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nologies.
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Abstract: In prior works, this group demonstrated the feasibility of valid adaptive sequential designs for
crossover bioequivalence studies. In this paper, we extend the prior work to optimize adaptive sequential
designs over a range of geometric mean test/reference ratios (GMRs) of 70–143% within each of two ranges of
intra-subject coefficient of variation (10–30%, and 30–55%). These designs also introduce a futility decision
for stopping the study after the first stage if there is sufficiently low likelihood of meeting bioequivalence
criteria if the second stage were completed, as well as an upper limit on total study size. The optimized
designs exhibited substantially improved performance characteristics over our previous adaptive sequential
designs. Even though the optimized designs avoided undue inflation of type I error and maintained power at
≥ 80%, their average sample sizes were similar to or less than those of conventional single stage designs.
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Introduction

One of the key considerations in planning a bioequivalence (BE) study is study (sample) size. The sponsor

seeks neither to incur unnecessary expense with too large a sample size nor to unduly risk study failure with

too small a sample size. In the case of a crossover design study, the sample size decision is highly dependent

on the within-subject variability (intra-subject coefficient of variation, or ISCV), a quantity for which reliable

prior estimates may not be available for the drug to be studied. While an innovator planning a BE study

may have good ISCV estimates from prior studies it has conducted on the same drug, a generic manufacturer

might not have access to reliable ISCV estimates for the drug to be studied.

This group has published two papers [1,2] with several solutions to this design problem for crossover

studies, namely adaptive two-stage designs, allowing for re-estimation of the second-stage sample size based

on first-stage results. Elements of the designs were drawn from Pocock’s approach [3] for group sequential

parallel designs in having similar significance levels at the two stages. The designs presented and validated

(in terms of preserving the type I error rate) in those two papers were in some ways demonstrations of what

is possible with two-stage designs. For example, methods B, C, and D attempt to test BE using stage 1 data

with an alpha level more stringent than 0.05 (method B) or at 0.05 level with sufficient power (methods C

and D). If it is necessary to continue to stage 2 due to insufficient power at stage 1, a sample size re-estimation

based on observed ISCV and assumed GMR were used. There was no constraint on maximum sample size.

These three methods differ in that method B always tests stage 1 at an alpha level of 0.0294, whereas

methods C and D determine the alpha level to be applied to the stage 1 results based on the power achieved

at stage 1 [1]. However, there was no attempt to optimize their performance. The purpose of this paper

is to develop and present adaptive two-stage designs for two-period crossover BE studies that are optimal

within certain design spaces that are described below. Two new features that we introduce into our optimized

designs are an upper limit for overall study size as well as a futility criterion (also considered in other forms

by other authors [4,5,6]), which allows for the abandonment of a study after the first stage if there would be

little hope of meeting BE criteria if the second stage were to be conducted.

While the two-stage adaptive designs we explored in our earlier publications did offer good protection

against a fair degree of uncertainty in ISCVs, there were limitations in the breadth of the ISCV ranges over

which they performed well in terms of power and sample size. Therefore, with these types of designs, a

one-size-fits-all approach that would be tolerant of an extremely wide range of possible ISCVs is not possible.

Accordingly, in this paper we optimized these methods across two ISCV ranges that we thought would be

most useful practically. This is a somewhat different approach from those reported in other publications that

have sought to improve on our original work [5,6].

One of the factors that we considered in selecting the most useful ISCV ranges over which to optimize

our methods was the availability of the scaled average BE (SABE) approach [7,8],1 which has attractive

performance characteristics if the expected ISCV is about 30% or higher. For those cases in which a sponsor

would have the option of conducting a scaled average BE study, there would generally be little motivation

to conduct an adaptive sequential design study if the ISCV were expected to exceed 30%. Consequently, an

adaptive sequential design would be attractive only if the risk of observing an ISCV ≥ 30% were low. To

address this type of situation, we optimized our methods for a low-variability ISCV range of 10–30%.

However, the scaled average BE approach is not always permitted or feasible, so adaptive two-stage designs

may still be attractive for drugs which are expected to be highly variable (i.e., having ISCVs ≥ 30%). For

those cases, we chose to optimize our methods over as broad an ISCV range as possible, starting at an ISCV

of 30% and extending the range upward as far as acceptable power and sample size performance permitted.

Because we observed acceptable performance characteristics up to an ISCV of 55%, we chose to optimize our

adaptive sequential methods over a high-ISCV range of 30–55% in order to address such situations.

1 FDA’s Scaled Average Bioequivalence (SABE) approach [7] is actually a mixed-scaling approach. If the ISCV observed in
the pivotal biostudy is < 30%, conventional unscaled average bioequivalence criteria apply; if it is ≥ 30%, scaling is applied.
Therefore, the SABE (mixed scaling) design could be applied to cases in which the ISCV is < 30%, although there would be
no benefit to the sponsor for doing so, and even some disincentive, as the SABE design requires replication and has minimum
sample size requirements (n ≥ 24) that could make it less attractive than a conventional 2-way crossover design for ISCVs under
30%. For ISCVs well above 30%, however, the sample size reduction afforded by the SABE approach can be quite substantial.
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In Methods we describe our simulation and optimization approaches. The comparator procedure is a

standard, single-stage, fixed sample size design. We introduce two new procedures, E and F, based on

methods B, C, and D of the prior papers. For a grid of values of ISCV (within the two ranges described

above) and geometric mean ratios (GMRs) spanning 0.70–1.00, and thus covering 0.70 to 1.43, we estimate,

by simulation, the sample size, power and type I error rate. The comparison of sample sizes to those of

single-stage designs is based on a cost function that heavily penalizes designs with sample sizes greater than

those of the corresponding single-stage designs, but modestly rewards those with sample sizes smaller than

those of the corresponding single stage designs. Four design parameters, described below, were then varied

by a state-of-the-art optimization method to minimize the cost function while still maintaining an acceptable

type I error rate and power.

Methods

Designs

Single-stage design

A conventional single-stage BE study design was used as a comparator against which the performance char-

acteristics of the two-stage designs were evaluated. The single-stage design assumed conventional BE criteria

requiring that the 90% confidence interval (corresponding to a significance level of 0.05 for the equivalent two

one-sided tests [9]) for the ratio of geometric means of the test and reference products fall within 0.80–1.25.

For each value of the population ISCV tested with the two-stage designs, the minimum number of subjects

required to achieve at least 80% power, assuming a population geometric mean ratio (GMR) of 0.95, was

determined for the single-stage design by an adaptation of the method of Hauschke et al. [10] which is

described below in Equation (1).

Adaptive sequential two-stage design method E

Method E (Figure 1) is a two-stage adaptive group sequential BE design, similar to method B proposed by

Potvin et al. [1]. Specifically, method E begins by testing BE first, and allows early stopping for BE with a

significance level of α1 (smaller than 0.05), regardless of the actual power at stage 1. If the BE criterion is

met, the algorithm terminates and concludes BE. If the BE criterion is not met at this point, the algorithm

specifies the calculation of the stage 1 power at a second significance level, α2. If the stage 1 power is ≥ 80%

with significance level α2, the stage 1 data are retested for BE at the α2 significance level, and the algorithm

terminates with a conclusion of BE or non-BE.

If the stage 1 power at the α2 significance level is < 80%, then the algorithm specifies checking whether

running stage 2 would be futile, based on the calculation of a 90% confidence interval for ln(GMR), [LCL;

UCL], and application of a futility rule (described below) using data from stage 1. If the futility rule is met,

the algorithm terminates and concludes non-BE. Otherwise, the algorithm specifies continuation to stage 2,

using a stage 2 sample size (n2) that is calculated as described below.

The algorithm then specifies evaluating BE using combined data from both stages at a significance level

of α2. At this point the algorithm terminates regardless of the power achieved or whether or not BE is

concluded.

Adaptive sequential two-stage design method F

Method F (Figure 2) is an adaptive two-stage group sequential BE design, similar to methods C and D

proposed by Potvin et al. [1]. Method F first specifies evaluating the power at stage 1 at a significance level

of 0.05. If the stage 1 power is at least 80%, it then specifies evaluating BE at stage 1 at a significance level of

0.05 and the algorithm terminates regardless of whether BE or non-BE is concluded. If, however, the stage 1

power is less than 80%, the algorithm then specifies testing for BE at the significance level α1 (< 0.05), and

terminating if the BE criteria are met. If the BE criteria are not met, then the algorithm specifies checking

whether running stage 2 would be futile, based on the calculation of a 90% confidence interval for ln(GMR),
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Figure 1: Adaptive sequential sample size method E.

Figure 2: Adaptive sequential sample size method F.

[LCL; UCL], and application of a futility rule (described below) using data from stage 1. If the futility rule

is met, the algorithm terminates and concludes non-BE. Otherwise, the algorithm specifies proceeding to

stage 2 using n2 subjects calculated as described below using α2. After completion of stage 2, the algorithm

specifies evaluating BE at significance level α2 using the combined data from both stages and concluding BE

or non-BE, regardless of power.

Common features of the methods described above:

• BE criterion: A BE criterion at a specific significance level α means that the two-sided confidence

interval for the estimated GMR (Test/Reference, on the original scale) at the (1 − 2α) level falls

entirely within 80–125%.
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• General notes: All power calculations were performed using the specified significance level, and assum-

ing a population GMR of 0.95 and a population variance equal to the sample variance (ANOVA MSE)

observed in stage 1. All overall type I error rate simulations were performed at a population GMR

of 0.80. Because GMRs of 0.80 to 1.00 are symmetric to GMRs of 1.00 to 1.25, our simulations only

explored population GMRs ≤ 1.00 without loss of generality.

• Futility rule: The futility rule was defined as follows. After stage 1, the lower and upper limits (LCL

and UCL) of the 90% two-sided confidence interval around the ln(GMR) estimate were calculated. A

futility criterion, (f ≥ 0), was one of the design parameters that was optimized. If the 90% confidence

interval [LCL; UCL] on the natural-log scale calculated from the stage 1 data for a given study was

completely outside the region of [−f, f ], running stage 2 was deemed to be futile, and the study was

abandoned after stage 1 with a conclusion of non-BE. This futility rule is equivalent to rejecting the

study for futility if the 90% confidence interval of the GMR after stage 1 (transformed back to the

original scale) is completely outside [exp(−f) , exp(f)]. Conceptually, this type of criterion concludes

that further testing would be futile if, based on the stage 1 data, there is a sufficiently high degree of

confidence that the population GMR is not close to 100%. This is superior to a simple test of the point

estimate, in that it does not abandon poorly powered studies prematurely. A small value for f will tend

to stop studies more frequently for futility, whereas a high value will tend to stop studies less frequently

for futility. This futility criterion (f) is determined simultaneously with the alpha allocation (α1, α2)

and first stage sample size (n1). Design variants that do not inflate type I error and yield adequate

power were used for optimal design search. Because of the existence of futility, the resulting nominal

alpha allocation (α1, α2) may be higher than it would have been in the absence of futility [1].

• Stage 2 sample size (n2n2n2): For methods E and F, if the decision rule determined that the study should

continue to stage 2, the minimum size for stage 2 was 2, and the maximum size was (nmax−n1), where

nmax was the pre-determined maximum total allowable study size for stages 1 and 2 combined. The

initial estimate of n2 was the minimum even number of subjects required for the combined data from

stages 1 and 2 to have at least 80% power, assuming a population GMR of 0.95, a population variance

equal to the observed sample variance (ANOVA MSE) from stage 1, and a significance level of α2. If

this initial estimate for n2 exceeded (nmax−n1), then n2 was set equal to (nmax−n1) so as to constrain

the maximum possible study size to no more than nmax. The detailed power calculation formula is

shown below in Equation (1).

Simulations

Simulation design spaces

As described earlier, methods E and F were optimized separately for each of two ISCV ranges: a low ISCV

range of 10–30% and a high ISCV range of 30–55%. This yielded a total of four different design spaces, viz,

method E low ISCV, method E high ISCV, method F low ISCV, and method F high ISCV. In each case,

optimization was done over a range of GMR values (0.70–1.00), which further defined the design spaces, and

which were intended to represent realistic streams of formulations that may or may not match the reference

product well.

Within each design space, each specific design variant was defined by four parameters (α1, α2, n1, and f).

In the simulations for each design space, these parameters were allowed to vary to achieve optimum perfor-

mance over that design space. In order to test the performance of each sequential design variant over its

design space, it was evaluated at a 2 dimensional grid of test points corresponding to different values of GMR

and ISCV spaced at 5% intervals within that design space. Using the low ISCV case as an example, design

variant performance was tested at population GMR values of 70%, 75%, 80%, 85%, 90%, 95%, and 100%

and population ISCV values of 10%, 15%, 20%, 25%, and 30% for a 7 × 5 grid with a total of 35 points.

The first step in evaluating a specific design variant (i.e., combination of α1, α2, n1, and f) was to test

whether it met the design criteria of providing a type I error rate of ≤ 0.05 and a power of ≥ 0.80 for all

ISCV values within the design space. Type I error rate and power were determined by the fraction of studies
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meeting the BE criteria at population GMR values of 0.80 and 0.95, respectively. Using the low ISCV case as

an example, type I error rate was assessed at population ISCV values of 10%, 15%, 20%, 25%, and 30%, while

holding the population GMR constant at 0.80. Similarly, power was assessed at population ISCV values of

10%, 15%, 20%, 25%, and 30%, while holding the population GMR constant at 0.95. In other words, these

tests for type I error rate and power were done on two different subsets of the overall 2D grid of GMR and

ISCV combinations. If, for any of the ISCVs tested within the design space, either the type I error rate was

> 0.05 or the power was < 0.80, the design variant was rejected as unacceptable, and no simulations were

done for the remaining points in the 2D grid. This allowed for considerable saving of computational time.

If a particular design variant met the type I error rate and power criteria for all ISCV values within the

design space, simulations were done at the remaining points in the 2D test grid. For each point in the 2D

test grid, the performance of the design variant was recorded (including the percentages of studies passing

overall, and at each stage, as well as sample size statistics). Based on the sample sizes at each point in the

2D test grid a cost function (described below) was calculated as a global measure of sample size within the

design space. The values of the design parameters α1, α2, n1, and f were then varied, as described below

(Optimal design search algorithm section), to minimize this cost function.

As a comparator, both as a component of the cost function, and for the sample size statistics reported

for the optimized designs, the smallest sample size for a conventional, single stage, two-way crossover design

providing power ≥ 0.80 for a population GMR of 0.95 and a given population ISCV was calculated using

Equation (1) below.

Constraints on design parameters

Constraints for the four design parameters were set to ensure that their optimized values would be reasonable.

The minimum size of 12 for stage 1 (n1) was selected to provide the basis for a reasonable variance estimate and

BE/futility decision and because this is the smallest study that FDA will accept for the pivotal demonstration

of bioequivalence. The maximum size for stage 1 was set as 30 or 60, for ISCVs ≤ 30% or ISCVs > 30%,

respectively. The maximum total sample size from both stages was set as 42 or 180 for ISCVs ≤ 30% or

ISCVs > 30%, respectively, based on practical considerations explained below.

Tothfalusi and Endrenyi [11] reported that the smallest SABE study that would provide at least 80%

power for a population GMR of 0.95 and a population ISCV of 30% would be a 24-subject, 3-period,

3-sequence partial replicate design. In order to account for the possibility of at least a small percentage

of dropouts, the smallest balanced 3-period SABE study size providing at least 80% power for a population

GMR of 0.95 and a population ISCV of 30% would then start with 27 subjects. Such a design would have

27*3 = 81 administrations of drug. The smallest balanced two-way crossover design with at least this number

of drug administrations, and, therefore, a cost similar to that of the smallest practical SABE study would

use 42 subjects.

The largest study sizes for the low ISCV range of 10–30% would be expected to occur at an ISCV of

30%. If the ISCV is expected to be 30%, and if the option of conducting a SABE study were available, the

SABE design may be a better option because of its superior power over a sequential design at an ISCV of

30%. If the ISCV was uncertain but as high as 30% a sequential design study could be attractive as long as

the cost would not exceed that of the possible alternative (SABE).2 However, if the sequential design could

potentially cost more than a SABE design, then the SABE design might still be a better option even if the

population ISCV might be a little lower than 30%, as the SABE design would provide more power, especially

for even higher observed ISCV values. Hence, a maximum total sample size of 42 was selected for simulations

of the low ISCV range to ensure that it would provide an attractive alternative to SABE designs for ISCVs

in the vicinity of 30%.

The maximum total sample size limit for the high ISCV case (180) was chosen based on practical

considerations–only rarely would studies larger than this be conducted. The maximum n1 values for the

low and high ISCV cases (30 and 60, respectively) were chosen to ensure that the final optimized designs

2 It should be noted that a partial- or fully-replicate SABE design study for which the observed ISCV is < 30% is still valid,
but will not benefit from scaling, and thus becomes less desirable for ISCV values < 30%.
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would not start with such large stage 1 groups as to be unattractive to sponsors. The final optimized designs

were found to use values of n1 that were substantially lower than these upper design limits for n1, and so

were not constrained by these design limit selections.

Simulation of individual BE studies

For each grid point (GMR, ISCV) within each of the four design spaces, two-way crossover BE studies with

up to two stages were simulated. The individual ln(Test)-ln(Reference) differences from a two-way crossover

BE design were simulated as normally distributed values with population mean ln(θ) and population variance

2σ2 , where θ was the ratio of the Test to the Reference population geometric means(GMR) and σ2 was the

population intra-subject variance (ln-scale) of the drug. The population variance (ln-scale) and population

ISCV (untransformed scale), based on an assumed lognormal distribution, are related by:

intrasubject CV(%) = 100
√
eσ2 − 1

Power calculations for each combination of GMR and ISCV were performed iteratively to find the smallest

even n that was needed to attain at least the desired power, 1− β:

1− β = Ft

 ln
(

1.25
θ

)
s
√

2
n

− t1−α,DF , DF

− Ft
−ln(1.25 ∗ θ)

s
√

2
n

+ t1−α,DF , DF

 (1)

where β represents the probability of a type II error, s is the sample standard deviation (i.e., the estimate

of σ), DF is the degrees of freedom associated with the error, Ft(x,DF ) is the cumulative probability function

of Student’s t distribution with DF degrees of freedom and t1−α,DF is the (1−α)th percentile of the Student t

density function. This formula was derived by one of us (Potvin) from the work by Hauschke et al. [10].

Simulation and evaluation at each grid point within design space

Because this entire simulation process had to be repeated at multiple grid points for each change to one or more

of the four parameters being optimized, the number of simulated studies involved was enormous. Therefore,

in order to make the process more efficient computationally, importance sampling was used [12,13,14]. This

drastically reduced the number of simulated studies required to achieve a given precision in the estimates

of the performance metrics of a given sequential design variant (type I error rate, power, sample size.)

Importance sampling suggests that the probabilities of claiming BE under the null hypothesis (i.e.; GMR =

1.25 or 0.8) can be estimated as:

Prob [Claim BE|H0 : GMR = 1.25] =
1

m

∑
L · IR (2)

where IR = 1 when the event Claim BE occurs and L is the ratio of the densities of observations under

the null and alternative hypotheses. The variance of the importance sampling estimate is always less than

or equal to the variance of the direct Monte Carlo estimates for the same number of simulations. By using

importance sampling, not only was the number of simulations reduced (n = 40, 000), but both the type I

error rate and power were estimated using the same set of simulations run under the alternative hypothesis

(i.e.; GMR = 0.95). However, for assumed ISCV’s less than 15%, the importance sampling estimate of the

type I error rate failed to converge properly. As such, for those cases, the type I error was estimated using

Monte Carlo sampling (n = 100, 000).

Cost function

To evaluate and determine the optimal design, a cost function was developed to measure the deviation in the

average sample size (see average sample size section below) of the adaptive sequential two-stage designs from

the average sample size of the single stage design across the 2D grid of ISCVs and GMRs. As such, a “cost”

value was calculated for each unique combination of ISCV and GMR, based on the difference between the
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average sample size of the two-stage sequential design and the sample size of the smallest single stage design

providing power ≥ 0.80 at a population GMR of 0.95 and the same population ISCV using Equation (3).

The cost function penalized two-stage sequential designs that had an average sample size that was greater

than the sample size of the single stage design more heavily (quadratic cost) than it rewarded those that

had an average sample size less than that of the single stage design (linear reward). This was done because

it was felt that reducing sample sizes below those of the corresponding single stage n was a less important

goal than was preventing inflation of sequential design sample sizes beyond the corresponding single stage

n. In other words, we did not want a large reward for some instances (within the 2D grid of ISCV and

GMR values) of sequential design sample sizes substantially below those of the corresponding single stage n

to counterbalance, and thus permit other instances of sequential design sample sizes (i.e., other points in the

same 2D grid) to substantially exceed those of the corresponding single stage n.

Thus, for the ith GMR and the jth ISCV, the cost value (at a particular grid point) is defined as:

Cost{GMRi,CVj} =


(
ñS{GMRi,CVj} − ñ

1
{0.95,CVj}

)2

if ñS{GMRi,CVj} − ñ
1
{0.95,CVj} > 1(

ñS{GMRi,CVj} − ñ
1
{0.95,CVj}

)
if ñS{GMRi,CVj} − ñ

1
{0.95,CVj} ≤ 1

(3)

Where ñS{GMRi,CVj} is the average sample size of the two-stage sequential design for the ith GMR and the

jth ISCV and ñ1
{0.95,CVj} is the sample size of the single stage design for the jth ISCV, which assumes GMR

of 0.95. The overall cost function for the two-stage sequential design for the n×m matrix of GMRs and CVs

is then defined as:

Cost function =
1

mn

m∑
j=1

n∑
i=1

Cost{GMRi,CVj}

An optimal design is defined as the design that has at least 80% power and at most 5% overall type I error rate

for all ISCV values within the specified ISCV range, and achieves the smallest cost function value described

above.

Optimal design search algorithm

The following four parameters were varied to optimize study designs using method E or F: two significance

levels, α1, and α2, the stage 1 sample size (n1), and the futility criterion (f). For each ISCV range, nmax

was not optimized, but rather was fixed based on practical considerations (42 for the ISCV range 10–30%,

and 180 for the ISCV range 30–55%).

The NOMAD implementation [15] of the MADS algorithm [16] for nonsmooth constrained optimization

was used to search for the optimal study design. MADS is designed for blackbox optimization problems [17] in

which the cost function and constraints are evaluated by a time-consuming simulation code. The optimization

problem had four bound-constrained variables, three of them being continuous, and the fourth one (n1)

discrete. The cost function and the eight constraints on power and on type I error rate were computed by

the simulations described above.

The cost function surface consisted of a steep slope from bottom left to top right, and an irregular edge

that separates the acceptable (bottom left) and unacceptable (top right) design regions as illustrated in

Figure 3. The top right region represents those designs whose power is less than 80% or type I error rate

is greater than 5%. Unacceptable designs were assigned an extremely high cost value in order to keep the

search within the acceptable region of the design space. The optimal design will be located on the edge, as

otherwise, it can be improved with a larger alpha level or smaller power. Unlike conventional optimization

algorithms, such as Nelder Mead, NOMAD’s ability to handle constraints allows it to search effectively along

this edge.

An initial study design with at least 80% power and at most 5% type I error rate on all range of CVs is given

to the algorithm. From this initial study design, NOMAD evaluated the cost function, and automatically

searched for an optimal design within the design space until convergence to the feasible design variant with

the smallest cost function.
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The cost function was plotted against alpha allocation in stages 1 and 2 as an illustration of the cost function surface. The
cost function decreases as both α1 and α2 increases as shown in the contour. Acceptable designs (type I error rate = 0.05 and
power = 80%) are on the lower left side of the irregular boundary illustrated as the dashed diagonal sawtooth curve.

Figure 3: The contour plot of cost function versus α1 and α2.

Simulations and optimizations were run on a parallel computing Linux cluster containing 5–6 individual

PCs. With this setup, a complete search for an optimal design only took a few hours, rather than days that

would have been required using a single PC. For example, it typically took about 5 hours to find an optimal

design using the cluster, where about 100 design variants were tested before achieving convergence, taking

an average of about 3 minutes per design variant.

Average sample size

Once the optimal designs were found for each of the four design spaces, the average sample size differences

relative to the conventional, single stage designs were calculated to compare global method performance

across the design space. In each case, averaging over the corresponding design space was done as follows.

For each of the four optimal designs the average sample size difference for a range of population GMRs

and CVs, ∆, is defined as the arithmetic mean of the sample size difference between sequential design and

one-stage design for each combination of GMRs and CVs as follows.

∆ =
1

mn

m∑
j=1

n∑
i=1

(
ñS{GMRi,CVj} − ñ

1
{0.95,CRj}

)
(4)

The average sample size difference measures how many more subjects on average a sequential design requires

than a one-stage design. A positive (negative) average sample size difference means a sequential design

requires more (fewer) subjects than a one-stage design. Thus, a negative average sample size difference

represents an improvement of the sequential design over the one-stage design.



Les Cahiers du GERAD G–2015–70 9

Results and discussion

The optimized study designs based on methods E and F for the two desired ISCV ranges are presented in

Table 1. Within each ISCV range, the optimized values for α1, α2, futility region [exp(−f), exp(f)], and n1

were very similar for methods E and F. Each of the optimized methods E and F in each of the ISCV ranges

exhibited a type I error rate of ≤ 0.05 and a power of at least approximately 80%, and thus met the design

criteria.

For the low ISCV range (10–30%), the average sample sizes for both methods E and F were only modestly

larger than those of the corresponding conventional single stage designs. For the high ISCV range (30–55%),

both optimized methods E and F yielded average sample sizes that were less than the average sample sizes

required for a conventional single stage design at the same ISCV levels, and yielding the same power. This

is particularly noteworthy, because the sequential design methods assumed no a priori knowledge of the

ISCV, other than that it fell within the range of 30 to 55%, whereas the conventional single stage sample

size calculation assumed that the population ISCV was known exactly and that the population GMR was

exactly 0.95, rather unreasonable, though widely used assumptions.

For all four optimized methods, the futility regions seemed reasonable, in that they determined that there

would be little point in proceeding to stage 2 if the 90% confidence interval about the GMR for the stage 1

results fell entirely outside the interval 100% ± about 5%–7%.

Table 2 shows the distribution of sample sizes for both methods E and F in both ISCV ranges as well as the

average percentage of studies proceeding to stage 2. This was done for two different scenarios; a population

GMR of 0.80, corresponding to a test formulation that did not match the reference formulation well, and a

Table 1: Group sequential design performance on a range of CVs.

Maximum Average True ISCV% Average
estimated Minimum sample (sample size sample

Futility type I estimated size of one stage size
ISCV% Method α1 α2 region1 n1 error rate2 power2 difference3 design) difference3

10–30 E 0.0249 0.0363 93.74; 18 0.050 0.80 1.9 10 (7) 11
106.67 15 (12) 6.1

20 (19) 0.7
25 (28) -3.1
30 (39) -5.2

F 0.0248 0.0364 94.92; 18 0.050 0.80 1.9 10 (7) 11
105.35 15 (12) 6.0

20 (19) 0.6
25 (28) -3.0
30 (39) -4.9

30–55 E 0.0254 0.0357 93.05; 48 0.050 0.80 -6.1 30 (39) 9.5
107.47 35 (52) -0.1

40 (66) -6.9
45 (81) -11
50 (98) -13.6
55 (116) -14.6

F 0.0259 0.0349 93.50; 48 0.050 0.80 -6.7 30 (39) 8.4
106.95 35 (52) -0.4

40 (66) -7.2
45 (81) -12.2
50 (98) -13.9
55 (116) -15.0

The optimal design parameters of methods E and F are listed for each of the two ranges of ISCV% (10–30% and 30–55%).
The maximum estimated type I error rate and minimum estimated power were calculated from the corresponding ISCV range
to represent the worst case scenario in type I error rate and power for the optimal designs. Average sample size differences
between optimal designs and single stage designs across the ISCV range and in each specific ISCV were calculated by averaging
across GMRs.
1 Stop for futility if the 90% confidence interval around the GMR after stage 1 is outside the futility region of [exp(−f),
exp(f)].
2 Type I error rate is estimated at the true ratio of geometric means of 0.80 and power is estimated at the true ratio of
geometric means of 0.95.
The standard errors of the estimated type I error rates and estimated powers are no more than 0.003 and 0.002, respectively.
3 Average sample size differences as compared to a one-stage crossover design: a negative number represents a decrease in the
number of subjects as compared to a one-stage design. A positive number represents an increase.
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Table 2: Total sample size and proportions of studies requiring a second stage.

Mean n total
ISCV% (5th, 50th, 95th) Ratio = 0.80 Ratio = 0.95
range % of studies method method

in stage 2

True ISCV% E F E F

10–30 10 18(18,18,18) 0% 18(18,18,18) 0% 18(18,18,18) 0% 18(18,18,18) 0%
15 18(18,18,18) 0.9% 18(18,18,18) 0.5% 18.1(18,18,18) 2.4% 18.1(18,18,18) 1.3%
20 19.3 (18,18,28) 13.7% 19.3(18,18,28) 12.7% 20.3(18,18,32) 24.1% 20.3(18,18,32) 21.8%
25 23.8 (18,18,42) 31.4% 24.0(18,18,42) 32.0% 28.1 (18,24,42) 54.2% 28.2(18,24,42) 53.7%
30 31.7(18,18,42) 44.9% 32.1(18,18,42) 46.3% 40.7 (18,42,42) 75.8% 41.0(18,42,42) 76.9%

30–55 30 48.5(48,48,52) 6.5% 48.4(48,48,48) 2.8% 48.6(48,48,52) 7.6% 48.5(48,48,48) 3.6%
35 52(48,48,72) 24.8% 51.6(48,48,72) 18.1% 52.7(48,48,74) 28.2% 52.5(48,48,74) 22.8%
40 59.3(48,48,94) 37.1% 58.6(48,48,94) 33.4% 62.2(48,48,98) 46.2% 62.2(48,48,98) 44.0%
45 69.4(48,48,118) 45.3% 68.6(48,48,118) 42.8% 77.6(48,80,124) 61.3% 77.8(48,80,124) 60.5%
50 82.1(48,76,144) 51.4% 81.4(48,48,146) 49.4% 97.7(48,104,150) 74.3% 98.1(48,104,152) 73.6%
55 96.6(48,104,172) 56.4% 96.4(48,102,172) 55.3% 121.3(48,128,176) 85.2% 121.3(48,128,180) 84.3%

Average total sample size, (5th, 50th, 95th) percentile and percent of studies continuing to stage 2 were listed by ISCV% in the
increment of 5% and GMR (80% for non-BE and 95% for BE) for optimal designs (α1, α2, futility region and n1) presented in
Table 1.
Mean n total (5th, 50th, 95th) is the average, 5 percentile, median and 95 percentile of total n in each ISCV for a certain true
GMR ratio. And the % of studies in stage 2 is the percentage of decisions made to go in stage 2 in each ISCV.

population GMR of 0.95, corresponding to a test formulation that did match the reference formulation well.

As was the case with Table 1, these results show little difference between the performance characteristics of

methods E or F. However, for the high ISCV range, method F may offer a slight performance advantage in

terms of smaller median sample size, and less likelihood of proceeding to stage 2, particularly for the GMR

= 0.80 case. The smaller sample sizes and frequencies of proceeding to stage 2 for the GMR = 0.80 case

as compared to the GMR = 0.95 case reflect the beneficial impact of the futility rules embedded in these

designs.

Figure 4 shows plots of average total sample size as a function of population GMR for optimized method F3

as well as for the corresponding conventional single stage design at each specific ISCV level tested. These plots

show that method F may sometimes require somewhat larger average sample sizes than the corresponding

single stage design, particularly at the lower end of each optimized ISCV range (e.g. ISCV=10% on the left

and ISCV = 30% on the right part of the figure) and when the population GMR is in the range 0.90–1.00

for range of ISCV of 10–30% and ISCV = 55%. However, when the population GMR is far from 1.00,

method F may exhibit substantially smaller average sample sizes than the corresponding single stage design,

particularly towards the upper end of the optimized ISCV range. In this sense, the optimized designs exhibit

some of the benefits of pilot studies (i.e., typically low overall cost for a formulation that turn out to match

the reference product poorly), but, unlike pilot studies, without the need to discard the initial data collected

(i.e., for formulations that match the reference product reasonably well). In an effort to be conservative the

comparisons made between the conventional single stage design and the sequential design put the sequential

design at a disadvantage, just because of the constraints we imposed on the sequential design. For the

sequential design, we imposed a minimum for n of 12, whereas for the conventional single stage design,

neither a minimum for n nor a requirement for an even sample size n was imposed for the comparison.

It is interesting to note that the optimized stage 1 sample size (n1) for the low end of each ISCV range

resulted in overpowering, but much more so for the low ISCV range than for the high ISCV range (viz. single

stage power for n = 18, ISCV = 10%, and GMR = 0.95 is 0.99, whereas for n = 48, ISCV = 30%, and GMR

= 0.95 is only 0.88). This appears to reflect a fundamental limitation in the ability of a sequential design

method to effectively span a large range of possible ISCV values, which can be seen as follows.

Assuming a population GMR of 0.95, the single stage n required for ISCVs of 10%, 30%, and 55% are 7,

39, and 115 subjects, respectively. Therefore, a sequential design attempting to cover the low ISCV range of

10–30% would be attempting to match the performance of single stage designs employing a range of 7 to 39

3 Plots of method performance characteristics are provided only for method F, because its performance was slightly better
than that of method E, and the plots for method E were similar.
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Average sample sizes were plotted against population GMR by ISCV% (in the increment of 5%), for optimal design method F,
when ISCV% is in each of two ranges (10–30% and 30–55%) using solid line. The horizontal dashed lines illustrated sample size
from single stage design for comparison.

Figure 4: Average Sample Size per range of CVs and per true ratio of geometric means for Optimal design
method F.

subjects, which amounts to a 5.57-fold range in sample sizes. In contrast, a sequential design attempting to

cover the high ISCV range of 30–55% would be attempting to match the performance of single stage designs

employing a range of 39–115 subjects, which amounts to only a 2.95-fold range in sample sizes. It appears

that the greater overpowering of n1 for the low ISCV range simply reflects the inability of a sequential

design to meet the design criteria of type I error rate and power over what amounts to the larger span of

corresponding single stage sample sizes (5.57-fold) that would be required for the low ISCV range, while still

keeping n1 low.

Figure 5 shows the probability of passing (declaring BE) as a function of population GMR for method F

optimized over the ISCV range of 10–30%, for each individual ISCV level tested at stage 1 (left panel), and at

stage 2 (right panel). These plots show that the likelihood of passing at stage 1 increases substantially as the

population ISCV decreases, particularly for borderline formulations whose population GMR’s are between

about 0.85 and 0.90. This is entirely expected, considering that method F employs a fixed initial sample

size (n1). The right panel, however, shows that the likelihood of passing at stage 2 (i.e., the probability of

passing based on the combined data from stages 1 and 2 for that subset of studies that actually proceeds to

stage 2) has little dependence on the population ISCV.

Figure 6, which shows the results for method F optimized over the ISCV range of 30–55%, is similar to

Figure 5 except that it shows less change in stage 1 power as ISCV changes, but more change in stage 2 power

as ISCV changes. This is probably due to the greater overpowering of stage 1 for low ISCVs in the low ISCV

range than in the high ISCV range discussed above. In other words, for the low end of the high ISCV range,

stage 1 never achieves the extremely high power seen for the low end of the low ISCV range. This results in

more studies passing at stage 1 for the low ISCV range, which more effectively screens the stream of studies

proceeding to stage 2 than is the case for the high ISCV range. In other words, the optimized sequential

design is more similar to a single stage design over the low ISCV range than it is over the high ISCV range.

This can be seen in Figure 7, which shows the percentage of decisions made in stage 1 for the low and high

ISCV ranges (left and right panels, respectively). Overall, there is a tendency for more decisions to be made

at stage 1 for the low ISCV range than for the high ISCV range.
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The percent of BE decisions at stage 1 (left) and stage 2 (right) were plotted against population GMR by ISCV% (in the
increment of 5%) for optimal design method F, when ISCV% is in the range of 10–30%. Here percent of BE decisions in stage 1
(stage 2), was calculated as the proportion of BE decisions out of decisions made at stage 1 (stage 2).

Figure 5: Percentage of BE decisions made at stages 1 and 2 in the optimal design of method F for ISCV
ranging between 10% and 30%.

The percent of BE decisions made at stages 1 (left) and 2 (right) were plotted against true population GMR by ISCV% (in the
increment of 5%) for optimal design method F, when ISCV% is in the range of 30–55%. Here the percent of BE decisions at
stage 1 (stage 2), was calculated as the proportion of BE decisions out of decisions made at stage 1 (stage 2).

Figure 6: Percentage of BE decisions made at stages 1 and 2 in the optimal design of method F for ISCV
ranging between 30% and 55%.
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The percent of decisions made at stage 1 were plotted against true population GMR by ISCV%(in the increment of 5%) for
optimal design method F, when ISCV% is in the range of 10–30%(left) and 30–55%(right). Here the percent of decisions at
stage 1 was calculated as the proportion of decisions at stage 1 out of all decisions made in both stages.

Figure 7: Percentage of decisions made in stage 1 in the optimal design method F for ISCV ranging between
10% and 30% and between 30% and 55%.

The percent of futility made at stage 1 were plotted against population GMR by ISCV% (in the increment of 5%) for optimal
design method F, when ISCV% is in the range of 10–30% (left) and 30–55% (right). Here the percent of futility was calculated
as the proportion of futility decisions out of decisions at stage 1.

Figure 8: Figure 8. Percentage of futility in stage 1 in the optimal design method F for ISCV ranging between
10% and 30% and between 30% and 55%.
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Figures 7 and 8 also illustrate the success of the futility rule used as reflected in the high decision rates

(non BE) at stage 1 for extreme (low) population GMRs. The minima in stage 1 decision rates seen in many

curves around population GMRs of 0.85–0.90 are entirely expected, and reflect the fact that, in this range of

GMRs, the greatest uncertainty regarding formulation performance based on stage 1 data occurs. In effect,

the decision is easier for very good (GMR close to 1) or very poor (GMR far from 1) formulations. At the

highest ISCV levels within each ISCV range, the minima in the stage 1 decision rates do not appear in the

GMR range of 0.85–0.90 because of the very low power at stage 1, even for GMRs close to 1. Nevertheless,

even though, at the highest ISCV within each of the two ISCV ranges, stage 1 power is low (resulting in

low likelihood of passing at stage 1), there is still excellent rejection (∼85–90%) of poor formulations, which

further underscores the good performance of the futility rule employed.

Table 3 shows the performance characteristics of the optimized sequential designs E and F relative to the

earlier sequential designs B, C, and D for the low ISCV range. Relative to the earlier designs B, C, and D,

the optimized designs show substantially lower, but still slight sample size penalties (as compared to single

stage designs). Table 4 shows similar comparative performance data for the high ISCV range. Several design

features of the new sequential designs, including the maximum sample size constraint, the futility rule, and

optimizing over a narrower range of ISCV values allowed for a slight reduction in α1 and but a larger increase

in α2 in the optimized designs E and F relative to the earlier methods B, C, and D, while still controlling the

overall type I error rate to ≤ 0.05. This, in turn, allowed for a substantial reduction in sample size relative

to methods B, C, and D, as well as little or no statistical “penalty” relative to single stage designs.

Table 5 shows the performance characteristics of optimized methods E and F when they are used for

products whose population ISCV values are outside the design ranges of either 10–30% or 30–55% for the low

and high ISCV versions. These results show that, even if the population ISCV is outside the design limits of

the optimized designs, the type I error rate is not inflated. As expected, however, there is a modest loss of

power below the desired 0.80 when the population ISCV is higher than the design ranges for the optimized

sequential methods E and F. Thus, optimized sequential methods E and F are suitable for use even in cases

where the population ISCV is outside the design ranges of 10–30% or 30–55% for the low and high ISCV

optimized forms, although power may be compromised for ISCV values above the upper limits of the design

ranges.

Table 3: Comparison of sample size reduction from Potvin et al. vs. optimal designs (ISCV range = 10–30%).

Method Overall Overall Average
Method (optimal Futility Min average average sample size

(Potvin et al.) design) α1 α2 region n1 Max α power alpha power difference1

B 0.0294 0.0294 None 12 0.048 0.79 0.041 0.86 4.9

24 0.048 0.83 0.036 0.91 8.5†

30* 0.044 0.83 0.033 0.92 12.2†

C 0.0294 0.0294 None 12 0.051 0.79 0.049 0.87 4.8

24 0.050 0.83 0.049 0.92 8.3†

30* 0.051 0.84 0.049 0.93 12.0

D 0.0280 0.0280 None 12 0.050 0.78 0.047 0.87 5.1
24 0.050 0.83 0.049 0.92 8.5
30* 0.051 0.84 0.049 0.93 12.2

E 0.0249 0.0363 93.74; 18 0.050 0.80 0.043 0.88 1.9†

106.67

F 0.0248 0.0364 94.92; 18 0.050 0.80 0.049 0.89 1.9†

105.35

The optimal designs are compared with methods B, C, and D reported previously in Potvin et al. for the ISCV% range
of 10–30%. Maximum type I error rate estimates and minimum power estimates are listed to illustrate the worst case
scenario in the ISCV% range. Average alphas, average powers, and average sample size differences from single stage
design were provided for comparison.
∗ n1 is reset to 30 if greater than 30 to match the method used in optimal design.
† Designs that meet the type I error and power requirement.
1 Average sample size difference as presented in Equation (4).



Les Cahiers du GERAD G–2015–70 15

Table 4: Comparison of sample size reduction from Potvin et al. vs. optimal designs (ISCV range = 30–55%).

Method Overall Overall Average
Method (optimal Futility Min average average sample size

(Potvin et al.) design) α1 α2 region n1 Max α power alpha power difference

B 0.0294 0.0294 None 12 0.044 0.73 0.035 0.75 14.9
24 0.048 0.78 0.040 0.80 13.5
36 0.049 0.79 0.043 0.82 11.2

48 0.048 0.81 0.043 0.83 9.9†

60 0.049 0.82 0.041 0.84 11.2†

C 0.0294 0.0294 None 12 0.045 0.73 0.035 0.75 14.9
24 0.050 0.78 0.041 0.80 13.5
36 0.049 0.79 0.045 0.82 11.0
48 0.051 0.81 0.048 0.83 9.5
60 0.050 0.82 0.048 0.85 10.7

D 0.0280 0.0280 None 12 0.042 0.73 0.034 0.75 16.3
24 0.048 0.77 0.039 0.80 14.9
36 0.047 0.79 0.043 0.82 12.5
48 0.050 0.81 0.046 0.83 10.8

60 0.050 0.82 0.047 0.85 11.8†

E 0.0254 0.0357 93.05; 48 0.050 0.80 0.045 0.82 -6.1†

107.47

F 0.0259 0.0349 93.50; 48 0.050 0.80 0.048 0.83 -6.7†

106.95

The optimal designs were compared with methods B, C, and D reported previously in Potvin et al. for the ISCV% range
of 30–55%. Maximum type I error rate estimates and minimum power estimates are listed to illustrate the worst case
scenario in the ICSV% range. Average alphas, average powers, and average sample size differences from the single stage
design were provided for comparison.
† Designs that meet the type I error and power requirement.

Table 5: Type I error rate and power outside of optimal ISCV range (methods E and F).

ISCV% Method α1 α2 Futility region N1 Estimated type I error Estimated power

ISCV = 5% ISCV = 35% ISCV = 5% ISCV = 35%

10–30 E 0.0249 0.0363 93.74; 106.67 18 0.037 0.041 0.999 0.777
F 0.0248 0.0364 94.92; 105.35 18 0.050 0.459 0.999 0.780

ISCV = 25% ISCV = 60% ISCV = 25% ISCV = 60%

30–55 E 0.0254 0.0357 93.05; 107.47 48 0.039 0.036 0.852 0.764
F 0.0259 0.0349 93.50; 106.95 48 0.050 0.036 0.869 0.762

Estimated type I error rates and powers at ISCV outside the target range are shown to illustrate the impact from out-of-range
ISCV. For example, the optimal design in method E in the first row was destined for ISCV% range of 10–30%. The estimated
type I error rates and powers are listed for ISCV = 5% and 35%.

Example of use

Following is a hypothetical example to demonstrate how decision rules are applied based on method E and

method F when using the optimal design on an unknown ISCV in the range of 30–55%.

Method E

Assume an adaptive two-stage design for two-period crossover bioequivalence studies targeting on an unknown

ISCV in the range of 30–55% was conducted. Based on Table 1, optimal design parameters (α1 = 0.0254,

α2 = 0.0357, N1 = 48, Futility region = [93.05%; 107.47%]) were determined if method E was chosen. At

stage 1 with 48 completed subjects, BE was evaluated at alpha level of α1 = 0.0254. The observed 94.92%

confidence interval of GMR in original scale was (0.78, 1.14) with an observed ISCV = 48.3%. As BE was

not met, the power was estimated as 35.8% with alpha level at α2 = 0.0357. Since power was less than 80%,

futility was then checked. Given the observed 90% confidence interval (0.81, 1.11) was not completely out of

futility region, futility was not met and overall sample size was re-estimated as 104. Thereafter, stage 2 was

initiated and additional 56 subjects were enrolled. BE was evaluated at stage 2 using data from both stages
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at alpha level of α2 = 0.0357. Given the observed 92.86% confidence interval (0.91, 1.12) was within (0.80,

1.25), BE was concluded.

Method F

If method F was instead chosen for the same study, optimal design parameters (α1 = 0.0259, α2 = 0.0349,

N1 = 48, Futility region = [93.50%; 106.95%]) were determined from Table 1. At stage 1, the same 48

subjects completed the study. The power was estimated as 48.7% with alpha level at 0.05. Since power

< 80%, BE was evaluated at alpha level α1 = 0.0259. The observed 94.82% confidence interval of GMR

in original scale was (0.78, 1.14) with an observed ISCV = 48.3%. As BE was not met at stage 1, futility

was then checked. Given the observed 90% confidence interval (0.81, 1.11) was not completely out of futility

region, futility was not met and overall sample size was re-estimated as 104. Thereafter, stage 2 was initiated

and additional 56 subjects were enrolled. BE was evaluated at stage 2 using data from both stages at alpha

level of α2 = 0.0349. Given the observed 93.02% confidence interval (0.91, 1.12) was within (0.80, 1.25), BE

was concluded.

Conclusion

The four optimized designs (methods E and F, each optimized for low and high ISCV) offer the benefits of

adapting automatically to substantial uncertainty in the anticipated formulation GMR as well as moderate

uncertainty in the ISCV, with only a modest sample size penalty for the low ISCV range, and a modest

sample size benefit (reduction) for the high ISCV range, all while preserving type I error rates ≤ 0.05 and

power ≥ 0.80. The inclusion of a futility rule provides for the early abandonment of poor formulations and

thereby effectively controls cost. Unlike our prior methods, the upper limits imposed on overall sample size by

the optimized designs provide sponsors with upper limits on overall study cost. The performance difference

between the two optimized algorithms based on methods E and F is negligible, and these two classes of

sequential algorithms work equally well. Overall, the optimized designs described here provide attractive

approaches to addressing uncertainties in GMR and ISCV, whether or not scaled average bioequivalence

methods are available as alternatives.
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