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Montréal, McGill University, Université du Québec à Montréal,
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Abstract: This paper addresses the optimization of mineral supply chain operations under metal and
material type uncertainties. A mathematical model to simultaneously optimize the mining decisions, the
destination decisions, and consequently the cut-off grade, is proposed. A fix-and-optimize scheme that exploits
the structure of the problem and uses relaxation and decomposition techniques is introduced to obtain an
initial solution, and an adaptive large neighborhood search heuristic is developed to improve this solution.
The proposed solution approach is tested on a copper-gold deposit. The results of these experiments show
the ability of the proposed solution approach to efficiently address large instances of realistic size and provide
schedules where the most valuable material is mined and processed early in the life of the mine and where
the risk of not meeting production targets is reduced.

Key Words: Scheduling, heuristics, adaptive large neighborhood search, open-pit mining, metal uncertainty,
material type uncertainty, multiple processors.
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1 Introduction

Scheduling operations of open-pit mines is an important and critical issue in surface mine planning as it

determines the raw materials to be produced yearly over the life of the mine and has a definitive impact on

the economic value of the mine. The intrinsic uncertainty of the corresponding optimization problem, its

combinatorial nature, and its large scale make it challenging to solve, and thus it has attracted significant

research in recent years. Typically, an open-pit mine is represented as a three-dimensional array of blocks,

each of which represents a volume of material that can be extracted from the ground and possibly processed to

produce final sellable products. To convert blocks into final sellable products by separating valuable minerals

from rock, a sequence of operations must be performed. Each operation is treated as a separate stage in the

sequence, and material passes through each stage in succession. Moreover, at each stage, there are different

facilities of different capacities that might vary from period to period. The first stage facilities are fed with

blocks that come from the mine, while the facilities associated with the other stages are fed from the facilities

of the previous stages. The last stage facilities provide the final products.

Not all blocks are available at the beginning of the planning horizon. They become available as they are

extracted. An available block cannot be sent to just any first stage facility. It can only go to a predetermined

subset of facilities depending on the block’s material type. In what follows, we will say that a block is

admissible for a facility if it can be sent to this facility. When and how much material will be sent from one

facility to the next depends on the type of facility. For each facility, there are three possible scenarios for

how material can pass through the stages in the processing chain by which the facilities can be categorized.

1. Category 1: In any period, all the material added to the facility is reclaimed from it in the same period;

inventory is not carried over to the next period (concentrators, for instance).

2. Category 2: In any period, material can be added to the facility but is never reclaimed from it (dump

sites, for instance).

3. Category 3: In any period, material can be added to a facility as well as reclaimed from it. Inventory

is carried from the previous periods, and any amount less than or equal to the amount available at the

facility can be sent to a facility in the next stage (stockpiles, for instance).

Finally, a facility of a given stage can send material to any of a pre-determined set of facilities of the

next stage. Such is the case except for facilities of Category 2 (dump sites), which do not send material

anywhere. Sending blocks to the first stage facilities and from one facility to another incurs transportation

and/or processing costs. The refined mineral processed through the final stage is sold and generates revenues.

The problem is to decide which blocks to mine and when to mine them, where to send each mined block,

and how much material to send from each facility to another at each period, so as to maximize the total

discounted profit, while meeting the capacities and the specifications at each facility. Decisions are also

shaped by the goal of meeting the physical and technical requirements for extracting the blocks. These

requirements, referred to as the slope constraints or the precedence constraints, prevent blocks from being

mined before others on top of them (their predecessors) to prevent the walls of the pit from collapsing.

The metal content of the blocks and their material type are not known with certainty at the time decisions

are made but are interpolated using information obtained from exploration drilling. Over the last decades,

different studies have consistently shown the importance and benefits of integrating this uncertainty in the

optimization process when devising mine long-term production schedules (Ravenscroft (1992); Dowd (1994,

1997); Dimitrakopoulos et al. (2002); Godoy and Dimitrakopoulos (2004); Menabde et al. (2005); Whittle

and Bozorgebrahimi (2005); Kent et al. (2007); Boland et al. (2008); Albor and Dimitrakopoulos (2010);

Ramazan and Dimitrakopoulos (2013); Goodfellow and Dimitrakopoulos (2013)). The authors have shown

that the stochastic approach can provide major improvements in NPV, in the order of 10% to 30%, compared

to the solution obtained by solving a deterministic problem based on expected values. They also demonstrated

that the stochastic approach substantially reduces risk in meeting production forecasts and finds larger pit

limits, contributing to the sustainable utilization of mineral resources.

The problem addressed in this paper, which we will denote as SMSC, accounts for metal and material

type uncertainties. It considers a particular case of the mineral supply chain described above that has the
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two following specificities: First, the first stage facilities are the last stage facilities; that is, the mine feeds

a set of processing facilities and these facilities produce the final products to be sold (the refined minerals).

Second, all the facilities are of category 1 or 2; that is, the facilities to which the blocks are sent, referred to

as destinations in the rest of the paper, do not include stockpiles. SMSC is similar to the problem studied in

Goodfellow and Dimitrakopoulos (2013), except that the authors consider dynamic recoveries in the different

processing facilities that depend on the average grade of the incoming material at these facilities. Instead, in

this paper, the recoveries are considered to be fixed. There are also some similarities between SMSC and some

stochastic variants of the open-pit mine production scheduling problem (MPSP) studied in the literature. The

main differences between SMSC and the variant of the MPSP addressed in Lamghari and Dimitrakopoulos

(2013) is that, in addition to the metal content, the material type of the blocks is also considered uncertain

in this paper. Moreover, while in Lamghari and Dimitrakopoulos (2013) a block is processed in the facility

that gives the highest economic value; that is, the destination decisions are fixed a priori, in this paper they

are not. In this sense, SMSC can be seen as a generalization of the problem addressed in Lamghari and

Dimitrakopoulos (2013) through the consideration of material type uncertainty and destination decisions.

SMSC can also be seen as a generalization of the problem addressed in Goodfellow and Dimitrakopoulos

(2012). Indeed, SMSC reduces the problem studied in Goodfellow and Dimitrakopoulos (2012) by omitting

the extraction component. Clearly, SMSC is more complex than the two problems addressed in Goodfellow

and Dimitrakopoulos (2012) and Lamghari and Dimitrakopoulos (2013) since considering the mining and

destination decisions simultaneously greatly increases the size of the stochastic problem to be solved and

represents substantial challenges from a computational point of view.

The main contributions of this paper are threefold. First, a two-stage stochastic formulation is provided,

which is an extension of the formulation in Lamghari and Dimitrakopoulos (2012). This formulation is

different from the one proposed in Goodfellow and Dimitrakopoulos (2013). Indeed, in Goodfellow and

Dimitrakopoulos (2013) the destination decisions, referred to as destination policies, are considered first-

stage decisions; that is, they are taken before the uncertainty is revealed and thus are independent of the

random data, whereas they are considered second-stage decisions in this paper. In other words, it is assumed

that they are taken after the uncertainty is revealed. Second, a solution approach based on the adaptive

large neighborhood search framework (ALNS) is developed. The structure of the problem is exploited and

relaxation and decomposition techniques are used to obtain the initial solution to be improved with ALNS.

The proposed solution approach is also different from the one proposed by Goodfellow and Dimitrakopoulos

(2013), which used Gemcom Whittle (Whittle, 2009) to generate an initial solution and a hybrid of simulated

annealing and particle swarm methods to improve it. The proposed approach is tested on a copper-gold

mining complex with six material types and six destinations.

The remainder of the paper is organized as follows: In Section 2, the approach used to deal with metal

and material type uncertainties is outlined, and a mathematical formulation of the SMSC studied in this

paper is introduced. The following sections present the heuristics used in the initialization phase and the

improvement phase, respectively. Computational results are reported and discussed in Section 5. Finally,

conclusions are drawn in Section 6.

2 Mathematical formulation

This section describes the mathematical model used to define the problem studied in this paper. As mentioned

previously, the uncertain parameters are related to the metal content and material type of the blocks (the

supply). The material type has an impact on the tonnage of the blocks, the mining costs, and the admissibility

of the blocks to the different processing destinations (W , C and A, respectively). The metal content has an

impact on the economic value generated after processing the extracted blocks (V ). The joint distribution

of the stochastic parameters is assumed to be known. Let ξ = (W,C,A, V ) be the random data vector and

let ξ (s) denote one particular realization of ξ (a scenario). It is assumed that there is a finite number of

scenarios and that the scenarios are equiprobable. The objective is to maximize the expected revenue from

the refined minerals sold minus the mining, processing, transportation and selling costs. The problem can

be formulated as a two-stage stochastic program with recourse (Birge and Louveaux, 2011). The following

notation is used in the formulation:
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Sets:

N : Set of blocks considered for scheduling, N = {1, . . . , N}.
P(i): Set of immediate predecessors of block i ; i.e., blocks that directly precede block i and have to be

extracted to have access to i.

T : Set of time periods over which blocks are being scheduled, T = {1, . . . , T}.
D: Set of possible destinations for the blocks once extracted, D = {1, . . . , D}.
S: Set of scenarios, S = {1, . . . , S}.

Indices and superscripts:

i, j: Block index, i, j ∈ N .

t, τ : Period index, t, τ ∈ T .

d: Destination index, d ∈ D.

s: Scenario index, s ∈ S.

Parameters:

wis: Tonnage of block i in scenario s.

aids: 1 if block i is admissible for destination d in scenario s (i.e., if it can be processed in this destination

given its material type in scenario s), 0 otherwise.

Et: Minimum amount that should be extracted in period t (lower bound on mining).

Et: Maximum amount that should be extracted in period t (upper bound on mining or mining capacity).

F td: Minimum amount of material (flow) that should be sent to destination d in period t (demand at d).

F td: Maximum amount of material (flow) that should be sent to destination d in period t (processing capacity

at d).

cis: Cost of mining block i in scenario s.

E[ci]: Expected cost of mining block i. Recall that the scenarios are equiprobable. Hence, E[ci] =
1
S

∑
s∈S cis.

vids: Economic value to be generated if block i is processed at destination d in scenario s. This value is

calculated as the return from selling the recovered metal minus the processing, the transportation, and

any related costs.

p−: Per-unit cost incurred for failing to meet the lower bound on mining.

p+: Per-unit cost incurred for not satisfying the mining capacity.

qd
−: Per-unit cost incurred for failing to meet the demand at destination d.

qd
+: Per-unit cost incurred for exceeding the capacity of destination d.

δ1: The discount rate.

δ2: The geological rate discount.

Variables:

xti: 1 if block i is extracted in period t, 0 otherwise.

et−s : Amount in shortage of mined material in scenario s and period t.

et+s : Amount of extra material mined in scenario s and period t; i.e., amount above the upper bound Et.

ytids: 1 if block i is sent to destination d in scenario s and period t, 0 otherwise.

f t−ds : Amount in shortage at destination d in scenario s and period t; i.e., amount of unsatisfied demand.

f t+ds : Amount of extra material sent to destination d in scenario s and period t; i.e., amount above the

capacity F td.



4 G–2015–93 Les Cahiers du GERAD

The stochastic SMSC addressed in this paper can be formulated as follows:

max f (x) = −
∑
t∈T

∑
i∈N

E[ci]

(1 + δ1)
tx
t
i + E[Q (x, ξ)] (1)

s.t.
∑
t∈T

xti ≤ 1 ∀ i ∈ N (2)

xti −
t∑

τ=1

xτi ≤ 0 ∀ i ∈ N , j ∈ P (i) , t ∈ T (3)

xti ∈ {0, 1} ∀ i ∈ N , t ∈ T (4)

where E [Q (x, ξ)] = 1
S

∑
s∈S Q (x, ξ(s)), and Q (x, ξ(s)) is the optimal value of the following problem (second-

stage problem):

max
∑
t∈T

∑
i∈N

∑
d∈D

vids

(1 + δ1)
t y
t
ids (5a)

−
∑
t∈T

p−

(1 + δ2)
t e
t−
s (5b)

−
∑
t∈T

p+

(1 + δ2)
t e
t+
s (5c)

−
∑
t∈T

∑
d∈D

q−d
(1 + δ2)

t f
t−
ds (5d)

−
∑
t∈T

∑
d∈D

q+
d

(1 + δ2)
t f

t+
ds (5e)

s.t.
∑
i∈N

wisx
t
i + et−s ≥Et ∀ t ∈ T (6)∑

i∈N
wisx

t
i − et+s ≤Et ∀ t ∈ T (7)

xti =
∑
d∈D

ytids ∀ i ∈ N , t ∈ T (8)∑
d∈D

(1− aids) ytids = 0 ∀ i ∈ N , t ∈ T (9)∑
i∈N

wisy
t
ids + f t−ds ≥ F

t
d ∀ d ∈ D, t ∈ T (10)∑

i∈N
wisy

t
ids − f t+ds ≤F td ∀ d ∈ D, t ∈ T (11)

ytids ∈ {0, 1} ∀ i ∈ N , d ∈ D, t ∈ T (12)

et−s , et+s , f t−ds , f
t+

ds
≥ 0 ∀ d ∈ D, t ∈ T (13)

The first-stage decisions are the mining (extraction) decisions. They are major long-term decisions and

are independent of the random data. Destination decisions are made when the uncertainty is revealed (once

the blocks are extracted) and are second-stage decisions. The optimal value Q (x, ξ(s)) of the second-stage

problem (5)–(13) is function of the first-stage decision variable x (the mining sequence) and a realization ξ(s)

of the uncertain parameters (the random data vector ξ = (W,C,A, V )).

The objective function (1) minimizes the expected first-stage costs and maximizes the expected second-

stage profits. The expected first-stage costs are the expected discounted mining costs. The objective function

(5) of the second-stage problem consists of five parts that represent the discounted economic value generated

from processing the extracted blocks (5a), the penalties for mining less material than the minimum required

(5b), the penalties for exceeding the mining capacity (5c), the penalties for the unsatisfied demand at the
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different destinations (5d), and the penalties for lost material occurred because of the insufficient capacity at

the different destinations (5e). Note that the parameter δ2 used to calculate the penalty costs is the so-called

geological risk discount introduced by Dimitrakopoulos and Ramazan (2004) to define the importance given

to satisfying the production targets over time; i.e., to encourage deferring the shortage/surplus to the last

periods of the life of the mine in order to reduce the risk of not meeting the production targets in the first

periods. Note also that, since a finite number of equiprobable scenarios are used to model the uncertainty,

the objective function (1) can be expressed in an extended form as follows:

max f (x) =−
∑
t∈T

∑
i∈N

E [ci]

(1 + δ1)
tx
t
i

+
1

S

∑
s∈S

∑
t∈T

{∑
i∈N

∑
d∈D

vids

(1 + δ1)
t y
t
ids −

p−

(1 + δ2)
t e
t−
s

− p+

(1 + δ2)
t e
t+
s −

∑
d∈D

q−d
(1 + δ2)

t f
t−
ds −

∑
d∈D

qt+d
(1 + δ2)

t f
t+
ds

}
. (14)

Constraints (2) and (3) define the feasible set of the first-stage problem (reserve and slope constraints,

respectively). They ensure that a block is mined at most once (constraints (2)) and prevent a block from

being mined before its predecessors (constraints (3)). Constraints (6) and (7) are related to the minimal

and maximal mining levels at each period (mining constraints). Shortage, as well as surplus, is allowed, but

incurs penalty costs. Constraints (8) and (9) link the mining decisions to the destination decisions. More

specifically, they allow a block to be sent to one and only one destination if the block is mined (Constraints

(8)) and if it is admissible to this destination (Constraints (9)). Constraints (10) and (11) are related to

the amount processed in each destination at each period (processing constraints). If a shortfall occurs in a

given destination at a given period, a penalty cost is applied. Similarly, if there is a surplus, a penalty cost

is applied.

The problem contains NT + NTDS binary variables. Even a small open-pit mine of 10,000 blocks

with 4 destinations, to be scheduled over 5 years accounting for 10 scenarios represents more than one

million binary variables (1,050,000) and millions of constraints, which is a size beyond the reach of exact

methods. For this reason, a heuristic approach is proposed in this paper to obtain a good quality solution

in a reasonable amount of time. First, an initial solution is generated in the first phase of the solution

procedure (initialization phase), then this solution is improved in the second phase (improvement phase)

using an adaptive large neighborhood heuristic (ALNS). The methods used in the two phases of the solution

procedure are described in the following sections.

3 Initialization phase

The approach used to generate the initial solution takes advantage of the problem structure and uses a

fix-and-optimize scheme to reasonably quickly provide a feasible solution to be improved with the ALNS

heuristic in the second phase of the solution procedure. The basic idea is to divide the problem into a series

of smaller, easier to-solve-sub-problems. Each sub-problem deals with a subset of variables, and when it is

solved, these variables are fixed according to the solution obtained, and another sub-problem is considered

to optimize another subset of variables. This is done as follows.

Using the general time-decomposition approach described in Lamghari et al. (2014), the periods t ∈ T are

considered one at time in increasing order. In this paper, unlike in Lamghari et al. (2014), each sub-problem

associated with a period t includes two sub-problems: a mining problem and a destination problem that are

interrelated through constraints (8). These two problems are solved sequentially, which means that the set

of blocks to be mined in period t is first determined (a mining plan is constructed in the first step), then

each of those blocks determined in the first step is assigned to one admissible destination in each scenario (a

destination plan is designed for each scenario). This strategy not only prevents blocks not mined in period t

from being processed in period t, ensuring that constraints (8) are satisfied, but it also allows us to decompose
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the problem further to speed up the solution process. Indeed, because the scenarios are independent, the

destination problem can be divided into S independent sub-problems, each associated with a scenario. This

can be exploited to reduce the time required to solve the destination problem by solving the sub-problems

associated with the scenarios in parallel. To summarize, starting with t = 1, the mining problem handles the

mining variables xti and the deviation variables et−s and et+s . Afterwards, these variables are fixed according

to the solution obtained, and the destination problem is solved to determine the destination variables ytids
and the deviation variables f t−ds and f t+ds , considering one scenario at time. This process is repeated until all

periods are considered.

The approach described above is appealing since the problems to solve at each iteration involve many

fewer binary variables than the original problem and thus can be solved efficiently. However, it gives rise to

the following question: how can one optimize mining decisions without explicitly modeling the destination

decisions? One way to get around this difficulty is to relax the problem to consider a priori destinations for

the blocks, as explained in the next section.

3.1 Solving the mining problem (MP tMP tMP t)

In what follows, t is fixed, and the mining problem is denoted by MP t. Recall that this problem is solved

to determine the set of blocks to be mined in period t, which we will denote by Bt (initially Bt = ∅). If

there are no restrictions on the amount of material processed at each destination; that is, if constraints (10)

and (11) are dropped, then in an optimal solution, each extracted block will be sent to the most profitable

destination. Hence, following this assumption, the variables ytids as well as the variables f t−ds and f t+ds can be

eliminated from the formulation, and the sub-problem associated with period t reduces to:

max
∑
i∈Rt

E [v∗i ]− E[ci]

(1 + δ1)
t xti −

1

S

∑
s∈S

p−

(1 + δ2)
t e
t−
s −

1

S

∑
s∈S

p+

(1 + δ2)
t e
t+
s (15)

s.t. xti − xtj ≤ 0 ∀ i ∈ Rt, j ∈ P (i) ∩Rt (16)∑
i∈Rt

wisx
t
i + et−s ≥Et ∀ s ∈ S (17)

∑
i∈Rt

wisx
t
i − et+s ≤Et ∀ s ∈ S (18)

xti ∈ {0, 1} ∀ i ∈ Rt (19)

et−s , et+s ≥ 0 ∀ s ∈ S. (20)

where, Rt is the set of blocks not mined at the beginning of period t (R1 = N and Rt = Rt−1\Bt−1 if

t = 2, . . . , T ), and E [v∗i ] = 1
S

∑
s∈S vid∗(i,s)s represents the expected economic value to be generated if in

each scenario s, block i is processed in the most profitable destination d∗ (i.s) = argmaxd∈A(i,s)vids, A(i, s)

being the set of destinations for which i is admissible in scenario s.

The objective function (15) maximizes the expected net present value, assuming that under each scenario

each extracted block is processed in the most profitable destination. It also minimizes the expected penalty

costs incurred whenever the amount mined in period t does not fall within the specified limits [Et, Et].

Constraints (16) ensure that the slope constraints are satisfied, while constraints (17) and (18) are related to

the mining levels. The reserve constraints are implicitly satisfied since the set Rt is updated as one goes along

from one period to another (Rt = Rt−1\Bt−1). The same applies to the admissibility constraints because

only one admissible destination is accounted for when calculating the E [v∗i ]’s.

Note that the proposed relaxation obtained by dropping constraints (10) and (11) does not provide a tight

upper bound on the optimal value of the sub-problem associated with period t, but it allows us to account for

the profit to be generated from processing the blocks without explicitly modelling the destination decisions,

which considerably reduces the size of the problem to be solved. Indeed, the mixed-integer stochastic problem

MP t ((15)–(20)) involves |Rt| binary variables and 2S continuous variables as opposed to |Rt| + |Rt|DS
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binary variables and 2S + 2DS continuous variables if one has to consider the destination decisions as well.

This size is relatively small and thus MP t can be solved using a mixed-integer programming solver.

Because the mining decisions will be modified in the improvement stage (i.e., when applying the ALNS

heuristic), MP t does not need to be solved to optimality. In the numerical results presented in Section 5,

an optimality tolerance of 1% is used; that is, the solution process stops if the solver can guarantee that the

current best solution is within 1% of the global optimum.

MP t can also be solved using a heuristic, which will require less computational time. In this paper, a

random heuristic, henceforth denoted by RP, is used. RP is an extension of the heuristic proposed in Lamghari

and Dimitrakopoulos (2012) to account for the fact that the blocks’ tonnages are also uncertain. At each

iteration, a block having no predecessors or having all its predecessors already mined is randomly selected. The

process continues until the total expected weight of blocks mined at t (i.e.,
∑
i∈Bt E [wi] = 1

S

∑
s∈S

∑
i∈Bt wis)

reaches Et+Et

2 . Note that this heuristic does not account for the first term of the objective function (15). Its

main purpose is to quickly identify a set Bt (a mining plan) that satisfies the reserve and slope constraints.

The stopping criterion of the heuristic induces some lookahead features to leave some blocks unmined for the

next periods so as to satisfy the lower bounds on mining in these periods. The other reason why we use RP

to solve MP t is to evaluate the ability of ALNS to improve a bad quality solution.

3.2 Solving the destination problem (DP tDP tDP t)

Once the MP t is solved using one of the methods described in the previous section, the next step is to

determine the destinations in which the blocks determined at the previous step are processed under each

scenario. The way these destinations are determined is described in this section.

Recall that t is fixed. If the mining variables xti are fixed according to the solution obtained when solving

the MP t, the original sub-problem associated with period t reduces to the following problem:

max
1

S

∑
s∈S

∑
i∈Bt

∑
d∈D

vids

(1 + δ1)
t y
t
ids −

1

S

∑
s∈S

∑
d∈D

q−d
(1 + δ2)

t f
t−
ds −

1

S

∑
s∈S

∑
d∈D

q+
d

(1 + δ2)
t f

t+
ds (21)

s.t.
∑
d∈D

ytids = 1 ∀ i ∈ Bt, s ∈ S (22)∑
d∈D

(1− aids)ytids = 0 ∀ i ∈ Bt, s ∈ S (23)∑
i∈Bt

wisy
t
ids + f t−ds ≥F

t
d ∀ d ∈ D, s ∈ S (24)

∑
i∈Bt

wisy
t
ids − f t+ds ≤F td ∀ d ∈ D, s ∈ S (25)

ytids ∈ {0, 1} ∀ i ∈ Bt, d ∈ D, s ∈ S (26)

f t−ds , f
t+
ds ≥ 0 ∀ d ∈ D, s ∈ S. (27)

The objective function (21) maximizes the total expected economic value to be generated from the blocks

in Bt; that is, those determined by solving the MP t. It also minimizes the expected penalty costs incurred

whenever the amounts processed in the different destinations are below the demand F td or exceed the capacity,

F td. Constraints (22) and (23) allow a block to be processed at only one destination and only if the block

is admissible to this destination. Constraints (24) and (25) guarantee that the total amounts sent to each

destination under each scenario are within the limits [F td, F
t
d]; otherwise, penalty costs are incurred.

Since the scenarios are independent, the formulation (21)–(27) is scenario-separable, which means that

the destinations can be determined independently for each scenario.
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In what follows, we denote by DP ts the sub-problem associated with scenario s. The objective function

of DP ts has the following form:

max
∑
i∈Bt

∑
d∈D

vids

(1 + δ1)
t y
t
ids−

∑
d∈D

q−d
(1 + δ2)

t f
t−
ds −

∑
d∈D

q+
d

(1 + δ2)
t f

t+
ds . (28)

Three methods are proposed to solve a given scenario sub-problem DP ts to determine a destination plan

under scenario s:

1. MIP: Since the DP ts is of relatively small size, it can be solved using a mixed-integer programming

solver.

2. MCFP: This method first solves the linear relaxation of DP ts obtained by replacing the integrality

constraints (26) by ytids ∈ [0, 1], thus allowing fractions of blocks to be sent to destinations. It then

modifies the obtained solution to generate a feasible destination plan.

The linear relaxation of DP ts can be solved efficiently as a minimum cost flow problem (MCFP). The

MCFP is defined on a directed graph G = (V,A). The vertex set V = Bt ∪ D ∪ D′ ∪ {L,F} has four

types of vertices:

• Bt, block vertices representing the blocks mined in period t (i.e., those determined by solving the

MP t)

• D, destination vertices representing the different destinations to which the blocks can be sent once

mined

• D′, dummy destination vertices, copies of the destination vertices used to absorb the amount in

excess at each destination

• L, a dummy supplier vertex used to provide the unsatisfied demands

• F , a sink vertex.

The graph contains six types of arcs:

• Arcs that connect a block vertex i ∈ Bt to a destination vertex d ∈ D. The arc (i, d) is included

in the set of arcs A only if i is admissible to d. The cost of this arc is − vids
(1+δ1)t

, the lower bound

is 0, and the upper bound is wis, the tonnage of block i in scenario s.

• Arcs that connect the dummy supplier vertex L to a destination vertex d ∈ D. The flow on any such

arc corresponds to the amount in shortage at destination d (the unsatisfied demand). Therefore,

these arcs are uncapacited and their per-unit cost flow is equal to
q−d

(1+δ2)t
.

• Arcs that connect a destination vertex d ∈ D to its copy d ∈ D′. The flow on the arcs (d, d′)

denotes the total tonnage of material sent to destination d. The arcs (d, d′) are also uncapacited.

They have zero costs and positive lower bounds equal to the demand of destination d in period t,

F td.

• Arcs that connect the dummy destination vertices d′ ∈ D′ to the sink F . Two arcs connect each

vertex d′ to F . The lower and upper bounds on the first arc are equal to F td and F td, respectively,

and the cost is equal to 0. The flow on the second arc denotes the excess in destination d and thus

any such arc is uncapacited and has a cost of
q+
d

(1+δ2)t
.

• Finally, there is an arc that connects the dummy supplier vertex L to the sink vertex F . This arc

is uncapacited and its cost is set equal to 0.

Figure 1 illustrates the graph in a situation with one block i and one destination d and where i is

admissible to d. The cost and the bounds of each arc are displayed above and below the arc, respectively.

In an optimal solution of the MCFP described above, some blocks might be sent to more than one

destination, thus violating constraints (26). To obtain a feasible destination plan, we use the following

heuristic rule. Let z∗id denote the flow on arc (i, d) in the optimal solution of the MCFP. If there exists

a destination d such that z∗id = wis, then block i is assigned to this destination (i.e., ytids is set equal
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Figure 1: Graph in a situation with one block and one destination.

to 1). Otherwise, i is assigned to destination d̂ = argmaxd:(i,d)∈Azid (i.e., ytids is set equal to 1). In

both cases, the way the graph is constructed (arcs (i, d) exist only if i is admissible to d) guarantees

that constraints (23) are satisfied and thus the destination plan is feasible.

3. GD: This heuristic generates the destination plan following a greedy approach. The blocks are first

ordered in increasing order of the number of destinations for which they are admissible (i.e.,
∑
d∈D aids).

The blocks are selected in that order starting with the block with the fewest possibilities. For each

block, the heuristic selects an admissible destination to maximize the objective function (28) given the

blocks already assigned to this destination.

4. RD: Unlike the methods described above (MIP, MCFP, and GD), this method does not consider the

objective function value when assigning blocks to destinations. It is an iterative process used to quickly

obtain a feasible destination plan. This is done as follows. At each iteration, a block i is randomly

selected. Among all the destinations to which i is admissible, one is selected randomly, and i is assigned

to this destination. The process continues until all blocks in Bt are considered.

4 Improvement phase

This phase applies an adaptive large neighborhood search heuristic (ALNS) to improve the initial solution
generated in the previous phase. Proposed by Ropke and Pisinger (2006), ALNS extends the large neigh-

borhood search heuristic (LNS) introduced by Shaw (1997). In what follows, the main features of LNS and

ALNS are first described, then a step-by-step description of the proposed adaptation of ALNS is provided.

4.1 ALNS framework

4.1.1 General outline

Because ALNS is an extension of LNS, a brief description of LNS is first provided. Starting with an initial

solution, LNS progressively improves it by using two methods: a destroy method and a repair method. More

specifically, at each iteration, the destroy method removes a certain number of variables from the current

solution x, returning an infeasible solution x−, and the repair method rebuilds the partial solution x− and

returns a feasible solution, x′. This feasible solution x′ is either accepted as a new current solution or

rejected according to some pre-specified rule. This can be, for example, the Metropolis acceptance rule of the

simulated annealing method (Metropolis et al., 1953), by which if x′ is better than x, then x′ is accepted as

the new current solution (i.e., the search resumes from x′); otherwise, x′ is accepted with some probability.

LNS alternates between destroying and repairing the current solution until some stopping criterion is met.

LNS can be seen as a neighborhood search method where the neighborhood of the current solution is defined

by the destroy and repair methods. Clearly, the larger the degree of destruction is (i.e., the destroy method
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removes a large number of variables), the larger the neighborhood is (a large number of variables are modified

at each iteration). To explore the large neighborhood defined by the destroy and repair methods, LNS does

not generate it entirely. It rather samples it (Pisinger and Ropke, 2010).

ALNS is based on similar ideas as LNS, except that its uses multiple destroy and repair methods within the

search rather than using the same destroy/repair method at each iteration. More precisely, a set of destroy and

repair methods is considered. At a given iteration, the destroy/repair method to be used is selected according

to an adaptive probabilistic mechanism, which can be seen as a learning mechanism. ALNS associates with

each destroy/repair method a weight, also referred to as a score. Each time a method is used, its performance

is recorded. The weights are updated periodically based on these recorded performances. The weights thus

measure how well each method has performed recently, the highest weights indicating methods that have

recently been found successful for the instance being solved. A roulette-wheel mechanism is then used to

bias selection towards these methods. ALNS has been shown to be very efficient for a large variety of vehicle

routing, scheduling, and production problems; see for instance, Pisinger and Ropke (2007); Cordeau et al.

(2010); Demir et al. (2012); Kovacs et al. (2012); Muller et al. (2012); Ribeiro and Laporte (2012); Masson

et al. (2013); Adulyasak et al. (2014).

4.1.2 Components of the proposed adaptation of ALNS

The main components of our adaptation of ALNS are described below. The description follows the framework

proposed by Ropke and Pisinger (2006) and Pisinger and Ropke (2007) outlined in the previous section and

summarized in Algorithm 1.

1. Large neighborhood : Let x be the current solution. At each iteration, β blocks are removed from x and

are rescheduled in different periods and/or sent to different destinations. Selecting the blocks to remove

is done using one of the destroy methods described in Section 4.2. Selecting the new periods and/or

destinations for these blocks is done using one of the repair methods described in Section 4.3. The

number of blocks β involved in the modifications applied to the current solution is a parameter of the

ALNS heuristic, and this parameter has a significant impact on the efficiency of ALNS (Pisinger and

Ropke, 2010). Clearly, a small value of β might not allow a thorough exploration of the search space,

as the effect of a large neighborhood is lost. On the other hand, a large value of β reduces ALNS to

independent reoptimization, in addition to being time-consuming. In this paper, the value of β varies

during the search in the interval [βmin, βmax], and it is increased or decreased according to the quality

of the solutions recently obtained. More specifically, β is initially set to βmin. Every 20 iterations, it is

updated as follows:

β = min
(

max
(

2[(κ/10)−1]β, βmin

)
, βmax

)
where, κ is the number of improving solutions found during the last 20 iterations. Thus, if all 20

previous solutions are non-improving, β is multiplied by 2; if they are all improving, β is divided by 2;

intermediate cases lead to smaller changes in the value of β; and in all cases, at least βmin blocks but no

more that βmax blocks are removed from the current solution. By doing so, when improving solutions

are found, fewer blocks are removed from the current solution (compared to the previous iteration),

and thus few changes are made to the solution to intensify the search in the region of these improving

solutions. When ALNS fails to improve the solution, larger changes are made to leave the current

region and diversify the search. The values of the parameters βmin and βmax used in the numerical

experiments are given in Section 5.

2. Adaptive search engine: As in Ropke and Pisinger (2006) and many other implementations of ALNS,

the selection of the destroy and repair methods to be applied at a given iteration is controlled by a

roulette-wheel mechanism. The two methods are selected independently. Let ρ−d be the weight of

destroy method d. d is selected with a probability
ρ−d∑

m∈Ω− ρ
−
m

. The probabilities for selecting the repair

methods are calculated in a similar manner.

3. Adaptive weight adjustment : Without loss of generality, consider the case of the destroy methods d ∈ Ω−

(adjusting the weights associated with the repair methods is done in a similar manner). The values of
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the weights are initially set to 1 and are updated every 5 iterations using the following formula, which

is similar to that used by Adulyasak et al. (2014):

ρ−d =
10ζ

Td/d

where

• ζ = 1 + λ νdµd
, µd and νd representing, respectively, the number of times that the method d has

been used and the number of times this method has been able to improve the current solution.

Clearly, the more a method d has been successful in improving the solution, the higher the value

of νd
µd

is. λ is a parameter defining the importance given to the methods that can improve the

solution. With a high value of λ, the algorithm will tend to select methods that improve the

solution, favouring intensification and reducing diversification. In this paper, the value of λ was

set to 3, as in Adulyasak et al. (2014).

• Td/d = Td

Td
, Td being the average computational time per iteration for method d and d =

argmind∈Ω−Td is the method that requires the least amount of average computational time among

all the methods in Ω−.

Thus, the weights are computed accounting not only for the efficiency of the methods to improve the

solution but also for the time efficiency of these methods. Methods able to improve the solution in

short computational times will be assigned higher weights and are thus more likely to be selected.

4. Acceptance criterion: At each iteration, x′, the solution resulting from applying the selected destroy

and repair methods, is accepted or rejected according to the simulated annealing (SA) criterion. Let

∆f = f(x′) − f(x) be the difference between the value of the new solution x′ and the value of the

current solution x. x′ replaces x as the current solution if it is better than x (i.e., if ∆f > 0). If

∆f ≤ 0 , x′ replaces x with probability e
∆f
Tf . The temperature factor Tf is initially set to a value T 0

f

and is multiplied every iteration by the cooling factor 0 < c < 1 to decrease its value. The values of

the parameters T 0
f and c used in the numerical experiments are given in Section 5.

5. Stopping criterion: The stopping criterion is specified in terms of a maximum number of consecutive

iterations maxIter without an improvement of the objective function value. The value of this parameter

used in the numerical experiments is also given in Section 5.

4.2 Destroy methods

This section describes 14 destroy methods used to select the β blocks to be removed from the current solution,

x. Unless otherwise specified, all destroy methods follow the general scheme summarized in Algorithm 2 and

select blocks based on priority rules. More precisely, an index pi, henceforth referred to as a priority value, is

first calculated for each block i using information derived from the current solution and/or from the history

of the search. Blocks are then ranked in ascending or descending order of pi, and the β first blocks are

selected. The way the priority values pi are computed differs from one method to another. Before describing

how each method compute the pi values and how it ranks the blocks, some extra notation is introduced.

Let αis =
∑
d∈D aids be the number of destinations to which block i can be sent without violating the

admissibility constraints (recall that aids = 1 if block i is admissible for destination d under scenario s and

0 otherwise). Given the current solution x, denote by:

• ti(x): the period in which block i is extracted in solution x.

• Ei (x) = max
j∈P(i)

tj (x): the earliest period in which block i can be extracted without violating the slope

constraints (recall that P(i) denotes the set of immediate predecessors of block i).

• Li (x) = min
j∈S(i)

tj (x): the latest period in which block i can be extracted without violating the slope

constraints (S(i) denotes the set of immediate successors of block i).

• Mt
s (x) =

∑
i∈N wisx

t
i: the total tonnage, under scenario s, of blocks extracted in period t in solution x.
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• Ptds (x) =
∑
i∈N wisy

t
ids: the total tonnage, under scenario s, of blocks processed at destination d during

period t in solution x.

In what follows, in order to simplify the notation, we will omit the dependence on x whenever there is no

risk of ambiguity (that is, we will use ti instead of ti (x) and so on).

4.2.1 Random picker (D1)

The main purpose of this method is to diversify the search. It simply selects at random β blocks from

the current solution x to alleviate the risk of choosing the same blocks many times. This can be seen as

associating with each block a random integer value pi chosen between 1 and N and ranking the blocks in

ascending order of pi (recall that N denotes the number of blocks being scheduled).

4.2.2 Historical frequency (D2)

This method uses historical information to select the blocks. It relies on a frequency array F = (F i) where

each entry Fi is associated with a block i. This frequency array keeps track of the number of times that each

block i has been involved in destroying the solution since the beginning of the search process; that is, the

Fi values are initially set to 0, and whenever the block i is selected by a destroy method, then the value of

the entry Fi is incremented. The priority values of the blocks are calculated as pi = F i, and the blocks are

ranked in ascending order of pi. Thus, this method selects the blocks less frequently chosen so far in order

to diversify the search.

4.2.3 Historical best (D3)

This method is also based on historical information, but it additionally uses the value of the current solution,

f(x). It aims to select the blocks that seem to be sent to the wrong destinations in the current solution

with regard to the best known solutions. More precisely, let Xit be the set of solutions found so far in which

block i is extracted in period t. We define an N × T matrix Z. The value Zit of entry (i, t) in this matrix

corresponds to the value of the best solution in the set Xit (i.e., Zit = max
sol∈Xit

f(sol)). All Zit values are

initially set to a large negative value, and they are updated each time a new solution is found. Recall that

ti denotes the period in which block i is extracted in the current solution. The priority value of block i is

calculated as pi = Ziti − f(x) . Hence, a positive value of pi means that in one of the solutions found in

the past (sol), block i is extracted in the same period as it is in the current solution (x); however, the value

of sol is better than the value of x. This might be because in the current solution i is sent to the wrong

destinations, and thus removing it from these destinations might result in an improvement. The blocks are

ranked in descending order of pi to favour the blocks that present the largest deviations Ziti − f(x).

4.2.4 Greedy picker (D4)

This method selects the most costly blocks in the current solution in an attempt to extract them in other

periods where they will generate more profit and/or send them to better destinations. Identifying these

blocks reduces to identifying blocks whose removal increases the value of the objective function the most.

Let f(x − {i}) denote the value of the current solution x if block i is removed from the schedule. The

priority value of i is calculated as the difference between this value and the value of the current solution; i.e.,

pi = f (x− {i})− f(x). The blocks are ranked in decreasing order of pi.

4.2.5 Period mobility (D5)

This method selects the blocks that can be extracted in other periods without violating the slope constraints,

for it is easier to modify the period in which these blocks are extracted and thus create new feasible solutions

different from the current one. Moreover, when selecting such blocks, we take care to favour blocks whose

removal does not increase the mining shortage cost (third term of the objective function (14)). Let ε be a
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small value (ε = 0.0001 in the numerical results presented in Section 5). The priority value of block i is

calculated as follows:

pi =
Li − Ei∑

s max
(
ε, Eti −

(
Mti

s − wis
)) .

Note that the numerator (Li − Ei) represents the number of periods in which block i can be extracted in the

current solution without violating the slope constraints, while the denominator
(∑

s max
(
ε, Eti − (Mti

s −

wis)
))

is equal to a small value if removing i from its current period ti does not incur a mining shortage in ti

under any scenario, and it is equal to the total shortage amount considering all scenarios otherwise. Hence,

a block with a high value of pi has more feasible reinsertion possibilities (in terms of periods of extraction)

and is less likely to incur a mining shortage if removed from its current period. For this reason, the blocks

are ranked in descending order of pi.

4.2.6 Destination mobility (D6)

This method has the same objective as the previous one; that is, to select blocks that can lead to a new

feasible solution different from the current one. However, the blocks are ranked by the number of destinations

to which they can be sent rather than the number of periods in which they can be extracted. Recall that

αis =
∑
d∈D aids represents the number of admissible destinations for block i in scenario s. The priority

values are calculated using the formula below, and the blocks are ranked in descending order of these values:

pi =


∑
s∈S

αis if i is extracted in the current solution

(
i.e., if

∑
t∈T

xit = 1

)
,

0, otherwise.

Clearly, an unmined block cannot be sent to any destination, and thus if selected, one cannot modify its

destination and get a new solution different from the current one. This is why unmined blocks are given less

priority (the corresponding pi values are set to 0 to avoid selecting them).

4.2.7 Combined mobility (D7)

This method combines the two previous ones (Period mobility and Destination mobility). It accounts not

only for the periods in which each block can be extracted, but also for the destinations to which the block

can be sent. More precisely, the priority values are computed using the following formula:

pi =


∑
s∈S

(αis − 1) +
Li∑

t=Ei,t6=ti

∑
s∈S

αis if
∑
t∈T

xit = 1,

0 otherwise.

The term (
∑
s∈S (αis − 1)) accounts for the number of destinations to which block i can be sent if its period

of extraction is not modified (its current destination under each scenario does not contribute to this term),

while the term (
∑Li

t=Ei,t6=ti
∑
s∈S αis) considers the other periods to which the block can be moved while

satisfying the slope constraints. The blocks are ranked in descending order of pi to select those with many

feasible reinsertion possibilities.

4.2.8 Predecessor relatedness (D8)

This method has the same objective as the last three ones: create new feasible solutions different from the

current one. However, it does not rely on the number of feasible reinsertion possibilities of each block nor

does it follow the general scheme outlined in Algorithm 2. It selects blocks along with their predecessors

mined in the same period, as this should allow modifying their period of extraction and create a new feasible

solution (more specifically, advance their extraction together which will ensure the satisfaction of the slope

constraints). This is done in three steps. In the first step, a random integer value τ is chosen between 1 and

T (recall that T is the number of periods over which the blocks are being scheduled). Then, τ periods are
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selected at random. The priority values are not calculated for all blocks but only for blocks extracted in one

of these τ periods. Let t be such a period and i be a block extracted in t. Denote by γi the number of blocks

in the inverted cone formed by i and its predecessors mined in t. Recall that β blocks should be selected.

We set pi =
∣∣∣γi − ⌈βτ ⌉∣∣∣ and among the blocks currently extracted in t, the block with the smallest value of

pi is selected, as well as its predecessors mined in t. Ties are broken up randomly. This process is repeated

for each of the τ periods.

4.2.9 Successor relatedness (D9)

This method is similar to the previous one except that it selects blocks along with their successors. Apart

from the fact that γi represents the number of blocks in the cone formed by i and its successors mined in

the same period, the procedure to select the blocks is identical to the procedure described in the previous

section.

4.2.10 Mining reduction (D10)

The objective of this method is to select blocks whose removal can reduce the mining surplus (i.e., decrease the

value of the fourth term of the objective function) or reduce the tightness of the mining capacity constraints

to make room for new blocks. The priority values are computed as follows:

pi =

min (1, Li − Ei)maxs∈S
Mti

s

Eti
if
∑
t∈T

xit = 1,

0 otherwise.

The blocks are ranked in descending order of pi. Note that if an extracted block i cannot be moved to

another period (t 6= ti) without violating the slope constraints (i.e., if
∑
t∈T xit = 1 and Ei = Li = ti), then

the corresponding priority value pi is equal to 0 to avoid selecting it. This is done to make it easy for the

repair method to create new feasible solutions. The priority value of a block that is not extracted in the

current solution (i.e., such that
∑
t∈T xit = 0) is also set to pi = 0 to avoid selecting it, as such blocks are

not mined and thus have no influence on the mining capacity constraints (changing their periods does not

affect the fourth term of the objective function (14)).

4.2.11 Processing reduction (D11)

This method is based on similar ideas as the previous one and aims to reduce the amount of surplus at the

different destinations and/or the tightness of the processing capacity constraints. To be more precise, recall

that Ptds denotes the total tonnage of blocks processed at destination d during period t under scenario s in

the current solution, and that F td is the processing capacity at d during t. Denote by σis = min(1, (αis− 1) +

αis (Li − Ei)) the number of feasible reinsertion possibilities for block i under scenario s. Thus, if block i

cannot be moved to another period (i.e., if Ei = Li = ti), and if it can be sent to only one destination under

scenario s (i.e., and if αis = 1), then σis = 0. Otherwise, σis ≥ 1. The priority values pi are calculated using

the formula below, and the blocks are ranked in descending order of pi:

pi =

maxs∈S

{
σis
Pti

ds

F
ti
d

}
if
∑
t∈T

xit = 1,

0 otherwise.

Note that the way the pi’s are defined implies that the blocks that are not extracted in the current solution,

as well as the blocks that are extracted but can neither be mined in a different period nor sent to another

destination for all scenarios, have the lowest priority values (0) to avoid selecting them. As for the previous

method, the idea is to prevent getting a solution similar to the current one when applying the repair method.

4.2.12 Shortage cautious (D12)

The purpose of this method is to find blocks that can be sent to destinations more profitable than their

current destinations without incurring a shortage in their current destination. Denote by c the destination
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to which block i is sent under scenario s in the current solution. Let d∗ be the best destination to which

block i can be sent under scenario s; i.e., d∗ = argmaxd∈Dvids (recall that vids represents the economic value

to be generated if block i is processed at destination d in scenario s. This value is calculated as the return

from selling the recovered metal minus the processing, transportation, and selling costs. vids is set to a large

negative value if i is not admissible for destination d under scenario s). Again, let ε be a small positive value,

and let C be a large positive value. Recall that δ1 is the discount rate. The priority values are computed

using the following formula, and the blocks are ranked in descending order of the priority values:

pi =


1

(1+δ1)ti

∑
s∈S

vid∗s−vics
max(ε,F ti

c −(Pti
cs−wis))

if
∑
t∈T

xit = 1,

−C otherwise.

In this formula, 1
(1+δ1)ti

is used to account for the discount factor. The numerator (vid∗s − vics) is used to

favour blocks that can improve the second term of the objective function (14) the most. The denominator(
max(ε, F tic − (Ptics − wis))

)
is used to favour blocks that will not incur a shortage if removed from their

current destination (will not increase the fifth term of the objective function (14)). Finally, the priority

values of blocks that are not extracted in the current solution are set to a large negative value to avoid

selecting them, as these blocks do not contribute to any term of the objective function (14).

4.2.13 Empty one period (D13)

This method does not compute the priority values and does not necessarily select β blocks. It randomly

selects one period and adds all the blocks extracted in that period to the list L (list of selected blocks). The

motivation is to allow all destinations in a given period to be empty and completely remake the destination

decisions (reconstruct the destination plans) with the repair method. By doing so, more opportunities for

new block combinations in the different destinations are created.

4.2.14 Empty waste dump (D14)

In a given period and under a given scenario, some blocks might be sent to the waste dump while they can

be sent to profitable destinations where they can be processed and generate revenue. This method aims to

select such blocks to improve the solution. Let πis be a parameter equal to 1 if block i is sent to the waste

dump under scenario s in the current solution, and 0 otherwise. Clearly, πis = 0∀ s if i is not extracted in

the current solution. The priority values are computed using the formula below, and the blocks are ranked

in descending order of these values:

pi =
∑
s∈S

πis [(αis − 1)(Li − Ei + 1)]

The term (αis − 1) accounts for the number of the destinations to which block i can be sent under scenario

s, excluding its current destination, while (Li −Ei + 1) accounts for the periods in which i can be extracted

without violating the slope constraints, including its current period of extraction. The factor πis is used to

avoid selecting blocks that are currently not in the waste dump under any scenario.

4.3 Repair methods

The blocks in the list L, identified by the destroy method, are removed from the current solution x, resulting

in an infeasible solution x−. This means that all the variables associated with the blocks that are not in L
are fixed, the remaining variables are “free”. One of the seven methods described in this section is used to

reinsert each block in L in other feasible periods and/or destinations to obtain a new feasible solution x′;

that is, to optimize the “free” variables. The seven methods can be seen as variants of the methods used to

generate the initial solution described in Section 3.

The following notation is used in the rest of this section. Given the solution to repair x−, Bt =

{i ∈ N : xti = 1} denotes the set of blocks mined in period t. The set of blocks processed in destination

d during period t under scenario s is denoted by Λtds = {i ∈ N : ytids = 1}.
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4.3.1 Random repair (R1)

This method considers one block i ∈ L at a time and sequentially chooses the period and the destinations

in which i will be scheduled. The block is selected randomly, and the criteria to choose the period and

the destinations are similar to those used in the RP and RD heuristics described in Sections 3.1 and 3.2,

respectively. More specifically, the method starts by identifying the set of feasible periods FP(i) in which i

can be extracted without violating the slope constraints. In doing so, the predecessors and the successors of

i that are in the list L are not accounted for. Then, one of the periods in FP(i) is selected randomly, and i

is scheduled to be mined in that period. The next step is to decide in which destination i will be processed

under each scenario, and again this is done randomly; i.e., under each scenario, i can be processed in any

destination as long as it is an admissible destination. When all scenarios are considered, i is removed from

L, another block is chosen, and the process is repeated until the list L is empty.

4.3.2 Greedy repair (R2)

This method is similar to the previous one in the sense that it considers blocks i ∈ L one at a time and

sequentially determines the period and the destinations for the selected block before considering another

block, but, to this end, it uses selection criteria different from those used by R1 as explained below. To

simplify the presentation, we denote by

g
(
Bt
)

=
∑
i∈Bt

E[ci]

(1 + δ1)
t +

1

S

∑
s∈S

[
p−

(1 + δ2)
tmax

(
Et −

∑
i∈Bt

wis, 0
)

+
p+

(1 + δ2)
tmax

(∑
i∈Bt

wis − Et, 0
)]

(29)

h
(
Λtds
)

=
∑
i∈Λt

ds

vids

(1 + δ1)
t −

q−d
(1 + δ2)

tmax
(
F td −

∑
i∈Λt

ds

wis, 0
)
−

q+
d

(1 + δ2)
tmax

( ∑
i∈Λt

ds

wis − F td, 0
)
. (30)

g(Bt) is used to evaluate the cost of mining a block i in period t accounting for all blocks that are already

mined in this period, whereas h(Λtds) is used to measure how profitable it is in scenario s and period t to

process an additional block in destination accounting for blocks that are already processed in d.

Again, let FP(i) denote the set of feasible periods in which i can be extracted, considering only its

predecessors and successors that are not in L. For each period t ∈ FP(i), the repair method R2 first uses

function (29) to compute the cost of mining i in period t: 41(i, t) = g(Bt ∪ {i})− g(Bt). Then, it considers

the scenarios sequentially and for each scenario, it finds, following a greedy approach, the destination in

which i can be processed. For that, function (30) is used and the following is computed to measure how

feasible and profitable it is to process i in d: 42(i, d, s, t) = h(Λtds ∪ {i}) − h(Λtds) if i is admissible to

d under scenario s, and 42(i, d, s, t) is set equal to a large negative value otherwise. Let d∗ (i, s, t) =

argmax
d∈D
42(i, d, s, t). Clearly, the maximum profit that one can expect if block i is mined in period t is

4 (i, t) = −41 (i, t) + 1
S

∑
s∈S 42(i, d∗ (i, s, t) , s, t). Once all periods in FP(i) are considered, the period

t∗ = argmaxt∈FP(i)4 (i, t) is identified and block i is scheduled to be mined in t∗ (i.e., it is included in the

set Bt). Finally, for each scenario s, i is sent to destination d∗ (i, s, t) (i.e., it is included in the set Λtd∗(i,s,t)s).

4.3.3 Capacity cautious repair (R3)

This method is very similar to the previous one except for the following differences:

1. g (Bt) and h(Λtds) are here defined by equations (31) and (32) below rather than (29) and (30) in order

to select the periods/destinations that will leave the most residual capacity for forthcoming blocks.

This is done to introduce some lookahead perspective when reinserting the blocks.

g
(
Bt
)

=

∑
s∈S

∑
i∈Bt wis

Et
(31)

h
(
Λtds
)

=

∑
i∈Λt

ds
wis

F td
. (32)
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2. Accordingly, d∗ (i, s, t) = argmin
d∈D
42(i, d, s, t) instead of d∗ (i, s, t) = argmax

d∈D
42(i, d, s, t) (i.e., the best

destination for a block in a given scenario and period is the one having the smallest capacity utilization).

3. 4 (i, t) is set equal to 41 (i, t) + 1
S

∑
s∈S 42(i, d∗ (i, s, t) , s, t) and t∗ = argmint∈FP(i)4 (i, t).

Although some care is taken to include some look ahead features in R3, the sequential approach used in

R1, R2, R3 is myopic and might lead to poor solutions. A better approach would be a global approach that

considers multiple blocks when deciding the destinations. That is what the two methods described in the

next two sections try to do.

4.3.4 MCFP repair (R4 and R5)

To repair the solution, this method combines the random repair heuristic (R1) and the MCFP heuristic

described in Sections 4.3.1 and 4.3.2, respectively. More specifically, it starts by assigning feasible periods

to blocks in L as in R1; that is, for each block i ∈ L, FP(i) is first identified, then i is included in Bt
where t is chosen randomly in FP(i). Once this step is completed, the destination plans for each period t

that have been affected at the previous step are determined by solving the DP t described in 3.2. This is

done by applying the MCFP heuristic on each scenario separately. When applying the MCFP heuristic, the

decisions associated with the blocks that were not in L (i.e., blocks that were not selected by the destroy

method) are fixed to their current values. Another alternative, which is more flexible and might lead to better

quality solutions but at the expense of longer computational times, is to reconstruct the destination plan

from scratch (i.e., none of the parts of the plan is fixed and all the decisions are to optimize). In this paper,

we examine the two alternatives, which leads to two variants of the MCFP repair method. The variant that

solves a partial destination problem (first alternative) is denoted by R4, while the variant that solves the full

destination problem (second alternative) is denoted by R5.

4.3.5 MIP repair (R6 and R7)

This method is very similar to the previous one. All the mining decisions are made first before designing

the destination plans. Again, the latter are determined by considering only periods that have been affected

when making the mining decisions, considering the scenarios separately. However, rather than using MCFP,

a mixed-integer programming solver is used to find the optimal values of the variables ytids, f
t−
ds , and f t+ds that

maximize the net present economic value to be generated from processing the blocks mined in period t minus

the total penalty costs of not satisfying the demands or exceeding the capacities of the different destinations

during this period. Again, one can fix the binary variables ytids corresponding to the blocks i that were not

selected by the destroy method to their current values, which results in a variant of the MIP repair method

that we will denote by R6 as one can “free” all variables, which gives yield to another variant of the MIP

repair method denoted by R7.

5 Numerical results

The solution approach proposed in this paper is tested on the same copper-gold deposit used in the study

by Goodfellow and Dimitrakopoulos (2013) where 175,598 blocks are considered for scheduling over 22 years.

A set of 40 equiprobable scenarios is used to model the uncertainty in copper, gold, tonnages, and material

types. There are three main material groups: sulphides, transition, and oxides, and each group is separated

into two groups, for a total of six material types. There are also six destinations: a sulphide mill (SM), a

sulphide heap leach (SHL), a sulphide waste dump (SWD), a transition heap leach (THL), an oxide heap leach

(OHL), and an oxide waste (OW). Figure 2 (Goodfellow and Dimitrakopoulos, 2013) depicts the different

material types and destinations at the copper-gold mine.

As mentioned in Goodfellow and Dimitrakopoulos (2013), the sulphide mill only accepts sulphide materials

and produces both copper and gold. The sulphide heap leach produces only copper, but it accepts both

sulphide and transition materials. Moreover, for chemistry reasons, it can only process the materials above

0.2% copper, hence the creation of distinct material types around this grade. Like the sulphide heap leach,
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3.1 Overview of the mining complex 

In the given case study, a single mine supplies materials to a mining complex that 

extracts both gold and copper. Figure 2 summarizes the definition of the mine’s material 

types along with the various processing options. The mine is represented by a set of 50 

equally probable geological simulations with variable copper, gold, tonnages and material 

types; 40 of the simulations are used for optimization and the remaining 10 are used to 

verify the robustness of the stochastic solution. The mine is comprised of three main 

material groups: sulphides, transition and oxides. Each of these major groups is separated 

into two material types for use with the proposed methodology (Figure 2). In order to 

model the material flows in the processing paths, the sulphide and transition material

groups are both separated into two different material types based on being above or 

Figure 2: Material types and destinations at the copper-gold mine.

the sulphide waste dump can also extract only copper and accepts both sulphide and transition materials.

The difference between the sulphide heap leach and the sulphide waste dump is that the latter is essentially

a waste dump where excess sulphide and transition materials go for leaching, regardless of whether or not

it is profitable to treat the material. The transition and oxide heap leaches accept only transition or oxide

materials, respectively, and both extract only gold. The oxide waste dump accepts both oxide materials, but

it does not treat any of the material and hence produces neither copper nor gold.

Table 1 shows the parameters used to define the right hand side of the constraints (lower and upper

bounds), while Table 2 summarizes the economic parameters used to compute the coefficients of the objective

function (14). For confidentiality purposes, the mining and processing costs are expressed relative to a

base cost “k” to give an idea of the order of magnitude of costs for the various processes. Note that the

parameters in Tables 1 and 2 are similar to those used in Goodfellow and Dimitrakopoulos (2013), except

for the recoveries. Indeed, as previously noted in Section 1, Goodfellow and Dimitrakopoulos (2013) consider
dynamic recoveries in the different processing facilities that depend on the average grade of the incoming

material at these facilities, while in this paper, the recoveries are considered to be fixed at the values given

in Table 2.

As noted previously, in this case study, 175,598 blocks are considered for scheduling over 22 years. A

45-degree slope angle is considered to define the precedence constraints, and 40 simulations are used to model

the uncertainty in copper, gold, tonnages, and material types. The corresponding two-stage stochastic model

((1)–(13)) contains more than 931 million binary variables and millions of constraints, which is a size beyond

the reach of exact methods. The results obtained with the heuristic-based solution approach described in

this paper are presented below. Figures 3 and 4 show the risk profiles (P10, P50, and P90) for the tonnages

processed at each destination and the cumulative NPV, respectively. Figure 5 shows sample cross-sections of

the physical schedule obtained.

The following observations can be made from the graphs in Figure 3. The sulphide mill, which is limited

to processing three million tonnes per year, is used at full capacity during the first 10 years. The amount

processed in this destination drops after that, and a very small amount of material is treated towards the end

of the horizon, when the risk is higher. The differences between the P10, P50 and P90 curves are negligible

for the first 10 periods, indicating that, given the simulations used, there is a very small risk of not providing

enough material to fill the sulphide mill capacity. The same observations apply to the sulphide heap leach.

This processor has an eight million tonnes per year capacity, which is fully utilized, as the SHL receives



20 G–2015–93 Les Cahiers du GERAD

Table 1: Parameters used to define the right hand side of the constraints.

Parameter Value

Lower bound on mining (Et) 0

Upper bound on mining (Et) 25 million tonnes

Lower bound on processing or demand at destination d
(
F t
d

)
d
(
F t
d

)
d
(
F t
d

)
Sulphide Mill (SM) for the first 10 years 2.9 million tonnes
Sulphide Mill (SM) for years 11 to 22 0
Sulphide Heap Leach (SHL) for the first 10 years 7.8 million tonnes
Sulphide Mill (SM) for years 11 to 22 0
Sulphide Dump Leach (SDL) 0
Transition Heap Leach (THL) 0
Oxide Heap Leach (OHL) 0
Oxide Waste (OW) 0

Upper bound on processing or capacity of destination d
(
F t
d

)
d
(
F t
d

)
d
(
F t
d

)
Sulphide Mill (SM) 3 million tonnes
Sulphide Heap Leach (SHL) 8 million tonnes
Sulphide Dump Leach (SDL) Unlimited
Transition Heap Leach (THL) Unlimited
Oxide Heap Leach (OHL) Unlimited
Oxide Waste (OW) Unlimited

Table 2: Economic parameters used to compute the objective function coefficients.

Parameter Value

Mining cost $1*k/t

Sulphide Mill (SM)
Processing cost $11.30*k/t
Recovery Cu 0.93
Recovery Au 0.59

Sulphide Heap Leach (SHL)
Processing cost $2.98*k/t
Recovery Cu 0.7
Recovery Au 0

Sulphide Dump Leach (SDL)
Processing cost $1.87*k/t
Recovery Cu 0.4
Recovery Au 0

Transition Heap Leach (THL)
Processing cost $2.15*k/t
Recovery Cu 0
Recovery Au 0.5

Oxide Heap Leach (OHL)
Processing cost $2.06*k/t
Recovery Cu 0
Recovery Au 0.55

Oxide Waste (OW)
Processing cost 0
Recovery Cu 0
Recovery Au 0

Copper price (including selling and G&A costs) $2.88/lb Cu recovered
Gold price (including selling and G&A costs) $1480/oz Au recovered
Undiscounted cost for failing to meet the lower bound on mining (p−) 10$/t
Undiscounted cost for not satisfying the mining capacity (p+) 10$/t

Undiscounted cost for failing to meet the demand at destination d (q−d ) 25$/t if d = SM , 10$/t otherwise

Undiscounted cost for exceeding the capacity of destination d (q+d ) 25$/t if d = SM , 10$/t otherwise
Discount rate (δ1) 10%
Risk discount rate (δ2) 7%
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Risk profile: Sulphide Dump Leach 
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Risk profile: Transition Heap Leach 
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Risk profile: Oxide Heap Leach 
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Figure 3: Risk analysis for tonnages processed at each destination.

consistently this amount except in the last three periods. The risk of not meeting the production targets is

higher towards the end of the life of the mine. Regarding the sulphide dump leach, one can observe that there

are more fluctuations in this processor compared to the two previous ones. This is due to the fact that this

processor has an unlimited capacity and accepts sulphide and transition materials. As noted earlier in this

section, the sulphide leach dump is essentially a waste dump where excess sulphide and transition materials

go for leaching. Hence, surplus low grade material is treated in this processor. The transition heap leach has

also an unlimited capacity. The amounts processed in this destination range between 4 and 9 million tonnes

and the risk increases towards the end of the life of the mine, as can be seen from the more pronounced

differences between the P10, P50 and P90 curves. The risk profiles for the oxide waste show that the tonnage

of waste is higher in the last periods than it is in the first periods, as the extraction of non-profitable blocks

is delayed. Less than one million tonnes of waste is mined during the first 10 periods. Finally, Figure 4 shows

the risk profiles for the cumulative NPV. It appears from the graph that the first six periods account for 80%

of the total NPV. This is due to the fact that the most valuable material is extracted and processed early in

the life of the mine, as can be seen from the graphs in Figure 3.

6 Conclusions

This paper deals with the development of new models and solution approaches to address the large and

complex problems faced by the mining industry when optimizing mineral supply chain operations under

supply uncertainty. A two-stage stochastic model that integrates metal and material type uncertainty and
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Figure 4: Risk analysis for cumulative discounted cash flows.

Figure 5: Cross-sections of the physical schedule.

simultaneously optimizes mining and destination decisions has been proposed. A heuristic approach based

on the adaptive large neighborhood search framework (ALNS) has been developed to efficiently solve the

proposed formulation. The structure of the problem has been exploited and relaxation and decomposition

techniques have been used to obtain the initial solution to be improved with ALNS. ALNS uses 14 destroy

methods and seven repair methods that are suited for the problem addressed in the paper and ensure both

intensification and diversification.

The proposed solution approach has been tested on a copper-gold deposit with six material types and

six destinations. The results of the numerical experiments indicate the ability of the proposed approach to

efficiently address large instances with almost one billion binary variables and provide schedules where the

most valuable material is mined and processed early in the life of the mine and where the risk of not meeting

production targets is reduced.
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Although the proposed mathematical model and solution approach consider a single mine, they can be

easily extended to address the case of mineral supply chains comprised of multiple mines. Both the model

and the solution approach can also be adapted to address the more general mineral supply chain where the

first destinations are not the last destinations. Future work will follow these directions.
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