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Abstract: Geostatistical simulation techniques are used to quantify uncertainty of spatial attributes of
interest describing mineral deposits, petroleum reservoirs, hydrogeological horizons, environmental contam-
inants and so on. The majority of existing methods consider second-order spatial statistics and Gaussian
processes, while the more advanced multiple point based simulation approaches are algorithmic and do not
consistently account for the high-order spatial relations in data. Recently, simulation techniques for complex
and non-Gaussian, spatially distributed variables have been developed, based on high-order spatial cumu-
lants, and make no assumptions on data distribution or require data transformations. In this paper, the
previous developments are extended and a new approach for the joint simulation of multiple correlated vari-
ables using high-order spatial statistics is proposed. The technique is based on a new algorithm described
here for the decorrelation of correlated variables into factors, using the so-termed diagonal domination con-
dition of high-order cumulants. The decorrelated factors are then simulated using high-order simulation
and back-transformed into the initial correlated variables. The decorrelation using diagonal domination of
high-order statistics is tested with a dataset from a multi-element iron ore deposit and then a fully known
two-dimensional dataset with two correlated variables is used to demonstrate the practical intricacies of the
proposed method.

Key Words: Stochastic simulation, joint simulation, high-order spatial statistics, cumulant, decorrelation.
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1 Introduction

Major source of uncertainty affecting mine planning optimization is that pertinent geological aspects of the

orebody model being considered, including grades, metal, material types, other rock properties of interest

are interpolated from a limited number of drillholes (Dimitrakopoulos, 2011). The last two decades new,

advanced spatial stochastic simulation techniques have been developed to assist with the quantification of

the related uncertainty. Since the early efforts (e.g. David, 1988; Goovaerts, 1997; Chiles and Delfiner,

2012), a new generation of algorithms implicitly uses high-order spatial relations. More specifically, multiple

point simulation (MPS) algorithms (Journel, 2005; 2007), such as the snesim (Strebelle and Cavelius, 2014),

filtersim (Zhang et al., 2006), and simpat (Arpat and Caers, 2007), cdfsim (Mustapha, Chatterjee and Dimi-

trakopoulos, 2014) and others (De Vries et al., 2008; Chiginova and Hu, 2008; Honarkhah, 2011; Straubhaar,

2011; De Iaco and Maggio, 2011); Markov random field models based multi-point approaches (Tjelmeland,

2013); multi-scale MPS simulations based on discrete wavelet decomposition (Chatterjee and Dimitrakopou-

los, 2012). MPS techniques use pattern-based algorithms and are highly depend on the so-termed training

image, TI, (or geological analogue) used rather than drill hole data available. As a result, the related simu-

lated representations of attributes of interest may not reproduce the spatial statistics of the data and thus

are called TI-driven. These issues become apparent in mining applications as there are, relatively to other

applications such as in petroleum reservoir characterization, a reasonable amount of data available (Osterholt

and Dimitrakopoulos, 2007; Goodfellow et al., 2012).

The high-order geostatistical simulation framework based on high-order spatial statistics was recently

introduced, to provide an alternative, data-driven and mathematically consistent approach (Dimitrakopou-

los et al., 2010; Mustapha and Dimitrakopoulos, 2010a, 2011; Mustapha, Dimitrakopoulos and Chatterjee,

2011). Notably, the high-order simulation framework does not require any distribution assumptions or data

transformations and it is founded upon the well-established sequential simulation framework, where a non-

parametric Legendre polynomial series approximation (Lebedev, 1965) is used to estimate local conditional

density functions. This framework provides a consistent mathematical model and, it is important to stress

again, ensures that the modeling process is data-driven and thus avoids potential conflicts between the spatial

statistics of available data and simulated realizations. The above developments considers up to now univari-

ate simulation and the high-order simulation of multiple correlated attributes of interest in a mineral deposit

remains to be addressed.

Joint simulations of multiple correlated elements is available with second-order Gaussian simulation meth-

ods and are based on decorrelation approaches, such as minimum-maximum autocorrelation factors (e.g.

Fonseca and Dimitrakopoulos, 2003; Boucher and Dimitrakopoulos, 2009; 2012; Mueller and Ferreira, 2012;

Rondon, 2012) or principal component analysis, PCA (David, 1988; Wackernagel, 1998). Approaches for

decorrelation of non-Gaussian variables may be based on principle component cumulant analisys or PCCA

(Morton and Lim, 2009) and independent component analysis or ICA (Comon, 1994). The first method

relies on finding principal cumulant components that account for most of the variation in all higher-order

cumulants, just as PCA obtains maximum variance components. In ICA approaches, transformation into in-

dependent factors is performed by maximization of different independence measures (Hyvarinen 1999), such

as likelihood and network entropy, mutual information and Kullback-Leibler divergence, non-linear cross-

correlations, non-linear PCA criteria, higher-order cumulant tensors, weighted covariance matrix, negative

entropy, general contrast functions. In this paper, a new measure of independence for ICA is first proposed.

The measure is based on the diagonal domination of high-order cumulants of factors: The absolute values of

diagonal elements are substantially greater than non-diagonal ones. It is not hard to see, that this condition

will maximize independence between factors, because for independent variables the high-order cumulants

are diagonal. Generally, there can be no transformation into completely independent factors. From this

point of view, using diagonal domination condition seems natural, because, in contrast to any strong diag-

onalization condition, it allows to obtain maximally diagonal cumulants for all orders simultaneously. The

advantage of proposed technique is that it uses directly the high-order statistics of a multivariate dataset,

which characterize multivariate probability distribution functions.

In the following sections, first the basic definitions for high-order spatial statistics and spatial simulation

are given and are followed by the proposed joint high-order simulation approach. Subsequently, a multi-
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element dataset from an iron ore deposit is used to test and assess the high-order decorrelation approach

proposed and it is followed by an application and testing of the proposed simulation method in an exhaustively

known deposit.

2 High-order spatial statistics

Let (Ω,=, P ) be a probability space and Z(x) be a real random field in Rn defined at the locations, xi ∈
D ⊆ Rn(n = 1, 2, 3) for i = 1 . . . N , where N is the number of points in a discrete grid D ⊆ Rn. Assuming

Z(x) is a zero-mean ergodic stationary random field in Rn, then the cumulants of Z(x) are defined by the

MacLaurin expansion of the cumulant generating function (Rosenblatt 1985):

K(ω) = ln
(
E
[
eωZ

])
(1)

The high-order spatial moment of order r is

Mom [Z(x), Z(x+ h1), . . . , Z(x+ hr−1)] = E [Z(x)Z(x+ h1) . . . Z(x+ hr−1)] (2)

Similarly, the cumulants of the random field Z(x) up to order r can be expressed as

czr(h1, . . . , hr−1) = Cum [Z(x), Z(x+ h1), . . . , Z(x+ hr−1)] (3)

For example, cumulant order 1 is a mean of random field Z(x)

cz1 = E [Z(x)] (4)

Second-order cumulant of the random field Z(x) is known as covariance

cz2(h) = E [Z(x)Z(x+ h)]− E [Z(x)]E [Z(x+ h)] (5)

Its third-order cumulant is given by

cz3(h1, h2) = E [Z(x)Z(x+ h1)Z(x+ h2)]− E [Z(x)]E [Z(x+ h1)Z(x+ h2)]

− E [Z(x+ h1)]E [Z(x)Z(x+ h2)]− E [Z(x+ h2)]E [Z(x)Z(x+ h1)] (6)

− E [Z(x)]E [Z(x+ h1)]E [Z(x+ h2)]

For calculation of higher-order cumulants the reader is referred to Dimitrakopoulos et al. (2010) and

Mustapha and Dimitrakopoulos (2010b).

Let us summarize related properties of cumulants:

1. Cumulants are multi-linear

Cum(AαiZ(xi), AβjZ(xj), AγkZ(xk)) = AαiAβjAγkCum(Z(xi), Z(xj), Z(xk)) (7)

where A is an arbitrary matrix.

2. Cumulants of independent variables are diagonal.

3. Cumulants of Gaussian variables with order greater than two are equal to zero.

3 High-order simulation

Let Z(xi) or Zi be random field indexed in Rn, xi ∈ D ⊆ Rn(n = 1, 2, 3), where N is the number of points in

a discrete grid D ⊆ Rn. The focus of high-order simulation techniques is to simulate the realization of random

field Z(xi) for all nodes of a discrete grid D ⊆ Rn with given set of conditioning data dM = {Z(xα), α =

1 . . .M}. The high-order simulation method proposed by Mustapha and Dimitrakopoulos (2010a; 2011) uses

Legendre polynomials and coefficients in terms of cumulants to approximate conditional probability density
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drawn randomly and the simulated value at location 0x  is added to the set of conditioning 

data. This approach is repeated for all points in the random path defined above. 

Figure 1: An unknown value is at the location x0, and the values at the locations x1, x2, . . . xn in the
neighborhood of x0 are assumed to be known.

function at each node of simulation grid. The algorithm runs sequentially for every node of the simulation

grid similarly to sequential simulation algorithms.

On the first step a random path for visiting all unsampled nodes is defined. Assume that x0 is the first

node to be visited with neighbours x1, x2, . . . xn represented in Figure 1.

Then, the conditional probability density function (cpdf) fZ0
(z0/dM ) is given by:

fZ0
(z0/dM ) =

1∫
fZ(x)dz0

fZ(z0, z1, . . . , zM ) =
1∫

fZ(x)dz0

∞∑
i0=0

∞∑
i1=0

. . .

∞∑
iM=0

L̄i0,i1,...iM P̄i0(z0) (8)

where z1, . . . , zM are values of conditioning data set dM , fZ(z0, z1, . . . , zM ) = fZ(x) is joint probability den-

sity function of random value at node x0 and conditioning data set dM , P̄i0(z0) =
√

2i0 + 1Pi0(z0)/
√

2 is

normalized Legendre polynomial, Li0,i1,...iN and L̄i0,i1,...iN = Li0,i1,...iN P̄i1(z1) . . . P̄iM (zM ) are coefficients

defined in terms of high-order spatial cumulants in (7). Then, a value from the estimated cumulative distri-

bution function is drawn randomly and the simulated value at location x0 is added to the set of conditioning
data. This approach is repeated for all points in the random path defined above.

4 Joint high-order simulation

Let Z(x) = {Z1(x), Z2(x), . . . , Zp(x)} be spatially-correlated random variables given data set dM = {Zk(xα),

k = 1 . . . p, α = 1 . . .M}, where k is the index of variable and α is index of location. Due to correlations

between variables, the high-order simulation technique described above cannot be applied independently

for all Z(x) variables. Thus, the initial variables Z(x) are decomposed into uncorrelated factors Y (x) =

{Y1(x), Y2(x), . . . , Yq(x)} using the linear transformation A.

Y (x) = AZ(x) (9)

Then, independent simulations are carried out for each variable Yk(x){k = 1 . . . q} using high-order simulation

technique described above. The resulting jointly simulated grades Z(x) are obtained by back-transformation

of factors Y (x)

(x) = ÃY (x) (10)

where Ã is a back-transformation matrix. In this paper, the high-order spatial statistics of Z(x) and Y (x)

are used to find the transformation matrix A.
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4.1 Diagonal dominant spatial cumulants

Let Cum(Yk1(x), Yk2(x), . . . Ykr (x)) be joint-cumulants of factors Y (x). Suppose all factors are independent,

then from cumulant properties described above, only diagonal elements of high-order joint-cumulants are not

equal to zero

Cum(Yk1(x), Yk2(x), . . . Ykr (x)) 6= 0, if only k1 = k2 = . . . = kr (11)

In general, the joint-cumulants of different orders cannot be diagonalized simultaneously. Therefore, in

this work we do not assume that joint-cumulants of factors Y (x) are diagonal, but they have strong diagonal

domination. For second-order tensor, i.e. matrix, a diagonal domination condition is

|aii| ≥
∑
j 6=i

|aij | ∀i (12)

For high-order tensor diagonal domination condition is domination of diagonal elements over sum of

non-diagonals:

|ai,i,...,i| ≥
∑
i1

∑
i2

· · ·
∑
ir−1

ai,i1,...,ir−1
∀i (13)

here the sums are taken for all indexes i1, i2, . . . , ir−1 except the case when all indexes are equal i.

4.2 Objective function

To obtained transformation matrix A into the factors Y (x) with diagonal dominant cumulants the following

objective function is used

F (A) =
∑
d

αdFd(A) (14)

where d is order of cumulant, αd are constants, and Fd(A) are defined by

Fd(A) =
∑
k0

∑
k1

∑
k2

· · ·
∑
kd−1

∥∥Cum(Yk0(x), Yk1(x), . . . , Ykd−1
(x))

∥∥
2

‖Cum(Yk0(x), Yk0(x), . . . , Yk0(x))‖2

=
∑
k0

1 +

∑
non−diagonal

∥∥Cum(Yk0(x), Yk1(x), . . . , Ykd−1
(x))

∥∥
2

‖Cum(Yk0(x), Yk0(x), . . . , Yk0(x))‖2

(15)

here factors Yk0 are functions of matrixA, because Y (x) = AZ(x).

Coefficients αd are decreasing for high-order cumulants to guarantee first of all decorrelation for low-order

statistics. In this work, we use the same weights αd = O (1/d!) as suggested by Morton and Lim (2009) for

principle cumulant component analysis technique. It is not hard to see, that the second term in (15) is the

inverse diagonal domination condition (13), and minimization of objective function (15) will maximize diag-

onal domination of joint cumulant. To minimize objective function (15) limited-memory Broyden–Fletcher–

Goldfarb–Shanno optimization algorithm was used (Perry 1977). The gradients for objective function were

calculated analytically from (15).

5 Case studies

This section explores the application of the proposed diagonal domination technique for joint simulation in

two testing cases. Firstly, a dataset from a multiple element iron ore deposit is used to explore the proposed

high-order decorrelation method and, secondly, the widely known Walker Lake data set provides a fully

known environment to assess the technique (Isaaks and Srivastava, 1990).
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5.1 Iron ore deposit data set

The dataset from the iron ore deposit consists of grades from drillhole samples for five elements: iron (Fe),

phosphorus (P), Aluminum oxide (Al2O3), Silicon dioxide (SiO2) and loss of ignition (LOI). According to

histograms (Figure 2), all variables have non-Gaussian distributions. To decorrelate the variables the proposed

high-order decorrelation technique is used.
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Figure 2: Histograms of different material types distribution. 

5.2 High-order cumulant visualization 

For high-order visualization of cumulants the unfolding technique for high-order tensor is 

used. High-order tensors are unfolded into the matrixes, which tend to have minimum 

difference between the number of columns and rows. For example, fourth-order tensor 

with dimensions 3 3 3 3    and sixth-order tensor with dimensions 3 3 3 3 3     are 

unfolded into matrixes 9 9  and 81 81 , respectively. Third-order tensor with 

dimensions 3 3 3   and fifth-order tensor with dimensions 3 3 3 3 3     are unfolded 

into matrixes 3 9  and 9 81 , respectively. Unfolded fourth-order tensor with dimensions 

Figure 2: Histograms of different material types distribution.

5.2 High-order cumulant visualization

For high-order visualization of cumulants the unfolding technique for high-order tensor is used. High-order

tensors are unfolded into the matrixes, which tend to have minimum difference between the number of

columns and rows. For example, fourth-order tensor with dimensions 3 × 3 × 3 × 3 and sixth-order tensor

with dimensions 3 × 3 × 3 × 3 × 3 are unfolded into matrixes 9 × 9 and 81 × 81, respectively. Third-order

tensor with dimensions 3× 3× 3 and fifth-order tensor with dimensions 3× 3× 3× 3× 3 are unfolded into

matrixes 3× 9 and 9× 81, respectively. Unfolded fourth-order tensor with dimensions 3× 3× 3× 3 is shown

on Figure 3. Each element of its matrix representation with dimensions 9 × 9 is depicted by grid-cell. The

correspondence between indexes of tensor i, j, k, l and its matrix representation ij, kl is given by

ij = 3i+ j
kl = 3k + l

(16)
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Figure 3: Unfolded tensor 3 3 3 3   . Each cell is element of the tensor. Solid, dashed, 

and dot-dashed squares are slices. Grey cells are diagonal elements of the tensor. 

For example, group of cells highlighted by solid square represents slice of fourth-order 

tensor 1, ,1,j lT  with fixed indexes 1, 1i k  . Group of cells highlighted by dashed square 

represents slice of fourth-order tensor 2, ,3,j lT  with fixed indexes 2, 3i k   and group of 

cells highlighted by dash-doted square represents slice of fourth-order tensor 3, ,1,j lT  with 

fixed indexes 3, 1i k  . The grey cells are diagonal elements of tensor: 1,1,1,1T , 2,2,2,2T , 

and 3,3,3,3T . 

5.2.1 Decorrelation results 

For the purpose of present study, only the high-order cumulants up to order four are 

calculated, as this seems sufficient. The second-order cumulants shown on Figure 4a is 

the covariance matrix of initial variables and on Figure 4b is covariance of factors. Grey 

Figure 3: Unfolded tensor 3 × 3 × 3 × 3. Each cell is element of the tensor. Solid, dashed, and dot-dashed
squares are slices. Grey cells are diagonal elements of the tensor.
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For example, group of cells highlighted by solid square represents slice of fourth-order tensor T1,j,1,l with

fixed indexes i = 1, k = 1. Group of cells highlighted by dashed square represents slice of fourth-order tensor

T2,j,3,l with fixed indexes i = 2, k = 3 and group of cells highlighted by dash-doted square represents slice

of fourth-order tensor T3,j,1,l with fixed indexes i = 3, k = 1. The grey cells are diagonal elements of tensor:

T1,1,1,1, T2,2,2,2, and T3,3,3,3.

5.2.1 Decorrelation results

For the purpose of present study, only the high-order cumulants up to order four are calculated, as this seems

sufficient. The second-order cumulants shown on Figure 4a is the covariance matrix of initial variables and on

Figure 4b is covariance of factors. Grey levels represent correlation levels; white color is for high correlation,

black – for low correlation. According to Figure 4a, the first variable Z1 is highly correlated with the third

Z3 and fourth Z4 ones, second and fifth variables have low correlations with other variables. In the factor

space (Figure 4b) all non-diagonal elements have values less than 0.01, which means they have almost no

correlation between each other.
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If second-order cumulants are responsible for correlation between two variables, then the 

third-order cumulants on Figure 5 represent the dependence between values of three 

variables. The group of white and light grey cells on the left side of Figure 5a shows that 

the values of variable 1Z  are highly correlated with values of 2Z  and 3Z , 3Z  and 4Z , or 

2Z  and 4Z .The cells referred to variable 5Z  have dark grey color, which means that the 

values of variable 5Z  have low correlation with values of other variables. In the factor 

space, there is a low correlation between values of first 1Y  and fifth variables 5Y  

represented by dark grey cells in the first column and first row on Figure 5b. The high 

values are only on diagonal cells, therefore the factors are decorrelated for order 3.  

Figure 4: Covariance matrix of (a) initial variables and (b) factors. Each cell is element of the tensor. Grey
levels are the levels of correlation: white color – maximum correlation, black color – no correlation.

If second-order cumulants are responsible for correlation between two variables, then the third-order

cumulants on Figure 5 represent the dependence between values of three variables. The group of white and

light grey cells on the left side of Figure 5a shows that the values of variable Z1 are highly correlated with

values of Z2 and Z3, Z3 and Z4, or Z2 and Z4.The cells referred to variable Z5 have dark grey color, which

means that the values of variable Z5 have low correlation with values of other variables. In the factor space,

there is a low correlation between values of first Y1 and fifth variables Y5 represented by dark grey cells in 
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Figure 5: Unfolded third-order joint cumulant of (a) initial variables and (b) factors. Each 

cell is element of the tensor. Grey levels are the levels of correlation: white color – 

maximum correlation, black color – no correlation. 

The fourth-order cumulants are shown on Figure 6. Similarly the above, there is a 

dependence between variables Z . However, it should be noticed, that for order 2 and 3 

there is almost no correlation between variable 5Z  and others, and only for order 4, it is 

not hard to see, that the high level of dependence between variables 5Z , 1Z  and 3Z  is 

revealed. In the factor space (Fig. 6b), the fourth-order cumulant has values about 

0.2 0.4  for elements 3 4 5, ,Y Y Y . The high values are only on diagonal cells, therefore the 

factors are decorrelated also for order four. 

 

Figure 6: Unfolded fourth-order joint cumulant of (a) initial variables and (b) factors. 

Each cell is element of the tensor. Grey levels are the levels of correlation: white color – 

maximum correlation, black color – no correlation. 

Figure 5: Unfolded third-order joint cumulant of (a) initial variables and (b) factors. Each cell is element
of the tensor. Grey levels are the levels of correlation: white color – maximum correlation, black color – no
correlation.



Les Cahiers du GERAD G–2015–85 7

the first column and first row on Figure 5b. The high values are only on diagonal cells, therefore the factors

are decorrelated for order 3.

The fourth-order cumulants are shown on Figure 6. Similarly the above, there is a dependence between

variables Z. However, it should be noticed, that for order 2 and 3 there is almost no correlation between

variable Z5 and others, and only for order 4, it is not hard to see, that the high level of dependence between

variablesZ5, Z1 and Z3 is revealed. In the factor space (Figure 6b), the fourth-order cumulant has values

about 0.2 − 0.4 for elements Y3, Y4, Y5. The high values are only on diagonal cells, therefore the factors are

decorrelated also for order four.
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of the tensor. Grey levels are the levels of correlation: white color – maximum correlation, black color – no
correlation.

The correlations between initial variables Z and decorrelated factors Y represented on Figures 7 and 8,

respectively. Obviously, grades values of iron and phosphorus are dependent; the same is true for aluminum

oxide and silicon dioxide. On the contrary, the scatter plots of factors Y1 with Y2 and Y3with Y4seem to look

like a white noise and show no correlations between factors.
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The correlations between initial variables Z  and decorrelated factors Y  represented on 

Figure 7 and 8, respectively. Obviously, grades values of iron and phosphorus are 

dependent; the same is true for aluminum oxide and silicon dioxide. On the contrary, the 

scatter plots of factors 1Y  with 2Y  and 3Y with 4Y seem to look like a white noise and 

show no correlations between factors. 

 

Figure 7: Scatter plot of initial variables. Left figure represents the dependence between 

phosphorus and iron grades. Right figure represents the dependence between Aluminum 

oxide and Silicon dioxide grades 

 

Figure 8: Scatter plot of factors. Left figure represents the dependence between first and 

second factors. Right figure represents the dependence between third and fourth factors. 

5.3 Walker Lake case study 

As an initial data for Walker Lake case study drill holes data and training images of two 

variables U  and V  are used (Fig. 9 and 10, respectively). Drill holes data are sampled 

Figure 7: Scatter plot of initial variables. Left figure represents the dependence between phosphorus and iron
grades. Right figure represents the dependence between Aluminum oxide and Silicon dioxide grades.
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Figure 7 and 8, respectively. Obviously, grades values of iron and phosphorus are 

dependent; the same is true for aluminum oxide and silicon dioxide. On the contrary, the 

scatter plots of factors 1Y  with 2Y  and 3Y with 4Y seem to look like a white noise and 

show no correlations between factors. 

 

Figure 7: Scatter plot of initial variables. Left figure represents the dependence between 

phosphorus and iron grades. Right figure represents the dependence between Aluminum 

oxide and Silicon dioxide grades 

 

Figure 8: Scatter plot of factors. Left figure represents the dependence between first and 

second factors. Right figure represents the dependence between third and fourth factors. 

5.3 Walker Lake case study 

As an initial data for Walker Lake case study drill holes data and training images of two 

variables U  and V  are used (Fig. 9 and 10, respectively). Drill holes data are sampled 

Figure 8: Scatter plot of factors. Left figure represents the dependence between first and second factors.
Right figure represents the dependence between third and fourth factors.

5.3 Walker Lake case study

As an initial data for Walker Lake case study drill holes data and training images of two variables U and

V are used (Figures 9 and 10, respectively). Drill holes data are sampled uniformly random from training

images: 0.5%, 1%, 5% and 10% of training image grid-points (Figure 9). All initial data is transformed

into decorrelated factors, simulated independently using HOSIM technique, and back-transformed into initial

data space.

5.3.1 Decorrelation results

Similarly to the dataset from the iron ore deposit, high-order cumulants up to order four for data variables

and decorrelated factors is calculated. The covariance matrixes of variables U and V are shown on Figure 11a.

The correlation between variables is high, approximately 0.8. The same behavior is for third and fourth order

cumulants, Figures 12a and 13a, respectively. In the factor space there is no correlation on the second-order

cumulant (Figure 11b) and low values, approximately 0.2–0.3, for third-order and forth-order cumualnts,

Figures 12b and 13b, respectively. Thus, the factors are decorrelated up to order four using the proposed

diagonal domination technique.
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uniformly random from training images: 0.5%, 1%, 5% and 10% of training image grid-

points (Fig. 9). All initial data is transformed into decorrelated factors, simulated 

independently using HOSIM technique, and back-transformed into initial data space. 

 

Figure 9: Walker Lake data set. Data points sampled uniformly from training image for V 

variable: (a) 390 points, (b) 780 points, (c) 3900 points. 

 

Figure 10: Walker Lake data set. Training images for variables (a) U and (b) V. 

5.3.1 Decorrelation results 

Similarly to the dataset from the iron ore deposit, high-order cumulants up to order four 

for data variables and decorrelated factors is calculated. The covariance matrixes of 

Figure 9: Walker Lake data set. Data points sampled uniformly from training image for V variable: (a) 390
points, (b) 780 points, (c) 3900 points.
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Figure 9: Walker Lake data set. Data points sampled uniformly from training image for V 

variable: (a) 390 points, (b) 780 points, (c) 3900 points. 

 

Figure 10: Walker Lake data set. Training images for variables (a) U and (b) V. 

5.3.1 Decorrelation results 

Similarly to the dataset from the iron ore deposit, high-order cumulants up to order four 

for data variables and decorrelated factors is calculated. The covariance matrixes of 

Figure 10: Walker Lake data set. Training images for variables (a) U and (b) V.

5.3.2 Simulation results

The simulations for different number of data samples are shown on Figures 14, 15, and 16. The high-order

simulation approach used here (Mustapha and Dimitrakopoulos 2010a, 2011) is data-sample driven, contrary

to pattern based methods as noted in the introduction, and it is not hard to see the improvement of simulation

results with the increasing of the number of data points.

To quantitative estimation of joint simulation results, the relative errors εd for high-order statistics of

simulations are calculated

εd(i1, i2, . . . id) =

∣∣∣∣∣Cum(Z̃i1(x), . . . , Z̃id(x))− Cum(Zi1(x), . . . , Zid(x))

Cum(Zi1(x), . . . , Zid(x))

∣∣∣∣∣ (17)

where d is the order of cumulants, Cum(Z̃i1(x), . . . , Z̃id(x)) and Cum(Zi1(x), . . . , Zid(x)) are dth-order cu-

mulants, calculated for simulations and training images, respectively. The relative errors demonstrate how

accurate correlation properties of variables U and V we reproduced. Errors are calculated for simulations

with different number of data points. The maximal relative error for all cases does not exceed 10%. Thus, the
fields U and V are simulated using the proposed diagonal domination technique and high-order simulations,

and the high-order statistics of the simulations have approximately the same values as in the initial data sets

used.

6 Conclusions

This paper presented a new approach for high-order joint simulation of non-Gaussian spatially correlated

variables, as frequently required in orebody modeling applications. The proposed technique combines a new

approach for decorrelation random variables into factors using diagonal domination condition for high-order

cumulants and the high-order simulation approach for the independent simulation of factors. Simulated

factors are then back transformed to independent high-order correlated realizations of pertinent attributes

of interest. The algorithm presented herein is tested on drillhole data set of real iron ore deposit and Walker

Lake exhaustively known dataset. The results show that the newly proposed method transforms initial

variables into factors with low level of dependence. Using information about high-order statistics both on

decorrelation step and simulation step allows generating jointly simulated grades with the same statistical

properties as the initial data. Further research will be addressed to applications for different case studies and

decorrelation of variables for non-zero lags.
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variables U  and V  are shown on Figure 11a. The correlation between variables is high, 

approximately 0.8. The same behavior is for third and fourth order cumulants, Figure 12a 

and 13a, respectively. In the factor space there is no correlation on the second-order 

cumulant (Fig. 11b) and low values, approximately 0.2-0.3, for third-order and forth-

order cumualnts, Figure 12b and 13b, respectively. Thus, the factors are decorrelated up 

to order four using the proposed diagonal domination technique. 

 

Figure 11: Covariance matrix of (a) initial variables and (b) factors. Each cell is element 

of the tensor. Grey levels are the levels of correlation: white color – maximum 

correlation, black color – no correlation. 

 

Figure 11: Covariance matrix of (a) initial variables and (b) factors. Each cell is element of the tensor. Grey
levels are the levels of correlation: white color – maximum correlation, black color – no correlation.

 

 

84 

 

variables U  and V  are shown on Figure 11a. The correlation between variables is high, 

approximately 0.8. The same behavior is for third and fourth order cumulants, Figure 12a 

and 13a, respectively. In the factor space there is no correlation on the second-order 

cumulant (Fig. 11b) and low values, approximately 0.2-0.3, for third-order and forth-

order cumualnts, Figure 12b and 13b, respectively. Thus, the factors are decorrelated up 

to order four using the proposed diagonal domination technique. 

 

Figure 11: Covariance matrix of (a) initial variables and (b) factors. Each cell is element 

of the tensor. Grey levels are the levels of correlation: white color – maximum 

correlation, black color – no correlation. 

 

Figure 12: Unfolded third-order joint cumulant of (a) initial variables and (b) factors. Each cell is element
of the tensor. Grey levels are the levels of correlation: white color – maximum correlation, black color – no
correlation.
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Figure 12: Unfolded third-order joint cumulant of (a) initial variables and (b) factors. 

Each cell is element of the tensor. Grey levels are the levels of correlation: white color – 

maximum correlation, black color – no correlation. 

 

Figure 13: Unfolded fourth-order joint cumulant of (a) initial variables and (b) factors. 

Each cell is element of the tensor. Grey levels are the levels of correlation: white color – 

maximum correlation, black color – no correlation. 

5.3.2 Simulation results 

The simulations for different number of data samples are shown on Figures 14, 15, 16. 

The high-order simulation approach used here (Mustapha and Dimitrakopoulos 2010a, 

2011) is data-sample driven, contrary to pattern based methods as noted in the 

introduction, and it is not hard to see the improvement of simulation results with the 

increasing of the number of data points. 

To quantitative estimation of joint simulation results, the relative errors d  for high-order 

statistics of simulations are calculated 

1 1

1

1 2

( ( ), , ( )) ( ( ), , ( ))
( , , )

( ( ), , ( ))

d d

d

i i i i

d d

i i

Cum Z x Z x Cum Z x Z x
i i i

Cum Z x Z x



    (17) 

Figure 13: Unfolded fourth-order joint cumulant of (a) initial variables and (b) factors. Each cell is element
of the tensor. Grey levels are the levels of correlation: white color – maximum correlation, black color – no
correlation.
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Figure 14: Simulation of variable V using 390 points: (a) data samples, (b) reference 

image, (c) joint simulation result. 

 

Figure 15: Simulation of variable V using 780 points: (a) data samples, (b) reference 

image, (c) joint simulation result. 

Figure 14: Simulation of variable V using 390 points: (a) data samples, (b) reference image, (c) joint simulation
result.
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Figure 14: Simulation of variable V using 390 points: (a) data samples, (b) reference 

image, (c) joint simulation result. 

 

Figure 15: Simulation of variable V using 780 points: (a) data samples, (b) reference 

image, (c) joint simulation result. 

Figure 15: Simulation of variable V using 780 points: (a) data samples, (b) reference image, (c) joint simulation
result.
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Figure 16: Simulation of variable V using 3900 points: (a) data samples, (b) reference 

image, (c) joint simulation result. 

where d  is the order of cumulants, 
1

( ( ), , ( ))
di iCum Z x Z x  and 

1
( ( ), , ( ))

di iCum Z x Z x  

are thd -order cumulants, calculated for simulations and training images, respectively. 

The relative errors demonstrate how accurate correlation properties of variables U  and 

V  we reproduced. Errors are calculated for simulations with different number of data 

points. The maximal relative error for all cases does not exceed 10%. Thus, the fields U  

and V  are simulated using the proposed diagonal domination technique and high-order 

simulations, and the high-order statistics of the simulations have approximately the same 

values as in the initial data sets used. 

6 Conclusions 

This paper presented a new approach for high-order joint simulation of non-Gaussian 

spatially correlated variables, as frequently required in orebody modeling applications. 

The proposed technique combines a new approach for decorrelation random variables 

into factors using diagonal domination condition for high-order cumulants and the high-

order simulation approach for the independent simulation of factors. Simulated factors 

are then back transformed to independent high-order correlated realizations of pertinent 

attributes of interest. The algorithm presented herein is tested on drillhole data set of real 

iron ore deposit and Walker Lake exhaustively known dataset. The results show that the 

newly proposed method transforms initial variables into factors with low level of 

Figure 16: Simulation of variable V using 3900 points: (a) data samples, (b) reference image, (c) joint
simulation result.
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