a 

large number of local optima. Therefore, and also because the small dimensionality of the policy parameter space 

allows it, a combination of grid-search and the simplex method (Nelder and Mead, 1964) was used for optimizing the 

policy parameters. The first 30 orebody simulations were used for performing the optimization, and the remaining 20 

were used for computing risk profiles. 

 

The first comparison is between the optimized policy and a “max-block-value policy” that sends each block to the 

destination 𝑑𝑒𝑠𝑡 that maximizes the value that would be obtained if only that block was processed at 𝑑𝑒𝑠𝑡. For linear 

recoveries, this would be equivalent to sending 𝑏𝑙𝑜𝑐𝑘𝑡 to the destination that maximizes 

 

𝑀𝑒𝑡𝑎𝑙𝑇𝑜𝑛𝑠(𝑏𝑙𝑜𝑐𝑘𝑡) × 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦
𝑑𝑒𝑠𝑡 × 𝑝𝑟𝑖𝑐𝑒 − 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡) × 𝑃𝑟𝑜𝑐𝐶𝑜𝑠𝑡

𝑑𝑒𝑠𝑡  
 

a quantity also known as “economic block value”. For non-linear recovery curves, as is the case in the case study 

herein, 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑑𝑒𝑠𝑡  is dependent on the grade and is replaced by R𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑑𝑒𝑠𝑡(𝑀𝑒𝑡𝑎𝑙𝑇𝑜𝑛𝑠(𝑏𝑙𝑜𝑐𝑘𝑡), 𝑇𝑇(𝑏𝑙𝑜𝑐𝑘𝑡)). 
 

In order for these policies to be applied it is necessary to know the order in which the blocks are sent for processing. 

A simple heuristic way for designing a block order is to assume that material will be extracted bench-by-bench starting 



 

from the top. The resulting block order will be called a “top-down schedule” (this is, of course, different from the long-

term schedule since all the allocated blocks for this case study belong to the same year of production). 

 

Results comparing the optimized policy to the max-value policy for the block order given by the top-down schedule 

can be seen in Figure 6 and Figure 7, which show the amount of material on the feed pile and the objective function 

value, respectively. Keep in mind that the mill incurs the stopping cost every time the feed pile amount is zero. Also 

note that the monthly values of the objective function are equal to the monthly cash flows, because neither policy 

exceeds the feed pile upper bound so the capacity penalty is not incurred. Finally, although the allocation process 

increments the time step for each block allocation, it is trivial to aggregate the resulting block-by-block behaviour into 

the weekly or monthly behaviour seen in Figure 6 and Figure 7. 

 

 

Figure 6: Risk profiles for the tonnage of material on the mill feed pile for the optimized policy and the max-block-value policy. Both 
policies use the block order provided by the heuristic top-down schedule. 

Figure 6 show that the optimized destination policy is capable of utilizing mill capacity better than the max-block-

value policy, resulting in a smaller duration for the empty feed pile and therefore a smaller stopping cost. The effect 

of this can be seen in Figure 7, which shows that the optimized policy is superior to the max-block-value policy in 

terms of cash flow. 

 

 

Figure 7: Cumulative cash flows for the optimized policy and the max-block-value policy using the block order provided by the top-
down schedule. 



 

While this first set of results shows that the optimized destination policy can help ensure more stable production 

and increase value, the second set of results answer the question of whether production stability and value can be 

increased even more by modifying the order in which the blocks are being sent for processing. This is done by 

comparing the top-down (bench-by-bench) schedule to a schedule that is optimized using simulated annealing, with 

the objective of maximizing the value resulting from applying the optimized destination policy. This optimization 

corresponds to Step 3 of the iterative process combining short-term production scheduling and state-dependent 

destination policy optimization described at the end of Section 2.3. The results are shown in Figure 8 (amount on feed 

pile) and Figure 9 (cumulative cash flow). 

 

 

Figure 8: Risk profiles for the tonnage of material on the mill feed pile for the optimized schedule and the top-down schedule. The 
values for both graphs are obtained using the optimized destination policy. 

 

 

Figure 9: Cumulative cash flows for the optimized schedule and the top-down schedule. 

The graphs show that there is a significant upside to optimizing the short-term schedule. For the part of deposit that 

this case study is looking at (blocks extracted in the second year), high-grade sulphide blocks tend to be located deeper 

in the ground. Therefore, the top-down schedule is unable to feed the mill for the first part of the year. The optimized 

schedule, on the other hand, balances extracting material that can go to the mill much better throughout the year, 



 

leading to increased value as seen in Figure 9. Experiments were also performed (not shown here) showing that for the 

optimized schedule the optimized destination policy still results in increased cumulative cash flows and better mill 

usage during the year with respect to the max-block-value policy. 

 

This case study can also be used to illustrate the relationship between state-dependent destination policies and other 

types of destination decisions. It is fairly common for stochastic mine planning methods for mining complexes to adopt 

a two-stage approach, where the second stage optimizes processing decisions separately for each scenario. The block 

values computed based on the optimal per-scenario decisions are then fed back into the first-stage optimization, which 

produces a schedule that is robust over all scenarios (Goodfellow, 2014; Montiel, 2014). This is meant to model, much 

like state-dependent policies, the situation where new information is obtained before extracted material is sent for 

processing. However, it can lead to overly optimistic evaluations. For destination policies, for instance, the two-stage 

approach implicitly assumes that the properties of all blocks in a year (as given by a certain scenario) are being known 

when deciding where to send 𝑏𝑙𝑜𝑐𝑘𝑡. In contrast, a state-dependent policy would only assume that properties of blocks 

extracted up to and including time 𝑡 are known when making an allocation decision for 𝑏𝑙𝑜𝑐𝑘𝑡. As such, the two-stage 

approach ends up assuming that more information is available than it will actually be the case (and than a state-

dependent policy assumes). This is problematic because there the second-stage decisions will not actually be 

implemented in practice (since the scenario is never fully known in reality), and any evaluations should ideally be 

based on decisions that are actually implementable. Instead, the two-stage approach evaluates an idealized destination 

strategy where complete information is available for all the blocks extracted in a given year, leading to overly optimistic 

evaluations. A state-dependent policy, on the other hand, models the process of incorporating information as it becomes 

available. 

 

In order to remediate this issue, a “nearest-neighbour” approach may be proposed. For destination decisions, this 

would involve establishing what scenario the observed reality is closest to (according to some metric) and sending 

each block to the optimal destination for that scenario. The idea of aggregating scenarios according to some metric is 

not new and has been proposed before for mine planning applications (e.g. Boland et al., 2008).  

 

The feasibility of the nearest-neighbour approach was investigated using the case study herein. For this, a two-

stage stochastic optimization was performed. The first stage variables determined the block extraction order, which 

was the same for all scenario. The second stage variables determined the destinations for each block, and a different 

set of decisions was optimized for each orebody simulation. Both stages were optimized using simulated annealing 

with the first 30 simulations, while the remaining 20 simulations (the “test simulations”) were used as representations 

of the unknown reality. The block extraction order for each test simulation was given by the first-stage variables from 

the two-stage optimization. The destination decisions were computed using the nearest-neighbour approach, with the 

distance between two simulations at time 𝑡 being equal to the Euclidean distance between the vectors containing the 

normalized properties (tonnage and metal content) of bocks extracted up to and including time 𝑡. Two values for the 

expected cumulative cash flow were then computed: 

 

 the first value was obtained by evaluating the plan for the 30 training simulations; the destination decisions 

for each of them were given by the second-stage decision variables, which were the result of an independent 

optimization for each simulation; 

 the second value was obtained by evaluating the plan for the 20 test simulations; for each simulation, the 

destination decisions were computed using the nearest neighbour procedure as described above. 

 

Similarly, two values were computed for the expected cumulative cash flows obtained by the combination of the 

state-dependent policy and optimized block order. The first value was computed using the 30 training simulations, 

which they were used for optimizing the policy parameters, and the second value was computed using the 20 test 

simulations. The results are shown below in Table 2. 

 
Table 2: Cumulative cash flows computed using the training and test set of simulations for the state-dependent policy and the per-
scenario two-stage approach. 

 State-dependent Per-scenario two-stage 

Training set cumulative cash flow $103,393,018 ∗ 𝑥 $112,623,861 ∗ 𝑥 

Test set cumulative cash flow $103,033,628 ∗ 𝑥 $94,944,505 ∗ 𝑥 

 



 

The results in the table au-dessus show that the value for the plan that uses the state-dependent policy does not 

change much between the training and test set, suggesting that this is a robust approach. For the per-scenario two-stage 

plan, on the other hand, there is a large difference between the training set value and the test set value. This shows that 

evaluations reported using per-scenario decisions for the second-stage variables may not be robust, at least not unless 

there is a sound way of computing second-stage decisions that will actually get implemented in practice. 

 

This paper shows how state-dependent policies can be used for incorporating new information into short-term mine 

planning. The main mechanism for doing so consists of encoding solutions as parameterized functions of the state 

rather than encoding them as decision vectors. This allows the response to new information to be determined in advance 

for whatever the new information may be, and to formulate the search for the best response as a finite-dimensional 

optimization problem. 

 

The case study in Section 3 illustrates the benefits of using state-dependent policies for determining how destination 

decisions should adapt to new information about the material that is allocated. Using state-dependent destination 

policies was shown to lead to better cash flows and more reliable mill usage compared to both a heuristic policy similar 

to maximizing economic block value, and to a policy that uses per-scenario decisions for the second stage of a two-

stage stochastic optimization. Beyond value considerations, the type of short-term analysis illustrated by the graphs in 

Section 3 can point out where the risk lies in terms of both time (for instance, weeks 20 to 35 in Figure 8) and space 

(by identifying where the blocks extracted in that time frame are located within the deposit). It could also help mill 

operators decide in advance when is the best time to close the mill for maintenance. 

 

The framework that this paper lays out for the inclusion of new information using state-dependent policy lays the 

groundwork for a variety of future improvements and extensions. One issue that has not been addressed is how to use 

specific data for updating the properties of the extracted material, as well as updating the remaining uncertainty. This 

can be approached using a variety of methods, from geostatistical methods such as conditional simulation with 

successive residuals (Jewbali and Dimitrakopoulos, 2011) to data assimilation methods such as ensemble Kalman 

filtering (Evensen, 1994) or particle filtering (Del Moral, 1997). 

 

The case study in Section 3 used a fairly simple form for the parametric state-dependent policy. While this 

performed better than other approaches, it is worth investigating whether further gains can be made by using more 

complex policies and more advanced policy optimization methods. 

 

Another direction for future research concerns more detailed modelling of aspects that are important for short-term 

planning. For the case study presented in this paper, this can involve accurately assessing the cost of stopping the mill 

based on energy, labour and opportunity costs. In general, the modelling of variables such as equipment availability, 

contractual requirements on the output, or seasonal variations in production in difficult climates may prove to be 

important for accurately assessing the value of a short-term plan. 
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