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2015.

The authors are exclusively responsible for the content of their
research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possi-
ble thanks to the support of HEC Montréal, Polytechnique
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Abstract: In this paper, we summarize some properties of the Cartesian product of graphs related to
degree and distance-based invariants. Then, we investigate how much a single edge or vertex removal in the
Cartesian product of two connected graphs impacts: the distance between any pair of nodes, the average
distance, and the diameter in the remaining graph.
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1 Introduction

The Cartesian product of graphs was introduced by G. Sabidussi [1, 2] in 1957, and it has been studied

since 1972 in the context of communication networks [3, 4]. Cartesian product graphs are well suited for

network design and analysis, regarding scalability, performance, and fault-tolerance [5], due to the following

properties. The Cartesian product of two connected graphs G and H provides a way of building a graph

G2H much larger than the first ones, while keeping relatively small diameter and maximum degree. That

is, whereas the order of G2H is given by the product of the orders of G and H, its diameter corresponds

to the sum of the diameters of G and H, and its maximum degree corresponds to the sum of the maximum

degrees of G and H. Besides this, the (edge) connectivity of G2H is never less than the sum of the (edge)

connectivities of G and H [1]. Thus, whatever the (edge) connectivities of G and H, G2H will remain

connected after the removal of any single edge or vertex. Such a removal can however impact distance-based

invariants of the graph. How much a single edge or vertex removal in G2H impacts: the distance between

any pair of nodes, the average distance, and the diameter in the remaining graph? This paper answers these

questions in Section 3, after providing the needed background on the properties of the Cartesian product

of graphs in Section 2. Our results are summarized in Section 4. For the uniformity of notation, Section 2

presents proofs of some known results. For an overview of Cartesian product graphs, we refer the reader

to [6].

2 Background

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs and denote G2H the Cartesian

product of G and H. We denote nG = |V (G)| and nH = |V (H)| as the number of vertices of G and H,

respectively, whereas mG = |E(G)| and mH = |E(H)| are their number of edges. In this paper, we will

assume that nG ≥ 3 and nH ≥ 3. If u ∈ V (G) and v ∈ V (H), then we denote uv ∈ V (G2H) the vertex of

G2H associated to u ∈ G and v ∈ H. By definition of the Cartesian product, (uv, u′v′) ∈ E(G2H) if and

only if u = u′ and (v, v′) ∈ E(H) or (u, u′) ∈ E(G) and v = v′.

A first property that directly follows the Cartesian product definition is:

Property 1 The number of vertices of G2H is nG2H = nGnH , and its number of edges is mG2H = mGnH +

mHnG.

To simplify the notation, we will denote by Gv the induced subgraph of G2H on the vertices uv ∀u
and say that Gv is the copy of G associated to the vertex v ∈ V (H). Conversely, Hu denotes the induced

subgraph on the vertices uv ∀v and is called the copy of H associated to the vertex u ∈ V (G).

Evidently, Gv is isomorphic to G and Hu is isomorphic to H, and the different copies of G are connected

only by edges in copies of H and vice-versa.

A direct consequence of the above definition is that the degree δuv is equal to:

δuv = δGu + δHv .

Property 2 Let ∆(G) denote the maximum degree of G, then we have:

∆(G2H) = ∆(G) + ∆(H).

Proof.

∆(G2H) = max
uv

δuv = max
u

max
v

(δGu + δHv )

= max
u

δGu + max
v

δHv = ∆(G) + ∆(H).
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Figure 1: Vertices that may be involved in a shortest path between uv and u′v′.

Let dG(u, u′) denote the geodesic distance between vertices u and u′ in G, and dH(v, v′) the one between

v and v′ in H.

Property 3 The distance between vertices uv and u′v′ in G2H is given by:

d(uv, u′v′) = dG(u, u′) + dH(v, v′),

and there exists at least two vertex disjoint shortest paths between uv and u′v′ if u 6= u′ and v 6= v′.

Proof. Each induced subgraph Gv is associated to a vertex v ∈ E(H), and each induced subgraph Hu is

associated to a vertex u ∈ V (G). Furthermore, two subgraphs Gv1 and Gv2 are adjacent if and only if

(v1, v2) ∈ E(H), which means that the corresponding vertices in the copies of G associated to v1 and v2 are

adjacent. A path joining a vertex of Gv1 to a vertex of Gv2 will therefore involve copies of vertices in a path

from v1 to v2. One shortest path from a vertex of Gv to a vertex of Gv′
will therefore involve copies of edges

in a shortest path from v to v′ in H. Similarly, one shortest path from a vertex of Hu to a vertex of Hu′
will

involve copies of edges in a shortest path from u to u′ in G. Since uv ∈ V (Hu), uv ∈ V (Gv), u′v′ ∈ V (Hu′
),

u′v′ ∈ V (Gv′
), we have:

d(uv, u′v′) = dG(u, u′) + dH(v, v′).

Furthermore,

d(uv, u′v′) = d(uv, uv′) + d(uv′, u′v′) (1)

= d(uv, u′v) + d(u′v, u′v′). (2)

Equation (1) involves vertices both from Hu and Gv′
, whereas Equation (2) involves vertices of Gv and

vertices of Hu′
. These paths are vertex disjoint if u 6= u′ and v 6= v′ (they will only share the vertices uv and

u′v′).

Given a shortest path u, u1, . . . , u
′ between u and u′, and a shortest path v, v1, . . . , v

′ between v and v′,

the induced subgraph on the vertices that may belong to a shortest path between uv and u′v′ is illustrated

in Figure 1.
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Property 4 Let D(G) denote the diameter of G, then we have:

D(G2H) = D(G) +D(H).

Proof.

D(G2H) = max
uv,u′v′

d(uv, u′v′)

= max
uv,u′v′

[d(uv, u′v) + d(u, v, u′v′)]

= max
uv,u′v′

[
dG(v, v′) + dH(u, u′)

]
= max

v
dG(v, v′) + max

u
dH(u, u′) (3)

= D(G) +D(H).

Property 5 Let tGu =
∑

u′ dG(u, u′) denote the transmission of the vertex u ∈ G and tHv the transmission of

the vertex v ∈ H, then the transmission tuv is:

tuv = nGt
H
v + nHt

G
u .

Proof.

tuv =
∑

u′v′∈G2H

d(uv, u′v′)

=
∑

u′v′∈G2H

[d(uv, u′v) + d(u′v, u′v′)]

=
∑

u′v′∈G2H

[
dG(u, u′) + dH(v, v′)

]
=

∑
u′∈G

∑
v′∈H

[
dG(u, u′) + dH(v, v′)

]
=

∑
u′∈G

[
nHd

G(u, u′) +
∑
v′∈H

dH(v, v′)

]
=

∑
u′∈G

[
nHd

G(u, u′) + tHv
]

= nGt
H
v +

∑
u′∈G

[
nHd

G(u, u′)
]

= nGt
H
v + nHt

G
u .

Let W (G) =
∑

u,u′∈V (G) d
G(u, u′) denote the Wiener index of the graph G, or the sum of the distances

between pairs of vertices of G.

Theorem 1 (Theorem 5.9 in [7]) The Wiener index of G2H is:

W (G2H) = n2HW (G) + n2GW (H).
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Proof.

W (G2H) =
1

2

∑
uv∈G2H

tuv

=
1

2

∑
uv∈G2H

[
nGt

H
v + nHt

G
u

]
=

1

2

∑
u∈G

∑
v∈H

[
nGt

H
v + nHt

G
u

]
=

1

2

∑
u∈G

[
n2Ht

G
u +

∑
v∈H

nGt
H
v

]

=
1

2

∑
u∈G

[
n2Ht

G
u + nG

∑
v∈H

tHv

]

=
1

2

∑
u∈G

[
n2Ht

G
u + nGW (H)

]
=

1

2

∑
u∈G

n2Ht
G
u +

1

2

∑
u∈G

nGW (H)

= n2HW (G) + n2GW (H).

Corollary 1 Let d̄(G) denote the average distance of G, then we have:

d̄(G2H) =
2(n2HW (G) + n2GW (H))

(nGnH)(nGnH − 1)

=
2nHW (G)

nG(nGnH − 1)
+

2nGW (H)

nH(nGnH − 1)

=
nH(nG − 1)d̄(G)

nGnH − 1
+
nG(nH − 1)d̄(H)

nGnH − 1

=
nH(nG − 1)d̄(G) + nG(nH − 1)d̄(H)

nGnH − 1
.

2

3 Main results

3.1 Distance sensitivity to an edge removal

Consider an edge (uv, uv′) ∈ G2H, which means that (v, v′) ∈ H. In this section, we will study the impact

of the removal of (uv, uv′) on the distance metrics presented in Section 2.

Theorem 2 After the removal of an edge, the distance between any pair of vertices of G2H cannot increase

by more than 2.

Proof. Suppose without lose of generality that the edge (uv, uv′) is removed from G2H. First, due to

the Property 3, there exists at least two distinct shortest paths between any pair of vertices u′′v′′ and

u′′′v′′′ if u′′ 6= u′′′ and v′′ 6= v′′′, therefore the inequality holds in this case. The case v′′ = v′′′ = v

is obvious as the shortest path between u′′v and u′′′v does not contain the edge (uv, uv′). Let us thus

consider the case u′′ = u′′′ = u. Suppose that (uv, uv′) lies in the shortest path between uv′′ and uv′′′

(otherwise the distance d(uv′′, uv′′′) would not be affected by the removal of (uv, uv′), and the inequality

holds). Suppose that (uv, u′v) ∈ E(G2H), or equivalently suppose (u, u′) ∈ E(G). We also have (u′v, u′v′) ∈
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E(G2H) as (v, v′) ∈ E(H) (since (uv, uv′) ∈ E(G2H)). Then, the edge (uv, uv′) may be replaced by

the path (uv, u′v) − (u′v, u′v′) − (u′v′, uv′). There exists then a path from uv′′ to uv′′′ whose length is

d(uv′′, uv′′′) + 2.

Theorem 3 After the removal of an edge (uv, uv′) ∈ E(Hu), the average distance of G2H does not increase

by more than:
nH

nG(nGnH − 1)
.

Proof. Suppose without lose of generality that the edge (uv, uv′) is removed from G2H. As shown in the

proof of Theorem 2, the distance between pairs of vertices may only be affected if they both belong to Hu,

and the distance increase is bounded by 2. Furthermore, the number of shortest paths affected by the removal

of (uv, uv′) is less than or equal to (nH/2)2 [8]. Therefore, the total distance cannot increase by more than

2(nH/2)2 = n2H/2. Hence,

d̄(G2H \ (uv, uv′))− d̄(G2H) ≤ n2H
nGnH(nGnH − 1)

=
nH

nG(nGnH − 1)
.

Theorem 4 The diameter of G2H remains unchanged after an edge removal.

Proof. Let D(G2H) denote the diameter of G2H. Consider uv and u′v′ two vertices such that d(uv, u′v′) =

D(G2H). According to Equation (3), we have:

D(G2H) = max
v,v′

dG(v, v′) + max
u,u′

dH(u, u′).

As nG ≥ 3 and nH ≥ 3, we deduce that u 6= u′ and v 6= v′. According to Property 3, there are at least two

disjoint shortest paths between uv and u′v′. Removing an edge will therefore leave d(uv, u′v′) unchanged.

3.2 Distance sensitivity to a vertex removal

Theorem 5 After the removal of a vertex, the distance between any pair of vertices of G2H cannot increase

by more than 2.

Proof. Suppose the removal of the vertex uv that is on a shortest path between vertices u′v′ 6= uv and

u′′v′′ 6= uv. Then, two edges adjacent to uv are on that shortest path. Two cases are possible:

1. One edge (uvi, uv) ∈ E(Hu), and the other (uv, ujv) ∈ E(Gv). In this case, replacing (uvi, uv) −
(uv, ujv) by (ujv, ujvi)− (ujvi, ujv) will provide a path with exactly the same length as the previous

one; and

2. Both edges belong to the same subgraph, either (uvi, uv) ∈ E(Hu) and (uv, uvj) ∈ E(Hu), or

(uiv, uv) ∈ E(Gv) and (uv, ujv) ∈ E(Gv). Without loss of generality, suppose the path contains

(uvi, uv) ∈ E(Hu) and (uv, uvj) ∈ E(Hu). Then it is possible to replace the edges (uvi, uv)− (uv, uvj)

by the path (uvi, ukvi)− (ukvi, ukv)− (ukv, ukvj)− (ukvj , uvj), which will result in an increase of the

length of the path from u′v′ to u′′v′′ by 2.

As a result, the distance between u′v′ to u′′v′′ will not increase by more than 2.

Theorem 6 After the removal of a vertex uv, the average distance of G2H does not increase by more than:

(nH − 1)2 + (nG − 1)2 − 2tuv
(nG + nH − 1)(nG + nH − 2)

.
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Proof. The argument is similar to that of Theorem 3, except that paths between vertices of Gv and between

vertices of Hu may both be affected, and the removal of the vertex uv must be considered as well. The total

distance will not increase by more than:

(nH − 1)2 + (nG − 1)2

2
− tuv.

Hence,

d̄(G2H \ uv)− d̄(G2H) ≤ (nH − 1)2 + (nG − 1)2 − 2tuv
(nG + nH − 1)(nG + nH − 2)

.

Theorem 7 The diameter of G2H remains unchanged after a vertex removal.

Proof. This proof is very similar to that of Theorem 4. Let D(G2H) denote the diameter of G2H. Consider

uv and u′v′ two vertices such that d(uv, u′v′) = D(G2H). According to Equation (3), we have:

D(G2H) = max
v,v′

dG(v, v′) + max
u,u′

dH(u, u′).

As nG ≥ 3 and nH ≥ 3, we deduce that u 6= u′ and v 6= v′. According to Property 3, there are at least

two vertex disjoint shortest paths between uv and u′v′. Removing a vertex will therefore leave d(u′v′, u′′v′′)

unchanged (except, of course, if that vertex is u′v′ or u′′v′′). Suppose now that uv is at distance D(G2H)

from another vertex, say u′v′, then we could consider that D(G2H) may decrease by 1, but according to

Property 3, we have:

d(u′v, uv′) = dG(u, u′) + dH(v, v′)

= d(uv, u′v′)

= D(G2H),

and the distance d(u′v, uv′) is not affected by the removal of uv because there are at least two vertex disjoint

shortest paths between u′v and uv′ (Property 3).

4 Summary

Bounds were obtained for the impact of one edge or vertex removal on distance-based invariants for the

Cartesian product G2H of two connected graphs G and H of order greater than 2. In particular, it was

shown that, after the removal of any single edge or vertex, the distance between any pair of vertices of G2H

cannot increase by more than 2, and the diameter of G2H remains unchanged. These results apply to fault

tolerance analysis of communication networks modeled by Cartesian product graphs.
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