A new family of facet defining inequalities for the maximum edge-weighted clique problem

F. Djeumou Fomeni

G-2015-71
July 2015

Les textes publiés dans la série des rapports de recherche Les Cahiers du GERAD n'engagent que la responsabilité de leurs auteurs.
La publication de ces rapports de recherche est rendue possible grâce au soutien de HEC Montréal, Polytechnique Montréal, Université McGill, Université du Québec à Montréal, ainsi que du Fonds de recherche du Québec - Nature et technologies.
Dépôt légal - Bibliothèque et Archives nationales du Québec, 2015.

The authors are exclusively responsible for the content of their research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the support of HEC Montréal, Polytechnique Montréal, McGill University, Université du Québec à Montréal, as well as the Fonds de recherche du Québec - Nature et technologies.
Legal deposit - Bibliothèque et Archives nationales du Québec, 2015.

GERAD HEC Montréa
3000, chemin de la Côte-Sainte-Catherine Montréal (Québec) Canada H3T 2A7

A new family of facet defining inequalities for the maximum edge-weighted clique problem

Franklin Djeumou Fomeni

GERAD \& Department of Mathematics and Industrial
Engineering, Polytechnique Montréal, Montréal (Québec)
Canada, H3C 2A7
franklin.djeumou-fomeni@polymtl.ca

July 2015

Les Cahiers du GERAD
G-2015-71

Copyright © 2015 GERAD

Abstract: This paper considers a family of cutting planes, recently developed for mixed 0-1 polynomial programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a polynomial time exact separation algorithm for these inequalities. The result of this paper may contribute to the development of more efficient algorithms for the maximum edge-weighted clique problem that use cutting planes.

Key Words: Edge-weighted clique problem, cutting planes, separation algorithm, integer programming, boolean quadric polytope, facet defining inequalities.

Acknowledgments: Part of the work of the author was done during a stay at GERAD as a postdoctoral student with Professor Miguel F. Anjos.

1 Introduction

The maximum edge-weighted clique problem (MEWCP) is a well known combinatorial optimisation problem which consists of finding a maximum weight clique with no more than b nodes in a node- and edge-weighted complete graph. The weight of a clique is defined as the sum of the weights of all its nodes and edges. More formally, the MEWCP is defined as follows. Given a complete undirected graph $G=(N, E)$ with node set N, edge set E, an integer number b, weights $w_{i} \in \mathbb{R}$ associated with each node $i \in N$ and weights $c_{e} \in \mathbb{R}$ associated with each edge $e \in E$, the MEWCP consists of finding a sub-clique $C=(U, F)$ of G such that the sum of the weights of nodes in U and edges in F is maximised and $|U| \leq b$. It can be formulated as follows:

$$
\begin{array}{ccl}
\max & \sum_{i \in N} w_{i} x_{i}+\sum_{e \in E} c_{e} y_{e} & \\
\text { s.t. } & \sum_{i \in N} x_{i} \leq b & \\
& y_{i j} \leq x_{i} & \text { for }(i, j) \in E \\
& y_{i j} \leq x_{j} & \text { for }(i, j) \in E \\
& x_{i}+x_{j} \leq y_{i j}+1 & \text { for }(i, j) \in E \\
& x_{i} \in\{0,1\} & \text { for } i \in N \\
& y_{e} \in\{0,1\} & \text { for } e \in E \tag{1g}
\end{array}
$$

Note that due to the McCormick inequalities [12] (1c)-(1e) and the constraint (1f), the variables $y_{e}, e \in E$ can be assumed to be continuous between 0 and 1 .

The MEWCP has many applications, especially in certain facility location problems, see $[3,10,17,18]$. Other important applications of the MEWCP that arise in molecular biology are given in Hunting [6]. The MEWCP is a generalization of the well studied maximum clique problem, which is known to be NP-hard, see [20] for a review of solution approaches for the maximum clique problem. On the other hand, the above formulation of the MEWCP can also be seen as a particular case of the quadratic knapsack problem for which plenty of exact and heuristic methods exist, see $[2,5,16]$.

Numerous solution methods have been proposed in the literature for the MEWCP. We refer the reader to Wu and Hao [20] for a recent review of exact and heuristic solution methods for the MEWCP. The most successful algorithms proposed in the literature for the MEWCP use a branch-and-cut framework. The availability of strong valid inequalities is key to the success of these algorithms. Ideally, one would like to use cutting planes that are facet defining and computationally 'easy' to generate. Several families of facet defining inequalities are proposed in the literature for this purpose, see for example $[7-9,11,13,14,19]$.

In this paper, we firstly consider a family of cutting planes that have recently been developed by Djeumou Fomeni et al. [4] for the general mixed 0-1 polynomial programs, and which can be separated efficiently in polynomial times. Then we prove that under certain conditions, one of the inequality in this family defines facets for the MEWCP. This result may contribute to the development of more efficient algorithms for the MEWCP that use cutting planes.

The rest of this paper is organised as follows. In Section 2, we review the relevant literature, and in Section 3 we provide the proof that the (s, t) inequalities define facet of the MEWCP.

2 Literature review

We refer the reader to $[1,3,7-9,11,13,14,19]$ for more details on other existing facet defining inequalities and solution methods for the MEWCP. For the sake of brevity, we restrict our literature review to the paper of Djeumou Fomeni et al. [4] in which they presented the cutting planes that are discussed in this paper.

2.1 The family of (s, t) inequalities for $\mathbf{0} \mathbf{- 1}$ quadratic programs

Given a linear inequality $\alpha^{T} x \leq b$, with $\alpha \in \mathbb{Q}^{n}$, let us define the corresponding quadratic knapsack polytope as

$$
\mathcal{Q}:=\operatorname{conv}\left\{(x, y) \in\{0,1\}^{n+\binom{n}{2}}: \alpha^{T} x \leq b, 0 \leq, y_{i j}=x_{i} x_{j} \text { for }(i, j) \in E\right\}
$$

For any $S \subset N$ and any $\alpha \in \mathbb{Q}^{n}$, we will let $\alpha(S)$ denote $\sum_{i \in S} \alpha_{i}, S^{+}$denote $\left\{i \in S: \alpha_{i}>0\right\}$ and S^{-}denote $\left\{i \in S: \alpha_{i}<0\right\}$.

The method for generating inequalities presented in [4] is based on the following idea. First, we construct a cubic valid inequality, by which we mean a non-linear inequality that involves products of up to three x variables, but no y variables. Then, we weaken the cubic inequality, in order to make it valid for \mathcal{Q}. For example, we can take the inequality $\alpha^{T} x \leq b$, and two binary variables, say x_{s} and x_{t}, and form the following three cubic inequalities:

$$
\begin{align*}
\left(b-\alpha^{T} x\right) x_{s} x_{t} & \geq 0 \tag{2}\\
\left(b-\alpha^{T} x\right) x_{s}\left(1-x_{t}\right) & \geq 0 \tag{3}\\
\left(b-\alpha^{T} x\right)\left(1-x_{s}\right)\left(1-x_{t}\right) & \geq 0 \tag{4}
\end{align*}
$$

Since quadratic terms of the form $x_{i} x_{j}$ can be replaced with $y_{i j}$, and linear and constant terms can be left unchanged, the only real issue is how to deal with cubic terms, of the form $x_{i} x_{j} x_{k}$. The following lemma addresses this issue:

Lemma 1 Let x_{i}, x_{j} and x_{k} be three variables, all constrained to lie in the interval $[0,1]$. Let $y_{i j}=x_{i} x_{j}$, and similarly for $y_{i k}$ and $y_{j k}$. Then we have the following lower bounds on $x_{i} x_{j} x_{k}$:

$$
\begin{equation*}
x_{i} x_{j} x_{k} \geq \max \left\{0, y_{i j}+y_{i k}-x_{i}, y_{i j}+y_{j k}-x_{j}, y_{i k}+y_{j k}-x_{k}\right\} \tag{5}
\end{equation*}
$$

and the following upper bounds:

$$
\begin{equation*}
x_{i} x_{j} x_{k} \leq \min \left\{y_{i j}, y_{i k}, y_{j k}, 1-x_{i}-x_{j}-x_{k}+y_{i j}+y_{i k}+y_{j k}\right\} \tag{6}
\end{equation*}
$$

It is shown in [4] that (5) and (6) provide the best possible under- and over-estimators of the product term $x_{i} x_{j} x_{k}$.

The following theorem characterises the cutting planes that can be derived by weakening the cubic inequalities (2), (3) and (4), respectively. It turns out that they give rise to three huge (exponentially-large) families of valid inequalities for \mathcal{Q}.

Theorem 1 For any pair $\{s, t\} \subset N$, let S, T and W be disjoint subsets of $N \backslash\{s, t\}$ and let R denote $N \backslash(\{s, t\} \cup S \cup T \cup W)$.

1. Then the following (s, t) inequalities are valid for \mathcal{Q} :

$$
\begin{align*}
& \sum_{i \in S \cup W} \alpha_{i} y_{i s}+\sum_{i \in T \cup W} \alpha_{i} y_{i t}-\sum_{i \in W} \alpha_{i} x_{i} \leq-\alpha\left(W^{-}\right)+\alpha\left(S^{+} \cup W^{-}\right) x_{s} \\
& \quad+\alpha\left(T^{+} \cup W^{-}\right) x_{t}+\left(b-\alpha\left(\{s, t\} \cup S^{+} \cup T^{+} \cup W^{-} \cup R^{-}\right)\right) y_{s t} \tag{7}
\end{align*}
$$

2. The following mixed (s, t) inequalities are valid for \mathcal{Q} :

$$
\begin{gather*}
\sum_{i \in W} \alpha_{i} x_{i}+\sum_{i \in T \cup R} \alpha_{i} y_{i s}-\sum_{i \in T \cup W} \alpha_{i} y_{i t} \leq \alpha\left(W^{+}\right)+\left(b-\alpha\left(\{s\} \cup S^{-} \cup W^{+}\right)\right) x_{s} \\
-\alpha\left(W^{+} \cup T^{-}\right) x_{t}+\left(\alpha\left(\{s\} \cup S^{-} \cup T^{-} \cup W^{+} \cup R^{+}\right)-b\right) y_{s t} \tag{8}
\end{gather*}
$$

3. The following reverse (s, t) inequalities are valid for \mathcal{Q} :

$$
\begin{gather*}
\sum_{i \in S \cup T \cup R} \alpha_{i} x_{i}-\sum_{i \in T \cup R} \alpha_{i} y_{i s}-\sum_{i \in S \cup R} \alpha_{i} y_{i t} \leq b-\alpha\left(W^{-}\right)+\left(\alpha\left(S^{+} \cup W^{-}\right)-b\right) x_{s} \\
+\left(\alpha\left(T^{+} \cup W^{-}\right)-b\right) x_{t}+\left(b-\alpha\left(S^{+} \cup T^{+} \cup W^{-} \cup R^{-}\right)\right) y_{s t} \tag{9}
\end{gather*}
$$

These inequalities can be strengthened further, see [4] for details. Our contribution in this paper consists of proving that under certain conditions, the (s, t) inequalities (7) are facet defining. We also remark that the particular case of the mixed (s, t) inequalities obtained when $S=T=R=\emptyset$ and $\alpha=(1, \ldots, 1)$ was previously given in [7] and proved to be facet defining for the MEWCP.

2.2 Separation of the (s, t) inequalities in $\mathcal{O}\left(n^{3}\right)$ time

Since the inequalities presented in Theorem 1 are exponential in number, we need separation algorithms. For a given family of inequalities, the separation algorithm takes a fractional point $\left(x^{*}, y^{*}\right)$, solution of the LP relaxation, as input, and outputs a violated inequality in that family, if one exists.

It turns out that the separation problems for the (s, t) inequalities (7), mixed (s, t) inequalities (8) and reverse (s, t) inequalities (9) can each be solved exactly in $\mathcal{O}\left(n^{3}\right)$ time [4]. Indeed, there are $\binom{n}{2}$ choices for the pair $\{s, t\}$. Now assume that s and t are fixed. The (s, t) inequality can be rewritten as:

$$
\begin{aligned}
\sum_{i \in S^{+}} \alpha_{i}\left(y_{i s}+y_{s t}-x_{s}\right)+ & \sum_{i \in T^{+}} \alpha_{i}\left(y_{i t}+y_{s t}-x_{t}\right)+\sum_{i \in W^{+}} \alpha_{i}\left(y_{i s}+y_{i t}-x_{i}\right) \\
+\sum_{i \in S^{-}} \alpha_{i} y_{i s}+\sum_{i \in T^{-}} \alpha_{i} y_{i t} & +\sum_{i \in W^{-}} \alpha_{i}\left(1-x_{i}-x_{s}-x_{t}+y_{i s}+y_{i t}+y_{s t}\right) \\
& +\sum_{i \in R^{-}} \alpha_{i} y_{s t} \leq\left(b-\alpha_{s}-\alpha_{t}\right) y_{s t}
\end{aligned}
$$

Observe that, in this form, the right-hand side is a constant for the given α, b, s and t. Then, to find a most-violated (s, t) inequality, if any exists, it suffices to maximise the left-hand side. This can be done using the following algorithm. Consider each node $i \in N \backslash\{s, t\}$ in turn. If $\alpha_{i}>0$, place i in one of the sets S, T, W or R, according to which of the following four quantities is largest: $y_{i s}^{*}+y_{s t}^{*}-x_{s}^{*}, y_{i t}^{*}+y_{s t}^{*}-x_{t}^{*}$, $y_{i s}^{*}+y_{i t}^{*}-x_{i}^{*}$ and zero. (Ties can be broken arbitrarily.) If $\alpha_{i}<0$, place i in S, T, W or R according to which of the following four quantities is smallest: $y_{i s}^{*}, y_{i t}^{*}, 1-x_{i}^{*}-x_{s}^{*}-x_{t}^{*}+y_{i s}^{*}+y_{i t}^{*}+y_{s t}^{*}$ and $y_{s t}^{*}$. (Again, ties can be broken arbitrarily.) If $\alpha_{i}=0$, then i can be placed in an arbitrary set, since it has no effect on the violation. Note that, for any i, only a constant number of comparisons is needed. Therefore the algorithm runs in $\mathcal{O}(n)$ time for the given α, b, s and t.

3 Facet proof

In this section, we provide the proof that under certain conditions, the family of (s, t) inequalities (7) are facets defining for the MEWCP. The (s, t) inequality for the MEWCP can be written as follows:

$$
\begin{equation*}
\sum_{i \in S \cup W} y_{i s}+\sum_{i \in T \cup W} y_{i t}-\sum_{i \in W} x_{i} \leq(|S|) x_{s}+(|T|) x_{t}+(b-2-|S|-|T|) y_{s t} \tag{10}
\end{equation*}
$$

For the rest of this paper, the set \mathcal{Q} corresponds to

$$
\mathcal{Q}:=\operatorname{conv}\left\{(x, y) \in\{0,1\}^{n+\binom{n}{2}}: \sum_{i=1}^{n} x_{i} \leq b, 0 \leq, y_{i j}=x_{i} x_{j} \text { for }(i, j) \in E\right\}
$$

Theorem 2 Let s, t, S, T and W be defined as in Section 2. If S and T are non empty, $|S| \leq b-2,|T| \leq b-2$, $W=R=\emptyset$ and $|S \cup T| \geq b-1$, then the (s, t) inequalities (10) define facets of \mathcal{Q}.

Note that with the settings of Theorem 2, the supporting graph of the (s, t) inequalities (10) is a double star tree as follows.

Proof. Let $F=\{(x, y) \in \mathcal{Q}:(10)$ holds with equality $\}$, and $a(x, y) \leq a_{0}$ i.e. let

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}+a_{12} y_{12}+a_{13} y_{13}+\ldots a_{n-1, n} y_{n-1, n} \leq a_{0}
$$

be an inequality valid for \mathcal{Q} such that every point $(x, y) \in F$ satisfies $a(x, y)=a_{0}$. We will use some integer points in \mathcal{Q} that satisfy (10) to equality i.e integer points in F to find the coefficients a and a_{0} uniquely up to scalar multiplication.

Let e_{i} be $i^{t h}$ unit vector of size $n, e_{i j}$ the $\binom{n}{2}$-vector with all components equal to zero except the $(i, j)-t h$ component which is equal to 1 .

1. The vector $(x, y)=(0,0) \in F$; this implies that $a_{0}=0$.
2. $\left(e_{i}, 0\right) \in F$ for $i \neq s, t$; this implies that $a_{i}=0$ for all $i \neq s, t$.
3. $\left(e_{i}+e_{j}, e_{i j}\right) \in F$ for all $i, j \neq s, t$ and $i \neq j$; it follows that $a_{i j}=0$ for all $i, j \neq s, t$ and $i \neq j$.
4. We now prove that $a_{i t}=0$ for any node $i \in N \backslash(T \cup\{s, t\})$. Let $i \in N \backslash(T \cup\{s, t\})$, we define:

- $C_{i t}^{s}$ to be a star tree with node set $T \cup\{i, t\}$ such that all the edges are incident to t. Since $C_{i t}^{s} \in F$, it follows that

$$
\begin{equation*}
a_{t}+\sum_{k \in T} a_{k t}+a_{i t}=0 \tag{i}
\end{equation*}
$$

- C_{t}^{i} to be a star tree with node set $T \cup\{t\}$ such that all the edges are incident to t this is the same as the star tree $C_{i t}^{s}$ without the edge (i, t). Since $C_{t}^{i} \in F$, it follows that

$$
\begin{equation*}
a_{t}+\sum_{k \in T} a_{k t}=0 \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i) yields $a_{i t}=0$ for $i \in N \backslash(T \cup\{s, t\})$.
5. Similarly to the above point, $a_{j s}=0$ for $j \in N \backslash(S \cup\{s, t\})$.
6. We show that $a_{i s}=a_{j t}$ for $i \in S$ and $j \in T$. Let $i, j \in S \cup T$ with $i \neq j$ and let $A \subseteq S \cup T \backslash\{i, j\}$ such that $|A|=b-3$. Let $C_{i s t}^{j}$ be a double star tree with node set $A \cup\{i, s, t\}$ obtained by linking all the nodes in $A \cap S$ to s, all the nodes in $A \cap T$ to t and connecting the node s to the node t.

- Since $C_{i, s, t}^{j} \in F$, it follows that

$$
\begin{equation*}
a_{s}+a_{t}+\sum_{k \in A \cap S} a_{k s}+\sum_{k \in A \cap T} a_{k t}+a_{i s}+a_{i t}+a_{s t}=0 \tag{iii}
\end{equation*}
$$

- Since $C_{j, s, t}^{i} \in F$, it follows that

$$
\begin{equation*}
a_{s}+a_{t}+\sum_{k \in A \cap S} a_{k s}+\sum_{k \in A \cap T} a_{k t}+a_{j s}+a_{j t}+a_{s t}=0 \tag{iv}
\end{equation*}
$$

Subtracting (iii) from (iv) yields $a_{i s}+a_{i t}=a_{j s}+a_{j t}$. So we have the following:
a) If $i, j \in S$ then $a_{i s}=a_{j s}$.
b) If $i, j \in T$ then $a_{i t}=a_{j t}$.
c) If $i \in S$ and $j \in T$, then $a_{i s}=a_{j t}$.
7. Using $a_{i t}=a_{j t}$ for $i, j \in T$, and considering equation (ii), we have $a_{t}+|T| a_{i t}=0$ for $i \in T$. Therefore, $a_{i t}=-\frac{a_{t}}{|T|}$.
Similarly, $a_{s}+|S| a_{i s}=0$ for $i \in S$, i.e $a_{i s}=-\frac{a_{s}}{|S|}$.
8. Let $i \in S$ and $j \in T$, we define the set A as in step 6 and denote $\alpha_{s}=|A \cap S|+1$ and $\alpha_{t}=|A \cap T|$. It follows from (iii) that $a_{s}+a_{t}+\alpha_{s} a_{i s}+\alpha_{t} a_{j t}+a_{s t}=0$ i.e. $a_{s t}=-a_{s}-a_{t}+\frac{a_{s} \alpha_{s}}{|S|}+\frac{a_{t} \alpha_{t}}{|T|}$ for $i \in S$ and $j \in T$.
9. Finally, considering the above steps, the inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}+a_{12} y_{12}+a_{13} y_{13}+\ldots a_{n-1, n} y_{n-1, n} \leq a_{0}
$$

reduces to

$$
a_{s} x_{s}+a_{t} x_{t}+\sum_{i \in S} a_{i s} y_{i s}+\sum_{i \in T} a_{i t} y_{i t}+a_{s t} y_{s t} \leq 0
$$

which, using the identities $a_{i s}=a_{j t}, a_{j t}=-\frac{a_{t}}{|T|}$ and $a_{i s}=-\frac{a_{s}}{|S|}$ for $i \in S, j \in T$, is equivalent to

$$
a_{s} x_{s}+a_{t} x_{t}-\frac{a_{s}}{|S|} \sum_{i \in S} y_{i s}-\frac{a_{t}}{|T|} \sum_{i \in T} y_{i t}+\left(\frac{a_{s} \alpha_{s}}{|S|}+\frac{a_{t} \alpha_{t}}{|T|}-a_{s}-a_{t}\right) y_{s t} \leq 0
$$

We finally have

$$
\frac{a_{s}}{|S|}\left[|S| x_{s}+|T| x_{t}-\sum_{i \in S} y_{i s}-\sum_{i \in T} y_{i t}-\left(|S|+|T|-\alpha_{s}-\alpha_{t}\right) y_{s t}\right] \leq 0
$$

Since $\left(e_{s}, 0\right)$ satisfies the inequality $a(x, y)<a_{0}$, i.e $a_{s}<0$, and given that $\alpha_{s}+\alpha_{t}=b-2$, this ends the proof.

References

[1] B. Alidaee, F. Glover, G. Kochenberger \& H. Wang (2007), Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur. J. Oper. Res., 181, 592-597.
[2] A. Caprara, D. Pisinger \& P. Toth (1998), Exact solution of the quadratic knapsack problem. INFORMS J. Comput., 11, 125-137.
[3] G. Dijkhuizen \& U. Faigle (1993), A cutting-plane approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res., 69(1), 121-130.
[4] F. Djeumou Fomeni, K. Kaparis \& A.N. Letchford (2015), Cutting planes for first-level RLT relaxations of mixed 0-1 programs. Math. Program., 151(2), 639-658.
[5] F. Djeumou Fomeni \& A.N. Letchford (2014), A dynamic programming heuristic for the quadratic knapsack problem. INFORMS J. Comput., 26(1), 173-183.
[6] M. Hunting (1998), Relaxation techniques for discrete optimization problems: Theory and algorithms. PhD thesis, University of Twente.
[7] M. Hunting, U. Faigle \& W. Kern (2001), A Lagrangean relaxation approach to the edge-weighted clique problem. Eur. J. Oper. Res., 131, 119-131.
[8] C. Helmberg, F. Rendl \& R. Weismantel (2000), A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim., 4, 197-215.
[9] E.L. Johnson, A. Mehrotra \& G.L. Nemhauser (1993), Min-cut clustering. Math. Program., 62, 133-151.
[10] M.J. Kuby (1987), Programming models for facility dispersion: The p-dispersion and maxisum dispersion problem. Geogr. Anal., 9, 315-329.
[11] E.M. Macambria \& C.C de Souza (2000), The edge-weight clique problem: Valid inequalities, facets and polyhedral computations. Eur. J. Oper. Res., 123, 346-371.
[12] G.P. McCormick (1979), Computability of global solutions to factorable nonconvex programs: Part I-Convex underestimating problems. Math. Program., 10, 146-175.
[13] A. Mehrotra (1997), Cardinality constrained boolean quadratic polytope. Discrete Appl. Math, 79, 137-154.
[14] K. Park, K. Lee \& S. Park (1995), An extended formulation approach to the edge-weight maximal clique problem. Eur. J. Oper. Res., 95, 671-682.
[15] M.W. Padberg (1989), The Boolean quadric polytope: Some characteristics, facets and relatives. Math. Program., 45, 139-172.
[16] D. Pisinger (2007), The quadratic knapsack problem - a survey. Discrete Appl. Math., 155, 623-648.
[17] S.S. Ravi, D.J. Rosenkrantz \& G. K. Tayi (1994), Heuristic and Special Case Algorithms for Dispersion Problems. Oper. Res., 42(2), 299-310.
[18] H. Späth (1985), Heuristically determining cliques of given cardinality and with minimal cost within weighted complete graphs. Zeitschrift für Operations Research, 29(3), 125-131.
[19] M.M. Sørensen (2004), New facets and a branch-and-cut algorithm for the weighted clique problem. Eur. J. Oper. Res., 154, 57-70.
[20] Q. Wu \& J.K. Hao (2015), A review on algorithms for maximum clique problems. Eur. J. Oper. Res., 242(3), 693-709.

