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as well as the Fonds de recherche du Québec – Nature et tech-
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Abstract: Tropical algebra is the algebra constructed over the tropical semifield IRmax. After revisiting
the classification of 2-dimensional IRmax semimodules, we define here the concept of dominant of a matrix
and use it to show that every m-dimensional tropical module M over IRmax with strongly independent basis
can be embedded into IRm

max. We also show that – up to matrix equivalence – the right residuate of a
matrix by itself characterises the isomorphy class of the semimodule generated by its columns. The strong
independence condition also yields a significant improvement to the Whitney embedding for tropical torsion
modules published earlier. We also show that the strong independence of the basis of M is equivalent to the
unique representation of elements of M . The results are illustrated with numerous examples.

Key Words: Idempotent semiring module, tropical module, embedding, classification.

Résumé : L’algèbre tropicale est l’algèbre construite sur le demi-corps idempotent IRmax. Après avoir
revisité la classification des modules tropicaux de dimension 2, on introduit la notion de dominant d’une
matrice, qui nous permet ensuite de montrer que, si les colonnes d’une matrice rectangulaire A sont fortement
indépendantes, la classe d’équivalence de la matrice carrée A\A (la résiduée à droite de A par rapport à elle-
même) caractérise la classe d’isomorphie du module tropical engendré par les colonnes de A. La condition
d’indépendence au sens fort fournit aussi une amélioration importante du Théorème de Whitney pour les
modules tropicaux publiée précédemment. On montre également que notre condition d’indépendance au
sens fort est équivalente à la condition de représentation unique des éléments de M . De nombreux exemples
illustrent nos résultats.
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1 Introduction

Idempotent and tropical mathematics arose from applications. Basically, we could say from the modelling

and analysis of man-made systems, and from mathematical physics. Man-made systems include in particular

computers, and production systems. After the celebrated paper by Kleene [15], many authors used idempotent

mathematics: semigroups in language theory [23], semirings in network routing problems [10]. From the

mathematical point of view, these idempotent structures have been widely investigated by Cuninghame-

Green [12], and applications to control and optimization of production systems have been developed [1, 11],

to mention only a few.

Some applications to automatic control can be found in [2, 3], and [14]. In [24], O. Viro arose the interest

of the mathematical community to the topic by constructing a piecewise linear geometry of a special kind of

polyhedra in finite dimensional Euclidean space [5, 6, 8, 9, 13].

Subsequently, the tropical approach raised increased interest in the algebraic geometry community [7, 18, 21,

22]. The reader will find a more detailed introduction to the topic in [16] and [17] (see also [4]).

The classification of modules over a principal ideal domain is given by their decomposition into a direct

sum of free and torsion modules. No such result exists for tropical modules. One reason is that the direct

sum decomposition of tropical modules is trivial, on the one hand, and that this classification problem

received scant attention in the other. In a previous approach, we showed that although the direct sum

decomposition misses the target, we can introduce the weaker concept of semi-direct sum [27], a concept

more closely related to the algebraic structure of tropical modules, which are to idempotent abelian monöıds

(i.e. semilattices) what modules are to abelian groups. Also in [27], we show that every general tropical

module may be decomposed into a semi-direct sum of four sub-semimodules: free, Boolean, semi-Boolean,

and torsion tropical module, respectively.

The aim of this paper is to prove a classification result for tropical modules with a strongly independent basis.

Our main result (Theorem 1) shows that this problem can be completely solved when the basis satisfies a

strong independence condition. To make it short, the aim of the paper is to fill the gap in the table below.

Algebraic invariants

category specify char.

vector space field F , n Fn

module PID free ⊕ torsion.

tropical module ? ?

The paper is organised as follows. In Section 2 below, we recall the basic properties of tropical modules. In

Section 3, we revisit the classification of two-dimensional tropical modules, define the concept of dominant of

a matrix, and use it to prove the classification theorem for finite dimensional tropical modules with strongly

independent basis. Some examples are then provided in Section 4. The completed table of algebraic invariants

then concludes the paper.

2 Idempotent semirings and semiring modules

The tropical semifield S = IRmax = (IR,∨, ·,0,1l) is defined as follows:

• IR = IR ∪ {−∞}, with (IR,∨,0) a commutative monoid, where ∨ stands for the max operator, with

neutral 0 = {−∞}.
• · stands for usual addition, with 1l as neutral (the real number 0)

• · distributes over ∨, and 0 is also absorbing for ·, i.e.

• ∀σ ∈ IR, 0 · σ = σ · 0 = 0 (−∞ is absorbing for addition)

• Since (IR, ·,1l) = (IR,+, 0) is a group, this makes S a semifield.
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Note that S is endowed with an order relation given by σ ≤ µ ⇐⇒ σ∨µ = µ. Since 0 is the neutral element

of ∨, it follows that 0 is the bottom element of S, i.e ∀σ ∈ S , 0 ≤ σ.

Dually, replacing IRmax by IRmin, we define the semiring (IR,∧, ·,0,1l), with top element 0 as neutral for the

min (written ∧). We will also consider the extended (idempotent) semiring with bottom 0 (0 ≤ σ), and top

0 (σ ≤ 0) for all σ ∈ S.

By abuse of language, the structure (S,∨,∧,0 , 0 , ·.1l) will also be called a semiring (or semifield, or diöıd).

Note that both ∨ and ∧ are idempotent.

2.1 Notation

Since idempotent semirings are at the intersection of linear algebra and ordered structures, and – as will be

seen in the sequel – we will often need the use of both the min and max operators using the + or ⊕ notation

(as some auhors do) would soon become awkward, whence the use of the lattice and ordered structures

notation (i.e. ∨ for max and ∧ for min) will be more convenient. Unless necessary, the notation · will usually

be omitted.

Matrix multiplication: Let A,B be two matrices of appropriate sizes with entries (A)ik – written aik – (resp

(B)kj –written bkj–) in S.

Define (A ·B)ij =
∨
k

aikbkj , and (A ? B)ij =
∧
k

aikbkj .

Also, we write At for the transpose of A , A− for the matrix with entries a−1
ij , and A−t for (At)− = (A−)t,

where a−1 is the multiplicative inverse of a ∈ S \ {0,0}.

2.2 Semimodules over an idempotent semiring

Left (right) ∨-semimodule over a semiring is defined similarly as module over a ring:

1. (M,∨) is a monoid with neutral also written 0

2. There is a map S ×M →M called exterior multiplication, satisfying: (σ , x) 7→ σx.

i) (σ ∨ µ, x) = (σ x ∨ µx),

ii) (σ , x ∨ y) = (σ x ∨ σ y)

iii) (0, x) = (σ , 0) = 0.

Note also that x ≤ y ⇐⇒ x ∨ y = y defines an order relation on ∨-semimodules.

Since the semiring (semifield) is idempotent, then so is the semimodule: x∨x = 1lx∨1lx = (1l∨1l) x = 1l x = x

(and similarly for ∧).

The first composition laws ∨ and ∧ in S extend to vector and matrices in a natural way. Also exterior

multiplication by a scalar λ ∈ S is defined componentwise (resp. entrywise) for vectors (matrices). This

makes Sn and the set of matrices with entries in S, left (or right) ∨-semimodules over S.

Notwithstanding the fact that we consider here ∨-semimodules, (∧-semimodules can be defined similarly),

we will however use the ∧ composition whenever required by the developments of the theory..

2.3 Independence

Let M be a S semimodule, and X = (xi)i∈I ⊂M . We say that:

MX =

{∨
i∈I

λixi|xi ∈ X , λi ∈ S , λi = 0 except for a finite number of them

}
is the semimodule generated by X, and X is the set of generators of M .
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In [25], we considered the following concepts of independence for X ⊂ Sn.

1. ∀Y, Z ⊂ X MY

⋂
MZ = MY ∩Z

2. ∀Y,Z ⊂ X , Y
⋂
Z = Ø⇒MY

⋂
MZ = {0}

3. ∀x ∈ X , x /∈MX\{x}.

Note that 1⇒ 2⇒ 3, while the converse does not hold, although they are equivalent in vector spaces.

In [25] (see also [19]), the proof that every finitely generated semimodule has generating set satisfying 3, and

that this set is unique up to a homothetic transformation xi 7→ λixi , xi ∈ X , λi ∈ S is given.

Let A ∈ Hom(Sm,Sn), i.e. A is a rectangular matrix of size n ×m with entries in S. Clearly, the columns

of A generate a finite dimensional semimodule over S. We write MA for this subsemimodule of Sn. Also,

if the columns of A are independent in the sense of 3 above, then dimMA = m. From the existence and

uniqueness theorem mentioned above, follows that for any diagonal and permutation matrices of appropriate

sizes D1, D2, P1, P2 the matrices A and B = D1P1AP2D2 generate isomorphic semimodules. We write in this

case MA 'MB and A ∼ B.

The problem we address in this paper is twofold. First, is there an algebraic invariant which characterises

the isomorphy class of MA? Second, what is the minimal p such that MA is isomorphic to a subsemimodule

of Sp? In [28, 29], we addressed this problem for semimodules over S = IRmax with finite entries (i.e. 6= 0)

only.

3 The classification theorem

3.1 The 2-dimensional case revisited

In [27], using the order relation in M , we showed that 2-dimensional semimodules can be classified by a 1-

parameter family. More precisely, representing each generator as a column vector in S2, the set of generators

of M are necessarily
{[

1l 0

0 1l

]}
,
{[

1l 1l
0 1l

]}
, or

{[
1l 1l
1l τ

]}
, for some τ > 1l.

We revisit this classification by assuming each generator to lie in Sn, with n ≥ 2.

Let X = {x, y}, with x , y ∈ Sn . We consider the following cases:

1. ∃ i 6= j s.t. xi = yj = 0 (the case i = j is omitted, since then x, y ∈ Sn−1).

2. ∃i s.t. xi = 0, while ∀j , yj 6= 0.

3. ∀i, j , xi , yj 6= 0.

The generators will be represented as the columns of a n× 2 matrix A.

Case 1

A =


x1 y1

x2 y2

. . . . . .
xn yn

. Up to a permutation of the rows of A we may assume that x2 = 0 , y1 = 0. Let

D1 = diag

[
x−1

1

n∨
i=1

xi y
−1
2

n∨
i=1

yi 1l . . .1l

]
, D2 = diag

[
(
n∨
i=1

xi)
−1 (

n∨
i=1

yi)
−1

]
.

We have D1AD2 =



1l 0
0 1l

x3(
n∨
i=1

xi)
−1 y3(

n∨
i=1

yi)
−1

. . . . . .

xn(
n∨
i=1

xi)
−1 yn(

n∨
i=1

yi)
−1


∼ A, which we may rewrite as B =


1l 0
0 1l
a3 b3
. . . . . .
an bn

, with

ai, bi ≤ 1l , i = 3, . . . , n.
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Now

[
1l 0 0 . . . 0
0 1l 0 . . . 0

]
B = I2, and the map ϕ : MB → MI2 , is an isomorphism.

Clearly ϕ is surjective. We show it is injective.

Let u = ξ1


1l
0
a3

. . .
an

 ∨ ξ2


0
1l
b3
. . .
bn

 , v = λ1


1l
0
a3

. . .
an

 ∨ λ2


0
1l
b3
. . .
bn

 and assume ϕ(u) = ϕ(v).

Clearly ϕ(u) =

[
ξ1 0
0 ξ2

]
=

[
λ1 0
0 λ2

]
= ϕ(v) ⇒ ξi = λi , i = 1, 2.

Case 2

A =


x1 y1

x2 y2

. . . . . .
xn yn

, with yi 6= 0 , 1 ≤ i ≤ n. W.l.o.g, we may assume that x2 = 0.

Let λ =
n∨
i=1

xiy
−1
i . We have x ≤ λy. It is not difficult to see that λ =

∧
{ξ ∈ S |x ≤ ξy} (since x ≤ ξy ⇐⇒

xi ≤ ξyi , 1 ≤ i ≤ n). Now let z = λy, We have x ≤ z with
∧
{ξ ∈ S |x ≤ ξz} = 1l.

Moreover ∃ i [6= 2] s.t. zi = xi (for if not, then x < z, i.e.
∧
{ξ ∈ S |x ≤ ξz} > 1l). Up to a permutation of

the rows, we may assume that z1 = x1.

Define the diagonal matrices D3 = diag
[
1l x1z

−1
2 1l . . . 1l

]
, D4 = diag [1l λ].

A ∼ B = D3AD4 =


x1 x1

0 x1

x3 z3

. . . . . .
xn zn

 and for C = x−1
1

[
1l 1l 0 . . . 0
0 1l 0 . . . 0

]
, we get CB =

[
1l 1l
0 1l

]
= E.

We show that the map ψ : MB →ME is an isomorphism. Clearly ψ is surjective.

Let u = λ1


x1

0
x3

. . .
xn

 ∨ λ2


x1

x1

z3

. . .
zn

 and v = ξ1


x1

0
x3

. . .
xn

 ∨ ξ2

x1

x1

z3

. . .
zn

.

Assuming ψ(u) = ψ(v) yields λ1 ∨ λ2 = ξ1 ∨ ξ2, and λ2 = ξ2.

λ1 ≤ λ2 ⇒ ψ(u) = λ2

[
1l
1l

]
, and u =


λ2x1

λ2x1

λ1x3 ∨ λ2z3

. . .
λ1xn ∨ λ2zn

 = λ2


x1

x1

z3

. . .
zn

 = v.

λ1 > λ2 ⇒ λ1 = ξ1 ∨ λ2 ⇒ ξ1 = λ1, and u = v.

Case 3

We first consider the case n = 2. Let A =

[
x1 y1

x2 y2

]
, D = diag(x−1

1 x−1
2 ). Then DA =

[
1l x−1

1 y1

1l x−1
2 y2

]
.

Muliplying column 2 by x1y
−1
1 , we get the equivalent matrix B =

[
1l 1l
1l x1y2(x2y1)−1

]
=

[
1l 1l
1l τ

]
, with

τ = x1y2(x2y1)−1.
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Note that if τ < 1l, then multiplying row 2 of B by τ−1, followed by the permutation of the two columns of

B yields an equivalent matrix with τ−1 > 1l.

Another point of view is that of torsion (cf. [26, 28]), which can be defined as follows. Let λ12 =
∧
{ξ ∈ S|xi ≤

ξiyi , i = 1, 2}, and λ21 =
∧
{ξ ∈ S|yi ≤ ξixi , i = 1, 2}. Note that the matrix ΛA = At · A− =

[
1l λ12

λ21 1l

]
,

has the property λ12λ21 = τ , which we call the torsion of MA. This is an intrincic invariant of MA.

Note also that τ = x1y2(y1x2)−1 shows some similarities with the determinant of A, hence, we may call it

the semi-determinant of A. In addition, for (say) τ > 1l, we have x1y2 > y1x2, hence x1y2 ∨ y1x2 = x1y2.

For n > 2, let A =


x1 y1

x2 y2

. . . . . .
xn yn

, with ∀i , xi , yi 6= 0.

We get ΛA =

[
x1 x2 . . . xn
y1 y2 . . . yn

]
x−1

1 y−1
1

x−1
2 y−1

2

. . . . . .
x−1
n y−1

n

 =

 1l
n∨
i=1

xiy
−1
i

n∨
i=1

x−1
i yi 1l

 =

[
1l λ12

λ21 1l

]
.

Note that τ = λ12λ21 =
∨

1≤i,j≤n
xiyj(xjyi)

−1 corresponds to the maximum of the semi-determinants of the

n(n− 1) 2 by 2 square submatrices of A (defined up to a permutation of the two rows).

Right multiplication of A by the diagonal matrix (x−1
1 . . . x−1

n ), yields the equivalent matrix


1l x−1

1 y1

1l x−1
2 y2

. . . . . .
1l x−1

n yn

.

Then multiplication of the 2nd column by
n∨
i=1

xiy
−1
i , and ordering the new column in nondecreasing order

yields B =


1l 1l
1l z2

. . . . . .
1l τ

 ∼ A, (for some z [1l ≤ zi ≤ τ ]).

The projection map F =

[
1l 0 . . . 0
0 . . . 0 1l

]
, restricted to B yields FB = C =

[
1l 1l
1l τ

]
.

In [28] we proved (through a slighly different method) that MC is isomorphic to MG. The interested reader

may use the approach followed in Cases 1 and 2 above to show that the matrix F yields such an isomorphism.

3.2 Generalisation of the Λ matrix of a matrix

Note that, in Case 3 above, the coefficiends λ12 =
n∨
i=1

xiy
−1
i and λ21 =

n∨
i=1

yix
−1
i are given by the matrix

ΛA = At ·A− =

[
x1 x2 . . . xn
y1 y2 . . . yn

]
·


x−1

1 y−1
1

x−1
2 y−1

2

. . . . . .
x−1
n y−1

n

 =

[
1l λ12

λ21 1l

]
. Moreover, since x ≤ λ12y ≤ λ12λ21x,

we have τ = λ12λ21.

This matrix has been introduced in [28] for the case of tropical torsion modules, i.e tropical modules over IR

(no 0).

Consider first Case 2 above.

Since MA 'ME , we determine what ΛE should look like.
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A coherent definition of 0−1 should be 0. Then E− =

[
1l 1l
0 1l

]
and ΛE =

[
1l 0
1l 1l

] [
1l 1l
0 1l

]
=[

1l ∨ 00 1l
0 1l

]
. Thus for a coherent value of 0 ·0 we should have 00 ≤ 1l. Similarly, for 0 ·0, we should have

0 · 0 ≥ 1l.

The following convention will be used: C 0 · 0 = 0 · 0 = 1l

Note that this convention extends the property aa− = 1l to the cases a = 0, and a = 0 and amounts

to: (−∞) + (+∞) = (+∞) + (−∞) = 0.

Convention C allows for the extension of the definition of ΛA = At ·A− of [28] to the case considered here.

The values in ΛE can be interpreted as follows:

λ12 = 1l simply states that e1 ≤ e2,

λ21 = 0 states that there is no finiite λ ∈ S s.t. e2 ≤ λe1.

Consider now Case 1.

As above, it suffices to consider the case of I2. We have ΛI2 =

[
1l 0
0 1l

] [
1l 0
0 1l

]
=

[
1l 0
0 1l

]
. The

interpretation is similar.

3.3 The Γ matrix of a tropical matrix

Let A ∈ Hom(Sm,Sn), and MA the S-semimodule generated by the columns of A. It is well-known in

residuation theory, that the inequation A ·X ≤ B has a maximal solution A\B, called the right residuate of

A by B, and we have A\B = A−t ? B (cf. [3], eq. 4.82, [20], or [30]). In particular, for B = A, the matrix

A\A has been defined in [29] as the Γ-matrix of A, written ΓA.

In short, ΓA =
∨
{X ∈ Hom(Sm.Sn) |AX = A}.

Writing a·j (resp. γ·j) for column j of A (resp. ΓA), we have: γ·j =
∨
{x ∈ Sm|Ax = a·j}.

For any tropical map ϕ : M → N , we have the congruence relation x ' y ⇐⇒ ϕ(x) = ϕ(y), and the

diagram below commutes.

M N

M | ∼

ϕ

π

Clearly, the map M |' → Imϕ is an isomorphism, and the semimodule DOMINJA = {x|x ∈ IRm} is

isomorphic to M |', where x =
∨
{y ∈ Sm|Ay = Ax}.

Let e1 , e2 , . . . , em stand for the canonical basis of Sm. It is easy to see that γ·j = ej , j = 1, . . . ,m.

Example 3.1 We revisit Case 3 considered above.

We have shown that A =


1l a1

1l a2

. . . . . .
1l an

 , where 1l = a1 ≤ a2 ≤ · · · ≤ an is isomorphic to B =

[
1l 1l
1l τ

]
,

with τ = an the torsion coefficient of A.

Then MA ' {ξ ∈ S2|ξ2 ≤ ξ1 ≤ τξ2} = MB, and ΛB =

[
1l 1l
τ 1l

]
,ΓB =

[
1l 1l
τ−1 1l

]
.
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Now MΓB = {ξ ∈ S2|τ−1ξ1 ≤ ξ2 ≤ ξ1}.

Clearly MB 'MΓB , since diag(1l τ−1)B = ΓB.

Note also that Bξ =
ξ1 ∨ ξ2
ξ1 ∨ λξ2

=

[
ξ1
λξ2

]
⇐⇒ ξ1

[
1l
1l

]
∨ ξ2

[
1l
λξ2

]
is non-redundant. Indeed ξ1 = ξ2 or

ξ1 = λξ2 ⇒ ξ1

[
1l
1l

]
∨ ξ2

[
1l
λξ2

]
is redundant and conversely.

We have the following statement, which generalises Proposition 5.1 of [29] (stated for torsion tropical modules)

to the case considered in this paper.

Proposition 3.1 For an arbitrary tropical matrix A, we have ΓA = Λ−A.

Proof. We extend the proof given in [29] to the case considered in this paper. Since
[
(ΛA)−

]
jk

=
[
(At ·

A−)−
]
jk

, we consider the cases:

1. ∃ i (1 ≤ i ≤ n) s.t aij = 0 , (i ∈ I, say).

2. ∃ i (1 ≤ i ≤ n) s.t aik = 0, while aij 6= 0.

Note that we can always assume j 6= k since if j = k, then γkk = 1l.

Case 1([
(At ·A−)

]−)
jk

= (
n∨
i=1

aija
−1
ik )−1 = (

n∨
i=1,i/∈I

aija
−1
ik )−1 =

n∧
i=1,i/∈I

a−1
ij aik.

On the other hand, by definition, writing (ΓA)jk = γjk, we must have
∨
j

aijγjk = aik, hence γjk ≤ aika−1
ij , i =

1, . . . , n, i.e. γjk =
∧
i

aika
−1
ij . But

∧
i

aika
−1
ij =

∧
i,i/∈I

aika
−1
ij , since ∀ i ∈ I a−1

ij = 0.

Case 2

Clearly, aik = 0 ⇒ (
n∨
j=1

aija
−1
jk )−1 = 0. Similarly

∨̀
ai`γ`k = 0 ⇒ ai`γ`k = 0 , ` = 1, . . . , n. Hence γjk = 0,

since for ` = j, we have aij 6= 0.

Example 3.2 A =


0 1l 1l
2 2 5
6 0 3
1l 1−1 2



ΛA =

 0 2 6 1l
1l 2 0 1−1

1l 5 3 2




0 1l 1l
2−1 2−1 5−1

6−1 0 3−1

1l 1 2−1

 =

 1l 0 3
0 1l 1l
0 0 1l


Interpretation of the λij’s (here a·j stands for column j of A):

λ12 = 0: There is no ξ s.t. a·1 ≤ ξa·2 (since a23 = 0)

λ13 = 3 : a·1 ≤ 3a·3.

λ21 = λ23 = λ32 = 0 same as for λ12 = 0.

Then: AΓA =


0 1l 1l
2 2 5
6 0 3
1l 1−1 2


 1l 0 3−1

0 1l 1l
0 0 1l

 =


0 1l 1l
2 2 5
6 0 3
1l 1−1 2

 = A.
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Note that a·1∨7a·2 =


7
9
6
6

 = 7a·2∨3a·3 ∈M12

⋂
M23 6= 0, where Mij stands for the semimodule generated

by columns i and j of A.

But {a·1, a·2} ∩ {a·2, a·3} = {a·2} ∈ M2, while


7
9
6
6

 /∈ M2. Thus the columns of A are not strongly

independent.

The following statements (Propositions 5.1–5.4, as well as Theorem 1 in [29]), stated for tropical torsion

matrices extend to the case considered in this paper. Matrices are always assumed to have independent

columns (in the sense of 3 above).

Proposition 3.2 For an arbitrary matrix A, we have ΛΓA = ΛA.

Proof. By Proposition 3.1 above, (ΓA)− = ΛA, thus ΛΓA = (ΓA)t(ΓA)− = (ΓA)tΛA = (ΓA)tAtA− =

(AΓA)tA− = AtA− = ΛA.

Recall (cf. [3], eq 1.22 for instance) that the Kleene star of a matrix A is defined by A∗ = I ∨A ∨A2 ∨ . . ..

We now address the following problem.

Given two matrices A and B, it is clear that equality of their torsion coefficients is a necessary condition for

the existence of an isomorphism ϕ : MA → MB .

Question: Is this condition also sufficient?

Example 3.3 Let A =

 1l 1l 6
1l 2 2
1l 7 14

, then ΓA =

 1l 1l 2
7−1 1l 1l
14−1 7−1 1l

, with τ12 = τ13 = 7, τ23 = 12 (for both

A and ΓA).

Writing a·j for column j of A, we have [6 5 14]t ∈Ma·1,a·3

⋂
Ma·2,a·3 , while [6 5 14]t /∈Ma·3 = M[a·1∩a·3]∩[a·2∩a·3].

Hence the columns of A are not strongly independent.

Now, writing γ·j for column j of ΓA, it is not difficult to see that there is no nontrivial solution to any of the

equations

ξ1γ·1 ∨ ξ2γ·2 = λ1γ·1 ∨ λ2γ·3 (1)

ξ1γ·1 ∨ ξ2γ·2 = λ1γ·2 ∨ λ2γ·3 (2)

ξ1γ·2 ∨ ξ2γ·3 = λ1γ·1 ∨ λ2γ·3 (3)

which shows that the columns of ΓA are strongly independent.

Note also that A

 0
3
1l

 = A

 1
3
1l

 =

 6
5
14

, while ΓA

 0
3
1l

 =

 3
3
1l

 6=
 5

3
1l

 = ΓA

 1
3
1l

.

We have the following statement:

Proposition 3.3 Equality of the torsion coeffcients of the independent generators of two tropical modules M

and N is a necessary but not sufficient condition for N to be isomorphic to M .

Example 3.4 A =

 1l 1l 12
1l 5 5
1l 7 11





Les Cahiers du GERAD G–2015–66 9

We have 9a·1 ∨ a·3 = (12 9 11)t = 4a·2 ∨ a·3 ∈M1,3

⋂
M2,3. But (12 9 11)t /∈M3. Hence M1,3

⋂
M2,3 6= M3,

and the columns of A are not strongly independent.

We have ΛA =

 1l 1l 1l
1l 5 7
12 5 11

 ·
 1l 1l 12−1

1l 5−1 5−1

1l 7−1 11−1

 =

 1l 1l 5−1

7 1l 1l
12 12 1l

. The torsion coefficients of MA :

τ12 = λ12λ21, τ13 = λ13λ31, and τ23 = λ23λ32 are equal to 7, 7, 12 respectivly.

Now ΓA =

 1l 1l 5
7−1 1l 1l
12−1 12−1 1l

 by Proposition 3.1, and the torsion coefficients of MΓA are the same as those

of MA, by Proposition 3.2.

Now let y1 = [9 0 1l]t , y2 = [0 4 1l]t.

We have ΓAy1 = [9 2 1l]t = z1 , ΓAy2 = [5 4 1l]t = z2, while Az1 = Ay1 = Az2 = Ay2 = [12 9 1l]t. Hence A

is not injective on MΓA .

Proposition 3.4 For any square matrix A , I ∨A2 = A ⇐⇒ A∗ = A.

Proof. The proof is straightforward, and is independent of the fact that A may have some 0 entries. It is

given in [29].

Proposition 3.5 For an arbitrary matrix A, we have ΓΓA

= ΓA.

Proof. The proof given in [29] for torsion tropical modules extends to the case considered here, since propo-

sitions 3.1 and 3.2 provide the desired extension. Then we have: ΓΓA

= Λ−
ΓA = Λ−A = ΓA.

Consider a rectangular matrix A of size n×m (n ≥ m) , x = (ξ1, . . . , ξm)t, and a nonredundant combination of

the columns of A, written as Ax =
m∨
k=1

ξka·k. Then for every column j of A, there is at least one i (1 ≤ i ≤ n)

for which ξjaij dominates, i.e.
m∨

k=1,k 6=j
ξka·k < ξjaij . For if not, then there would be one column a·j of A

and one ξj , such that ξja·j never dominates, i.e. x =
m∨

k=1,k 6=j
ξka·k, which contradicts our non-redundancy

assumption for x. We can state this property as follows.

Proposition 3.6 Let A be a rectangular matrix of size n × m (n ≥ m), and
m∨
k=1

ξka·k be a nonredundant

combination of the columns of A, then

∃ υ : {1, . . . , n} → {1, . . .m} surjective s.t

m∨
k=1,k 6=υ(i)

aikξk < aiυ(i)ξυ(i).

�

Note that, for n = m, we have that υ ∈ Sm.

3.4 The dominant of a matrix

We define

Definition 3.1 Let A = (aij) be a square matrix of size m. We say that

δA =
∨

σ∈Sm

m∏
i=1

aiσ(i)

[
= max
σ∈Sm

m∑
i=1

aiσ(i)

]
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is the dominant of A.

In [28], we proved that arg(δA) is unique, i.e. the permutation realizing the max is unique. It is easy to see

that, although stated for matrices with finite entries, this result extends to the case considered here.

For a rectangular n×m matrix A, up to permutations in Sm there are

(
n
m

)
square submarices of size m

of A. We write SA for this set, and let δA =
∨

B∈SA

δB .

Example 3.5 A =


1l 1l 3
1l 1 5
1l 2 2
1l 3 4

, δB123 = 7 , δB124 = 8 , δB134 = 6 , δB234 = 8.

Hence δA = δB124
= δB234

= 8.

This shows in particular that, for a rectangular matrix, the submatrix realizing the dominant may not be

unique.

We have the following statement.

Theorem 1 If the columns of A are strongly independent, then MA 'MΓA .

Proof. Assume the columns of A are strongly independent. Clearly A is surjective on MΓA since ∀x ∈
MA , x =

m∨
j=1

ξja·,j = Aξ. Then let y = ΓAξ. Since AΓAξ = Aξ, we have Ay = AΓAξ = Aξ = x.

We show that A is injective on MΓA . Let y =
∨

γ·j∈Y
ξjγ·j , z =

∨
γ·k∈Z

λkγ·k be such that Az = Ay.

Then Ay =
∨

a·j∈Y
ξja·j , Az =

∨
a·k∈Z

λka·k. Since the columns of A are strongly independent, we must have

Y = Z. W.l.o.g. we may assume that Y = {a·1, . . . , a·k}, and write AY for the submatrix


a11 . . . a1k

a21 . . . a2k

. . . . . . . . .
an1 . . . ank


of A.

Let A stand for the set of the

(
n
k

)
square submarices of size k of AY defined up to permutations in Sk,

and let Ak stand for any of the matrices such that δAk
= δA.

By Proposition 3.6, we have
k∨

j=1,j 6=υ(i)

ξjai,j < aiυ(i)ξυ(i).

But Az = Ay ⇒ Akz = Aky ⇒ aiυ(i)ξυ(i) = aiυ(i)λυ(i) ∀i (1 ≤ i ≤ k). Hence z = y.

Corollary 3.1 ∈ Hom(Sm, Sn). The following are equivalent:

i) The columns of A are strongly independent.

ii) The representation of any x ∈MA is unique.

Proof. The equivalence i) ⇐⇒ ii) is straightforward. As a matter of fact, the uniqueness of the represen-

tation of any x ∈MA is just another way of stating the strong independence of the columns of A.
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Example 3.6 We have A =


2 1l 4 1l
1 1 2 1l
3 2 3 1l
4 3 5 1l

 ∼


1l 1l 3 4
1l 1 1 3
1l 1 1 2
1l 2 2 5

, with ΛA =


1l 1l 1−1 2−1

2 1l 1l 1−1

3 3 1l 1l
5 4 3 1l

, which

yields

{
τ12 = τ13 = 2 , τ14 =
τ24 = τ23 = τ34 = 3

.

Permutation of columns 2 and 3 of A yields the equivalent matrix: B =


2 4 1l 1l
1 2 1 1l
3 3 2 1l
4 5 3 1l

 ∼


1l 1l 3 4
1l 1 4 6
1l 1 3 3
1l 2 2 5

,

with ΛB =


1l 1l 2−1 3−1

2 1l 1l 2−1

4 3 1l 1l
6 5 3 1l

 and the same τij’s, although the λij(A) may differ from the λij(B).

The reader may find it interesting to show that the columns of A are not strongly independent.

Corollary 3.2 Strong independence of the columns of a matrix allows for a new equivalence between matrices,

namely A ∼ ΓA, which relates a (possibly) rectangular matrix to a square matrix. �

Corollary 3.3 If the columns of A ∈ Hom(Sm, Sn) are strongly independent, then MA can be embedded in

Sm.

Proof. The proof is straightforward, since MΓA ∈ Sm.

4 Examples

Example 4.1 (4.3 of [29]) Let A =


1l 1l 5
1l 1 4
1l 2 14
1l a a
1l 8 15
1l 9 11

, with 5 < a < 8. It is not difficult to see that the columns

of A are strongly independent, and ΓA =

 1l 1l 4
9−1 1l 1l
15−1 12−1 1l

. The τij of A and ΓA are equal to (9, 11, 12)

respectively. As stated in Theorem 1, MA ' MΓA , and thus can be embedded in S3, independently of the

value of a ∈]5, 8[. This is a significant improvement to the statement in [28].

Note also that, writing A6 (resp. A7) for the matrix with a = 6 (resp. 7), and M6 (resp M7) for the

semimodule generated by the columns of A6 (A7), we have M6 ' M7. However, there is no isomorphism

S6 → S6 whose restriction to M6 yields M7.

Up to row permutations, there are

(
6
3

)
3× 3 submatrices of A.

We have δA = 24 = δA156
= δA456

, where Aijk stands for the submatrix made of rows ijk of A.

Example 4.2 Let A =


1l 9 5
1l 1l 2
1l 0 1l
0 4 0

.

We have ΓA =

 1l 1l 1l 0
9−1 1l 0 4−1

5−1 2−1 1l 0

 ?


1l 9 5
1l 1l 2
1l 0 1l
0 4 0

 =

 1l 0 1l
0 1l 0

5−1 0 1l

.
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The torsion τ13 = 5 in both MA, and MΓA .

However, here we have a·,1 ∨ a·,2 =


9
1l
1l
4

 ≤ a·,2 ∨ a·,3 =


9
2
1l
4

 ≤ 2


9
1l
1l
4

. More precisely the torsion

coefficient τc1∨c2,c2∨c3 = 2 in MA, while the corresponding coefficient in MΓA is equal to 5. It follows that MA,

and MΓA cannot be isomorphic. Therefore, by Theorem 1 the columns of A cannot be strongly independent.

Indeed, by inspection,we get Mc1,c2

⋂
Mc2,c3 3


13
4
1
8

 /∈Mc2 .

In our next example, we revisit Example 4.1 in which we set a = 0 and reorder rows and columns for

convenience.

Example 4.3 Let A =


1l 1l 4
1l 3 13
1l 1 12
1l 5 5
1l 10 11
0 0 1l

,

ΓA =

 1l 1l 1l 1l 1l 0
1l 3−1 1−1 5−1 10−1 0

4−1 13−1 12−1 5−1 11−1 1l

 ?


1l 1l 4
1l 3 13
1l 1 12
1l 5 5
1l 10 11
0 0 1l

 =

 1l 1l 4
10−1 1l 1l
0 0 1l

.

Here MA is isomorphic to the semi-direct sum MB⊕̃MC introduced in [27], where MB is generated by the

columns of B =


1l 1l
1l 3
1l 1
1l 5
1l 10

 and MC by the column vector C = (4 13 12 5 11 1l)t.

Since λ12 = 10 (= τ12), and λ13 = 4 , λ23 = 1l, the sum MB⊕̃MC cannot be a direct sum.

By Theorem 1 (cf. also Case 3 of Subsection 3.1) MB ' MΓB , with ΓB =

[
1l 1l

10−1 1l

]
. By Theorem 1

MA 'MΓA , which is isomorphic to the semi-direct sum MB⊕̃MD, with MD generated by the column vector

D = (4 1l 1l)t.

5 Conclusion

We conclude below by exhibiting the short table of (some) algebraic invariants mentioned in the introduction.

Algebraic invariants

category specify char.

vector space field F , n Fn

module PID free ⊕ torsion.

idempotent semimodule strongly indep. basis Λ-matrix
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[10] B.A. Carré, An algebra for network routing problems, Journal of the Institute of Mathematics and its Applica-
tions, 7, 273–294, 1971.

[11] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot, A linear system theoretic view of discrete-event processes and
its use in performance evaluation of manufacturing, IEEE Trans. on Automatic Control, AC-30, 210–220, 1985.

[12] R.A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems, Springer
Verlag, 83, 1979.

[13] S. Gaubert and R. Katz, The Minkowski theorem for max-plus convex sets. Linear Algebra and its Applications,
421, 356–369, 2007.

[14] L. Houssin, S. Lahaye, and J.-L. Boimond, Just in Time Control of Constrained (max , +)-Linear Systems.
Discrete Event Dynamic Systems, 17(2), 159–178, 2007.

[15] S.C. Kleene, Representation of events in nerve sets and finite automata. Automata Studies, J. McCarthy and
C. Shannon (Eds.), Princeton University Press, Princeton, 3–40, 1956.

[16] G.L. Litvinov, and S.N. Sergeev (Eds.), Tropical and idempotent mathematics, Contemporary Mathematics,
495, American Mathematical Society, Providence, 2009.

[17] V.P. Maslov, and G. Litvinov, Dequantisation: Direct and semi-direct sum decomposition of idempotent semi-
modules, Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, 377, American
Mathematical Society, Providence, 2005.

[18] G. Mikhalkin, Amoebas of algebraic varieties, Notes for the Real Algebraic and Analytic Geometry Congress,
June 11–15, 2001, Rennes, France. http://arxiv.org/abs/math/0108225.
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