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auteurs.

La publication de ces rapports de recherche est rendue possible
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Abstract: We introduce an efficient approach to evaluate counterparty risk and we compute the Credit
Valuation Adjustement for derivatives having early exercise features. The approach is flexible and can account
for wrong-way risk and various models for the underlying risk factor’s dynamics. Numerical experiments are
presented to illustrate the efficiency of the method.
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Résumé : Nous proposons une nouvelle approche efficace pour l’évaluation du risque de contrepartie et le
calcul de l’ajustement correspondant pour des produits financiers avec possibilité d’exercice anticipé. Cette
approche est flexible, peut tenir compte de la corrélation entre facteurs de risque, et peut s’appliquer à une
large gamme de modèles d’évolution de ces facteurs. Nous présentons des essais numériques qui illustrent
l’efficacité et la versatilité de la méthode.
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1 Introduction

The financial crisis of 2007–2008 highlighted a number of shortcomings in the regulation of financial insti-

tutions. One of these was the underestimation of counterparty risk, defined as the risk of incurring losses

in mark-to-market derivative portfolio values in the event of a counterparty default. As a response to this

shortcoming, the third installment of the Basel Accords (Basel III) advocated a strengthening of risk coverage

measures. This included, more specifically, adding the credit valuation adjustment to the capital require-

ments of financial institutions in order to deal with possible counterparty default, and upgrading counterparty

credit risk management standards by considering wrong-way risk.

The credit valuation adjustment (CVA) is a risk capital charge that measures the expected potential loss

in derivative portfolio values from counterparty default. The CVA charge can increase significantly when

considering wrong-way risk (WWR), which is the additional risk faced when the underlying risk factors and

the default of the counterparty are correlated. The CVA caught the attention of researchers in quantitative

finance due to the complexity underlying its evaluation. Brigo and Masetti (2005) give a general pricing

formula for the CVA, which can be seen as a call option on the derivative portfolio value with a random

maturity corresponding to the counterparty default date. While the computation of the CVA is straightfor-

ward for European-style derivatives (Klein, 1996; Gregory, 2010), this is not the case for derivatives with an

early exercise opportunity, because the CVA is then path-dependent (exposure falls to zero after exercise).

Complexity is again increased when considering WWR, that is, when allowing a correlation between the

default process and the derivatives’ underlying risk factors to exist. In most practical cases, the CVA is

presently evaluated using computationally intensive simulation-based methods.

A number of approaches have been developed to incorporate the impact of credit risk on the value of

derivatives. These approaches can be divided into two major categories, according to the way the default

event is modeled, that is, either using structural or intensity models. In structural models, the default event

for a given firm is related to the evolution of some of its structural variables, while in intensity models,

default is governed by an exogenous Poisson (or Cox) process. Although a structural framework is intuitive,

its calibration for pricing needs is challenging. On the other hand, an intensity-based approach is more direct

and allows for straightforward calibration since default hazard rates can be easily extracted from the observed

credit default swap premiums (see for instance Brigo and Masetti (2005) and Gregory (2010)).

CVA evaluation has been addressed under both frameworks, leading to analytical expressions for European

options (e.g. Klein (1996) in the structural model case and Gregory (2010) in the intensity model case).

However, the issue of CVA evaluation is much more complicated for options with early-exercise opportunities.

The least-square Monte Carlo (LSMC) method, which originated with Longstaff and Schwartz (2001), is

extensively used in the financial industry to approximate the exposure of an American derivative. While

LSMC can be useful to approximate the optimal early-exercise strategy, it introduces statistical errors and is

generally recognized not to be very accurate for the estimation of the continuation value, which defines the

exposure of the derivative contract. Moreover, simulation-based approaches that are presently used involve

two separate steps: the default-free derivative value is first evaluated independently from any counterparty

default concern, and then used in a Monte Carlo setting involving the simulation of the default process along

with the market risk factors to estimate the exposure at default (Cesari et al., 2010; Brigo and Pallavicini,

2007). Such an approach can only work under the assumption that counterparty risk does not alter the

exercise mechanism, which is an unrealistic simplification since the default driver is generally an observable

market process (either a set of structural variables or a hazard rate process).

CVA evaluation is also complex for derivative products where the exercise leads to a physical contract

rather than direct cash flows (the typical example is an interest rate swaption). In that case, one needs to

account for the CVA resulting from entering the contract at some future date in an unknown state of the world.

Since simulation always starts from one point in space and time, evaluating the CVA for different states of the

world and possibly different valuation dates requires nested simulations that rapidly exceed computational

capacity. The common practice is presently to ignore the possibility of default after exercise, which creates

inconsistencies in the valuation of the CVA, and may lead to incorrect assessments of counterparty risk.
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In this paper, we introduce a new approach to price counterparty risk, possibly under WWR, based on a

recursive formulation for the CVA of a derivative security with path-dependent features. We consider a gen-

eral recovery function that may incorporate many counterparty risk features, such as recovery assumptions,

collateral posting and netting agreements, and we account for the relation between the CVA and the exercise

mechanism when this mechanism is at the discretion of one of the parties in the contract. Our formulation

gives rise to a dynamic programming (DP) algorithm that may be used to evaluate counterparty risk corre-

sponding to any exercise strategy or stochastic stopping time. This algorithm is much more efficient than the

currently available methods, thereby providing an accurate evaluation without the need for costly simulation.

Moreover, the algorithm provides more than a point estimate: it yields the value of a vulnerable derivative

and its CVA for all possible values of the underlying asset and of time to maturity in a single execution. The

CVA pricing model is implemented using an intensity model for counterparty default, which can be calibrated

to market data. Numerical implementations are based on efficient DP interpolation techniques, as described

in Breton and de Frutos (2012).

The paper is organized as follows. Section 2 proposes a general model for the computation of the CVA

in a default intensity framework. Section 3 illustrates the application of the CVA model to various types of

contracts and recovery functions. Section 4 reports on numerical experiments. Section 5 is a conclusion.

2 Credit valuation adjustment model

In this section, we develop a general model and a recursive characterization of the CVA that can be used for

defaultable derivative contracts, with or without early exercise opportunities.

2.1 Notation

Consider a defaultable contract with inception date t = 0 and maturity T . Denote by (Yt)0≤t≤T the (possibly

multidimensional) process of the underlying factors, including the risk-free interest rate, denoted by (rt)0≤t≤T .

Let τ be the default time of the counterparty. τ is assumed to represent the first jump time of a Cox process

with intensity process (λt)0≤t≤T , also called the hazard rate process. We assume that the process of all

market quantities Xt = (Yt, λt)0≤t≤T is Markovian.

We consider contracts with stopping features that are introduced through a stopping time κ with respect

to the filtration generated by the process (Xt)0≤t≤T . A stopping mechanismH is characterized by a collection

of sets (Ht)0≤t≤T , such that the stopping event happens at t if Xt ∈ Ht. The stopping event may lead for

instance to immediate cash flows (e.g. the payoff of an option) or to a physical contract (e.g. an interest rate

swap). Conditional on no prior default at a given date t ∈ [0, T ] where Xt = x, we denote by V Dt (x;H) the

expected sum of discounted cash flows of a defaultable claim, and by Vt(x;H) the expected sum of discounted

cash flows of a counterparty-risk-free claim with the same characteristics, when the stopping mechanism H
is used. Finally, we denote by V Dt (x) and Vt(x) respectively the value of the defaultable claim and of the

corresponding risk-free claim, that is,

V Dt (x) ≡ V Dt (x;H∗) = max
H

{
V Dt (x;H)

}
(1)

Vt(x) ≡ Vt(x;N ) = max
H
{Vt(x;H)} , (2)

where H∗ (resp. N ) is the stopping mechanism that is optimal for the defaultable (resp. default-free) claim.

In our general formulation, the stopping time κ can be exogenous (deterministic or stochastic), or it can

be at the discretion of one of the parties. When the stopping time is exogenous (including the case where

κ = T ), the set of possible stopping mechanisms is a singleton and the argument H may be dropped from

V Dt (x;H) = V Dt (x) and Vt(x;H) = Vt(x).

The amount that is recovered (or paid) by the investor in case of default is often expressed as a fixed

proportion of the claim; for the moment, however, we do not assume any particular form and simply define

two general recovery processes, denoted Rat (x) and Rbt(x) where Rat (x) is the (possibly negative) amount
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recovered if the stopping event occurs after the default event (i.e., κ > τ), and Rbt(x) is the (possibly

negative) amount recovered if the stopping event occurs before the default event (i.e., κ < τ), when Xt = x.

For a given u ≥ t, denote by

Λt(u) ≡ exp

(
−
∫ u

t

λsds

)
,

Γt(u) ≡ exp

(
−
∫ u

t

rsds

)
.

In what follows, the notation Et [·] represents the expectation under the risk-neutral measure, conditional on

no prior default and on the information available up to t. In this framework, the conditional risk-neutral

default probability in (t, u] is given by

Dt(u) = 1− Et [Λt(u)] .

It will be useful to recall that ∫ u

t

λsΛt(s)ds = 1− Λt(u)

and that, for a given function f ,

Et[1(t,u](τ)f(τ)] = Et
[∫ u

t

f(s)λsΛt(s)ds

]
where the function 1A(·) is defined by

1A(x) =

{
1 if x ∈ A
0 otherwise.

Finally, for a given function V , we define

V +(x) = max {V (x) ; 0}
V −(x) = min {V (x) ; 0} .

2.2 General pricing formula

The CVA capital charge required by Basel III is equal to the expected potential loss from a derivative contract

due to a possible default of the counterparty at some future time. Conditional on no prior default at a given

date t ∈ [0, T ] where Xt = x, we then have

CVAt(x) = Vt(x)− V Dt (x).

On the other hand, for a given stopping mechanism H, we define the expected potential loss from a derivative

contract at (t,Xt = x) as the difference between the expected discounted cash flows for the default-free and

the defaultable claims when the stopping mechanism H is used for both contracts:

CHt (x) ≡ Vt(x;H)− V Dt (x;H).

We then have

CVAt(x) = Vt(x)− V Dt (x)

= Vt(x;N )− V Dt (x;H∗)
= Vt(x;N )− Vt(x;H∗) + CH

∗

t (x).

When the stopping time is exogenous, the stopping mechanism is unique, N = H∗, and CVAt(x) = CHt (x).

However, when N 6= H∗, the CVA can be decomposed into two parts: the first part is due to the change in



4 G–2015–62 Les Cahiers du GERAD

the optimal stopping mechanism when a contract is subject to counterparty risk, while the second part is

the expected loss under the stopping mechanism that is optimal for the defaultable claim.

Under a given stopping mechanism H, we denote by FH[s,u] (respectively FH[s,u)) a random variable repre-

senting the sum of the cash flows promised by the contract during the time interval [s, u] (respectively [s, u))

discounted back at s. According to the risk-neutral pricing principle, conditional on no prior default,

Vt(x;H) = Et
[
FH(t,T ]

]
;

V Dt (x;H) = Et
[
1(T,∞](τ)FH[t,T ]

]
+ Et

[
1(t,T ](τ)FH[t,τ)

]
+Et

[
1(t,κ](τ)Γt(τ)Raτ (Xτ ) + 1(κ,T ](τ)Γt(τ)Rbτ (Xτ )

]
.

For the defaultable claim, if default happens after maturity T , then all the promised cash flows are earned

(first term); but in case of early default, only cash flows between t and τ are received (second term). The

third term corresponds to the amount recovered at the default event, depending on the relative position of

the stopping event (after or before default). The expected potential loss under the stopping mechanism H is

then given by

CHt (x) = Vt(x;H)− V Dt (x;H)

= Et[1(t,κ](τ)Γt(τ) (Vτ (Xτ ;H)−Raτ (Xτ ))]

+Et[1(κ,T ](τ)Γt(τ)
(
Vτ (Xτ ;H)−Rbτ (Xτ )

)
]. (3)

For contracts with no stopping features, (κ = T ), CVAt(x) = CHt (x) and the CVA pricing formula reduces

to

CVAt(x) = Et[1(t,T ](τ)Γt(τ) (Vτ (Xτ )−Raτ (Xτ ))]. (4)

When Rat (x) = RV +
t (x) +V −t (x), where R ∈ [0, 1] is a constant recovery factor, we recover the CVA pricing

formula of Brigo and Masetti (2005):

CVAt(x) = (1−R)Et[1(t,T ](τ)Γt(τ)V +
τ (Xτ )].

For some derivative contracts, for example with early exercise opportunities or with desactivating barriers,

the stopping time κ is stochastic, which makes the direct valuation used in (4) infeasible. In the following

section, we propose a recursive characterization of the CVA that can be used for any stopping mechanism,

as long as there is a finite number of possible stopping dates.

2.3 Recursive pricing formula

To this end, we define the set T = {tm,m = 0, ...,M} of discrete evaluation dates, where tM ≡ T . The set

T includes all the dates where a cash flow is promised in the contract, all possible stopping dates, which we

assume to be finite in number, and any other date where the CVA needs to be evaluated. In this setting,

the characterization of a stopping mechanism H is reduced to a discrete collection of sets Hm, m = 1, ...,M,

such that the stopping event happens at tm if Xtm ∈ Hm. The set T of evaluation dates coincides with the

set of possible stopping dates without loss of generality, since it suffices to set Hm = ∅ when stopping is not

possible at tm. Define

δm ≡ exp

(
−
∫ tm+1

tm

λsds

)
= Λtm(tm+1),m = 0, ...,M − 1

βm ≡ exp

(
−
∫ tm+1

tm

rsds

)
= Γtm(tm+1),m = 0, ...,M − 1.

Conditional to κ ≥ tm and to no prior default at date tm, we now compute the expected loss corresponding

to a given stopping mechanism H.



Les Cahiers du GERAD G–2015–62 5

For x /∈ Hm (i.e., κ ≥ tm+1), we have, using (3)

CHtm (x) = Etm [1(tm,κ](τ)Γtm(τ) (Vτ (Xτ ;H)−Raτ (Xτ ))]

+Etm [1(κ,T ](τ)Γtm(τ)
(
Vτ (Xτ ;H)−Rbτ (Xτ )

)
]

= Etm
[∫ tm+1

tm

Γtm(s) (Vs(Xs;H)−Ras(Xs))λsΛtm(s)ds

]
+Etm

[∫ κ

tm+1

Γtm(s)
(
Vs(Xs;H)−Rbs(Xs)

)
λsΛtm(s)ds

]

+Etm

[∫ T

κ

Γtm(s) (Vs(Xs;H)−Ras(Xs))λsΛtm(s)ds

]
= La;Hm,m+1(x) + Etm

[
βmδmC

H
tm+1

(
Xtm+1

)]
.

The first term

La;Hm,m+1(x) = Etm
[∫ tm+1

tm

Γtm(s) (Vs(Xs;H)−Ras(Xs))λsΛtm(s)ds

]
corresponds to the expected loss upon default at (tm, Xtm = x) for a contract promising a payoff equal to

Vt(x;H) and maturing at the deterministic date tm+1 when the recovery is Rat (x).

The second term is obtained by

Etm

[∫ κ

tm+1

Γtm(s) (Vs(Xs;H)−Ras(Xs))λsΛtm(s)ds

]

+Etm

[∫ T

κ

Γtm(s)
(
Vs(Xs;H)−Rbs(Xs)

)
λsΛtm(s)ds

]

= Etm

[
βmδm

∫ κ

tm+1

Γtm+1
(s) (Vs(Xs;H)−Ras(Xs))λsΛtm+1

(s)ds

+ βmδm

∫ T

κ

Γtm+1
(s)
(
Vs(Xs;H)−Rbs(Xs)

)
λsΛtm+1

(s)

]
= Etm

[
βmδmC

H
tm+1

(
Xtm+1

)]
.

On the other hand, for x ∈ Hm (i.e., κ = tm), we have

CHtm (x) = Etm [1(tm,T ](τ)Γtm(τ)
(
Vτ (Xτ ; ·)−Rbtm(Xτ )

)
]

= Etm

[∫ T

tm

Γtm(s)
(
Vs(Xs)−Rbtm(Xs)

)
λsΛtm(s)ds

]
≡ Lbm,M (x) .

The term Lbm,M (x) corresponds to the expected loss at (tm, Xtm = x) for a contract with no stopping feature

and maturing at the deterministic date tM = T , when the recovery is Rbt(x).

We therefore obtain a recursive definition of the expected loss corresponding to a given stopping mecha-

nism H, conditional on no prior default and no prior stopping at date tm:

CHtm (x) =
(
La;Hm,m+1(x) + Etm

[
βmδmC

H
tm+1

(
Xtm+1

)])
1Hm(x)

+ Lbm,M (x) 1Hm(x),m = 0, ...,M − 1 (5)

CHT (x) = 0. (6)
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Equations (5)–(6) apply to any stopping mechanism, as long as there is a finite number of possible stopping

dates. The limiting case where stopping can happen at any time is obtained by letting M →∞. In practice,

the number of possible stopping dates is constrained by the observation frequency. In particular, Equation (5)

applies both to exogenous stopping mechanisms (e.g. barrier deactivation or deterministic expiry) and to

stopping mechanisms that are at the discretion of one of the parties to the contract (e.g. early exercise).

As mentioned above, when the stopping mechanism is exogenous, the argument H can be dropped and

CVAtm (x) = Ctm (x). We then obtain a recursive characterization of the CVA that can be very interesting

in many cases, for instance, when the CVA of a contract maturing at a near deterministic date is relatively

easy to evaluate.

2.4 Optimal exercise

We now characterize the optimal exercise strategy of a defaultable claim with a finite number of exercise

opportunities. Denote by V etm(x) the exercise payoff at tm when Xtm = x, m = 0, ...,M. Without loss of

generality, we can assume that the set of exercise opportunities coincides with T by setting V etm(x) = −∞
when exercise is not allowed at tm.

Recall thatH∗ is the stopping mechanism corresponding to the optimal exercise strategy of the defaultable

claim. Accordingly, V Dtm(x) = V Dtm(x;H∗) denotes the value of the defaultable claim at tm when Xtm = x,

obtained by using the optimal exercise strategy for this defaultable claim, and Vtm(x;H∗) denotes the expected

payoff of the corresponding risk-free claim under the same exercise strategy.

Define an auxiliary stopping mechanism F that consists, at each exercise date tm ∈ T , of holding the

claim until the next exercise date, and of using the stopping mechanism H∗ from then on. From (5), the

expected loss due to counterparty risk resulting from using this strategy is given by

CFtm (x) = La,Fm,m+1(x) + Etm
[
βmδmC

H∗

tm+1

(
Xtm+1

)]
= Vtm(x;F)− V Dtm(x;F), m = 0, ...,M − 1.

Because there are no intermediate cash flows, i.e.,

Vu (Xu;F) = Eu
[
Γu(tm+1)Vtm+1

(
Xtm+1 ;H∗

)]
for u ∈ [tm, tm+1],

we have, for m = 0, ...,M − 1,

La,Fm,m+1(x) = Etm
[
(1− δm)βmVtm+1

(
Xtm+1

;H∗
)]

+Etm
[∫ tm+1

tm

Γtm(s)Ras(Xs)λsΛtm+1
(s)ds

]
;

Vtm(x;F) = Etm
[
βmVtm+1

(
Xtm+1 ;H∗

)]
.

Consequently, with the fact that CH
∗

tm+1
(x) = Vtm+1(x;H∗)− V Dtm+1

(x), we obtain

V Dtm(x;F) = Etm
[
βmVtm+1

(
Xtm+1 ;H∗

)]
−La,H

∗

m,m+1(x)− Etm
[
βmδmC

H∗

tm+1

(
Xtm+1

)]
= Etm

[∫ tm+1

tm

Γtm(s)Ras(Xs)λsΛtm+1(s)ds

]
+Etm

[
βmδmV

D
tm+1

(Xtm+1
)
]
.

Now consider the alternative strategy E , which consists of exercising at tm. The expected loss resulting from

using this strategy and the default-free value of the claim under E are

CEtm (x) = Lbm,M (x)

Vtm(x; E) = V etm(x),
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and therefore

V Dtm(x; E) = V etm(x)− Lbm,M (x) .

We then have, for m = 0, ...,M − 1, conditional on no prior default or exercise at tm

V Dtm(x) = max
{
V Dtm(x; E);V Dtm(x;F)

}
(7)

= max
{
V etm(x)− Lbm,M (x) ;

Etm
[∫ tm+1

tm

Γtm(s)Ras(Xs)λsΛtm+1(s)ds

]
+Etm

[
βmδmV

D
tm+1

(Xtm+1
)
]}

(8)

H∗m = {x : V Dtm(x) = V etm(x)− Lbm,M (x)}; (9)

Vtm(x;H∗) = V etm(x)1H∗
m

(x) + Etm
[
βmVtm+1

(
Xtm+1

;H∗
)]

1H∗
m

(x); (10)

CH
∗

tm (x) = Vtm(x;H∗)− V Dtm(x), (11)

with the terminal condition

V DT (x) = VT (x;H∗) = V eT (x). (12)

Equation (7) characterizes the optimal exercise strategy of a vulnerable claim. Equation (8) yields a recursive

expression for the (optimal) value of a defaultable claim. It is important to notice that the function V Dtm(x)

is continuous in x, which is not the case for the expected payoff under a stopping strategy that is suboptimal

at tm.

2.5 Naive strategy

Recall that N is the stopping strategy that maximizes the default-free value of the contract, so that

Vtm(x;N ) = Vtm(x). This strategy, which we call the naive strategy, is characterized by the following

dynamic program:

VT (x) = V eT (x) (13)

Vtm(x) = max{V etm(x);Etm
[
βmVtm+1

(
Xtm+1

)]
}, m = 0, ...,M − 1; (14)

Nm = {x : Vtm(x) = V etm(x)}. (15)

Using (5), the expected payoff of a defaultable claim under the naive strategy is then, for m = 0, ...,M − 1,

V Dtm(x;N ) =
(
Etm

[
βmVtm+1

(
Xtm+1

)]
− La,Nm,m+1(x)

−Etm
[
βmδmCtm+1

(
Xtm+1 ;N

)])
1Nm(x)

+
(
V etm(x)− Lbm,M (x)

)
1Nm(x)

=

(
Etm

[∫ tm+1

tm

Γtm(s)Ras(Xs)λsΛtm+1(s)ds

]
+Etm

[
βmδmV

D
tm+1

(Xtm+1
;N )

])
1Nm(x)

+
(
V etm(x)− Lbm,M (x)

)
1Nm(x)

where it is apparent that the naive strategy is not optimal, that is, V Dtm(x;N ) < V Dtm(x).

3 Application examples

In this section, we illustrate the application of Equations (4) and (5)–(6) for the computation of the CVA

and the evaluation of vulnerable contracts, for various types of contracts and loss functions, and we show

how to account for WWR in this general framework.
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3.1 European options

Consider a European option paying V e(XT ) at maturity T, so that Vt(x) = Et [Γt(T )V e(XT )] and suppose

that Rat (x) =RVt(x) where R ∈ [0, 1] is a constant recovery factor. Because there is no stopping feature in

this case, we have CVAt(x) = Ct(x) and Rbt(x) = Vt(x). From (4), we then have, at (t,Xt = x) ,

CVAt(x) =

∫ T

t

Et [Γt(s) (1−R) (Vs(Xs))λsΛt(s)] ds

=

∫ T

t

Et [Γt(s) (1−R)Es [Γs(T )V e(XT )]λsΛt(s)] ds

= (1−R)Et

[
Γt(T )V e(XT )

∫ T

t

λsΛt(s)ds

]
= (1−R)Et [Γt(T )V e(XT ) (1− Λt (T ))] (16)

and

V Dt (x) = Et [Γt(T )V e(XT ) (1− (1−R) (1− Λt (T )))] . (17)

Notice that in order to compute the expectation Et[·] in (16) and (17), we need to specify the correlation

between the hazard rate and the market factors. If such a correlation exists, we are in the presence of the

so-called wrong-way risk (or it can be right-way risk). If, however, we assume that the default intensity is

independent from the other market factors, we obtain

CVAt(x) = (1−R)Et [Γt(T )V e(XT )]Et [(1− Λt (T ))]

= (1−R)Dt(T )Vt(x).

If default probabilities Dt(T ) can be expressed in closed form (for instance if we adopt an affine term structure

model for the hazard rate), then the CVA of a defaultable European option is easily obtained as a fraction

of the value of an equivalent risk-free option.

For the particular case where R = 0, Equation (17) becomes

V Dt (x) = Et [Γt(T )Λt (T )V e(XT )]

= Et

[
exp

(
−
∫ T

t

(rs + λs) ds

)
V e(XT )

]
.

Notice that the default rate λs appears as an additional spread in the discount rate. By making the dis-

count rate higher, this spread incorporates counterparty risk into the pricing formula. If default intensity is

independent from the other market factors, this reduces to

V Dt (x) = Vt(x) (1−Dt(T )) . (18)

Formula (18) is simple and quite intuitive: the risky value is the default-free value multiplied by the probability

of surviving until maturity T .

3.2 Bermudan options

Consider a Bermudan option that can be exercised at any date tm ∈ T where the exercise payoff is V etm(Xtm).

As in the European option case, we assume that Rat (x) =RVt(x), where R is a constant recovery factor and

where Vt(x) is the default-free value of the option at (t,Xt = x) under the optimal exercise strategy for the

default-free option (the naive strategy). Because exercise leads to immediate cash flows, Rbt(x) = Vt(x).

We then have

Etm
[∫ tm+1

tm

Γtm(s)Ras(Xs)λsΛtm+1
(s)ds

]
= Etm

[
βm (1− δm)RVtm+1

(Xtm+1
)
]
,
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and therefore,

V Dtm(x) = max
{
V etm(x);

Etm
[
βm

(
(1− δm)RVtm+1(Xtm+1) + δmV

D
tm+1

(Xtm+1)
)]}

,

where V Dtm(x) is the value of the defaultable option (i.e., under the exercise strategy H∗). If the option is

not exercised, the first term involves the amount recovered if default happens before tm+1, while the second

term involves the value of the defaultable option conditional on no prior default or exercise at tm+1. If the

default intensity is independent from the other market factors, this reduces to

V Dtm(x) = max
{
V etm(x);Dtm(tm+1)RVtm(x)

+ (1−Dtm(tm+1))Etm
[
βmV

D
tm+1

(Xtm+1
)
]}

.

Finally, if R = 0, we obtain, in the general case,

V Dtm(x) = max
{
V etm(x);Etm

[
βmδmV

D
tm+1

(Xtm+1
)
]}

,

which reduces to

V Dtm(x) = max
{
V etm(x); (1−Dtm(tm+1))Etm

[
βmV

D
tm+1

(Xtm+1)
]}

when default intensity is independent from the other market factors.

3.3 Interest rate swaps

Consider an interest-rate-payer swap, where the principal is normalized to 1 and the swap rate is γ. Assume

that the fixed and floating payments are exchanged on the same dates, denoted by tm, m = 1, ...,M , where

∆m = tm − tm−1 is the length of period m. In that case, Xt = (rt, λt) and Vt (x) denotes the default-free

market value of the swap at (t, rt = x). Assume that Rat (x) =RV +
t (x)+V −t (x) , where R ∈ [0, 1] is a constant

recovery factor, and Rbt(x)=Vt (x) (no stopping feature).

If the floating rate first resets at ti, then the value of the swap at some date t ≤ ti is

Vt(x) = Et [Γt(ti)]− γ
M∑

m=i+1

∆mEt [Γt(tm)]− Et [Γt(T )] .

If zero-coupon bond prices Pt(r, T ) = Et [Γt(T )] at (t, rt = r) can be obtained in closed form, which is the

case for most popular interest-rate models, then the swap value Vt can also be expressed in closed form:

Vt(x) = Pt(x, ti)− γ
M∑

m=i+1

∆mPt(x, tm)− Pt(x, T ). (19)

The CVA of an interest-rate swap is defined by

CVAt(x) = (1−R)

∫ T

t

Et [Γt(s) max {Vs (x) ; 0}λsΛt(s)] ds.

Equivalently, since there is no stopping feature in this case, CVAt(x) = Ct(x), and using the recursive

expression (5), we get

Lam,m+1(x) = (1−R)Etm
[∫ tm+1

tm

Γtm(s)max {Vs (x) ; 0}λsΛtm(s)ds

]
(20)

CVAtm(x) = Lam,m+1(x)

+Etm
[
βmδmCVAtm+1

(
Xtm+1

)
)]
, m = 0, ...,M − 1 (21)

CVAT (x) = 0. (22)
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Clearly, the recursive formulation is much easier to evaluate. If the ∆i are sufficiently small, one can make

either one of the commonly used approximations (see, for instance, Brigo and Pallavicini (2007)):

Lam,m+1(x) ' (1−R) max {Vtm (x) ; 0}Dtm (tm+1) (anticipated default);

Lam,m+1(x) ' (1−R)Etm
[
βmδmmax

{
Vtm+1

(
Xtm+1

)
; 0
}]

(postponed default).

The value of a defaultable swap is then given by

V Dtm(x) = Vtm(x)− CVAtm(x). (23)

3.4 Interest-rate Bermudan swaptions

A swaptions is an option to enter into a swap contract. We consider a Bermudan swaption with a set

T = {tm,m = 0, ...,M} of discrete dates at which the option holder has the right to enter a payer swap

locked at the same date, and with the remaining subsequent dates as payment dates. Denote by Vtm(x) the

(default-free) value of this swap at (tm, x = Xtm). The default-free value of the swaption at (tm, x = Xtm),

denoted by Wtm(x), is given by the following dynamic program:

Wtm(x) = max
(
Vtm(x);Etm

[
βmWtm+1(Xtm+1)

])
, m = 0, ...,M − 1 (24)

WT (x) = 0. (25)

To compute the swaption value under counterparty risk, the CVA of the swap itself should be taken into

account because, when the swaption is exercised, the investor does not get immediate cash flows but rather

enters into a new contract that promises future cash flows. Accordingly, assume that the recovery value for

the swaption if default occurs before exercise is Rat (x) =RwWt(x), while the recovery value for the underlying

swap is Rbt(x) =RV +
t (x) + V −t (x) , where the recovery rate Rw and R are the recovery rates of the swaption

and the swap respectively.

Using (8), the value of the defaultable swaption is then given by

WD
tm(x) = max

{
V Dtm(x);Etm

[(
βm (1− δm)RwWtm+1

(Xtm+1
)

+δmW
D
tm+1

(Xtm+1)
)]}

(26)

WD
T (x) = 0. (27)

To compute the CVA of a swaption, the DP recursion (20)–(23) is first used, yielding the value of

the defaultable swap for all dates as a function of x = (r, λ). The recursion (24)–(27) is then used to

compute the default-free and defaultable values of the swaption. The CVA of the swaption is the difference

CVAW
tm (x) = Wtm(x)−WD

tm(x). Notice that simulation-based methods usually do not account for the CVA

of the swap when evaluating the CVA of a swaption, because the computational burden of obtaining this

CVA for each exercise date as a function of the state vector is too great.

3.5 Wrong-way risk

Wrong-way risk (WWR) is the additional risk implied by a dependence between counterparty credit quality

and market factors. The general formulations (4) and (5)–(6) in the present paper allow for the existence of

a correlation between market risk factors and default intensity.

One simple way to model WWR is to specify a relationship between default-free risk variables and the

hazard rate. For instance, one may assume that

λt = f(t, Vt),

where f is some deterministic positive function of time and risk factors, and where the dependence upon

time is helpful for calibration purposes. Hull and White (2012) propose the following model:

λt = exp(g(t) + hYt), (28)
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where h is a constant and g is a deterministic function of time that can be calibrated to the observed term

structure of credit spreads. Actually, one can also include some random noise in the above relationship;

however, unless the standard deviation of the noise is relatively large, including noise complicates the com-

putations without significantly affecting the results (Hull and White 2012).

Under (28), the hazard rate is fully specified by the process Yt so that the computation of the CVA does

not require an additional state variable, and the computational burden of evaluating the CVA is the same

as that of evaluating a default-free contract. This makes the choice of the above model interesting in a DP

context; moreover, it allows for the incorporation of WWR into the pricing procedure without increasing its

numerical complexity.

4 Numerical experiments

In this section, we report on various numerical experiments that illustrate the efficiency of the DP approach

to CVA valuation. A first set of experiments compares the results obtained using the recursive pricing formula

to those obtained using the standard Monte Carlo approach. A second set of experiments illustrates features

of the CVA for various application examples and market models. All experiments were done using an AMD

A6-6310 APU processor with 1.8 GHz of power and 8 GB of RAM. Implementation details of our numerical

experiments for both the simulation and the DP methods are provided in the appendix.

4.1 Bermudan options under GBM: Comparative results

This first experiment is used to assess the efficiency of the DP approach with respect to existing CVA

evaluation methods. We assume a geometric Brownian motion model for the asset price dynamics and a

constant hazard rate λ, Xt = St, where the price dynamics under the risk-neutral measure are described by

St = S0 exp

((
r − σ2

2

)
t+ σ

√
tZt

)
, (29)

where Zt is a standard Gaussian random variable, r is the risk-free rate and σ is the volatility.

We compute the CVA at date t0 of a Bermudan put option with a strike K and a maturity T of one year

offering M = 100 exercise opportunities, with a zero recovery rate (R= 0), under both the optimal strategy

H∗and the naive strategy N , as defined in (1)–(2).

We first compare the results obtained for the naive strategy in terms of values and computational burden,

using DP and Monte Carlo simulation. Simulation is performed using a sample of 1,000,000 scenarios,

requiring around 60 CPU seconds. Table 1 reports on the required CPU times and on the precision reached

according to the number of grid points, while using the DP procedure.

Table 1: Precision and CPU time according to the grid size, DP approach, log-normal model.

n 50 100 150

CPU time (seconds) 0.187 0.343 0.578
Precision 10−5 10−8 10−9

Table 2 compares adjusted prices V D0 (S0) obtained using DP to the 95% confidence intervals obtained

by simulation for various parameter values. The length of these confidence intervals is of the order of 10−3;

all DP prices are inside the intervals. One can observe the efficiency of our proposed approach in precision,

computation time and memory requirements: while 60 seconds are required to reach a precision of 10−3 by

simulation using 106 samples, the DP approach reaches a precision of 10−5 in less than 0.2 seconds using 50

grid points.

Figure 1 compares the expected losses in value and in percentage of the default-free value, according to

the exercise strategy and to the moneyness of the option. One can observe that the expected losses are
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Table 2: Adjusted price of a Bermudan put option in the log-normal model without correlation. Parameters
are K = 50, r = 0.05, T = 1, M = 100.

λ σ DP Simulation

0.1 0.2 2.8792 [2.8777, 2.8807]
0.1 0.15 2.0091 [2.0083, 2.0102]
0.1 0.25 3.7595 [3.7576, 3.7615]

0.05 0.2 2.9594 [2.9587, 2.9608]
0.05 0.15 2.0605 [2.0599, 2.0613]
0.05 0.25 3.8699 [3.8682, 3.8711]

0.15 0.2 2.8017 [2.7996, 2.8031]
0.15 0.15 1.9592 [1.9576, 1.9599]
0.15 0.25 3.6528 [3.6501, 3.6547]

Figure 1: CVA of a Bermudan option at inception for the optimal and naive strategies, as a function of
moneyness. Lognormal model with constant hazard rate; parameters are r = 0.05, σ = 0.2, T = 1,
M = 100, λ = 0.1.

highest when the option is at the money. When the option is in the money, counterparty risk is not very

significant since the investor will generally exercise early. On the other hand, when the option is deep out

of the money, the option value becomes so small that the adjustment eventually vanishes – even if it still

represents a relatively sizeable percentage of the option value.

One can observe that using the optimal exercise strategy results in a smaller expected loss than the one

resulting from the naive strategy, and that the difference is larger near the exercise barrier. The CVA of the

contract is equal to the expected losses associated with the optimal strategy. It is interesting to note that

approximating the CVA using the expected losses associated with the naive strategy is common practice.

This is due to the fact that the computation of the optimal strategy of a defaultable contract is not possible

using Monte Carlo simulation. On the other hand, the DP recursion (7)–(12) directly provides both strategies

and the CVA corresponding to the optimal strategy. Finally, notice that the value of a vulnerable claim under

the naive strategy is discontinuous at the exercise barrier, resulting in arbitrage opportunities.

4.2 Impact of WWR

Our second experiment introduces WWR for the Bermudan put option in the GBM model (29) considered

in the previous section. We assume that the dependence between the hazard rate and the asset value is

described by two parameters denoted λ and h, such that, during the time interval [tm, tm+1] ,

λtm = λ exp(hStm), (30)
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where h measures the amount of right-way or wrong-way risk (h < 0 indicates WWR1). Clearly, the in-

troduction of such a dependence does not modify the numerical complexity of either the DP or simulation

approaches.

In order to assess the impact of WWR, we compare the CVA at date 0, obtained using the default

model (30), with the one obtained when assuming a constant hazard rate equal to λ0. The left panel of

Figure 2 shows, as a function of S0, the hazard rate λ0 = λ exp(hS0) and the additional CVA when λ = 2 and

h = −0.06. The right panel of Figure 2 shows, as a function of S0, the factor h satisfying λ0 = 0.1 and the

additional CVA when λ = 2. Finally, Figure 3 shows, as a function of λ, the value of h such that λ0 = 0.1 at

S0 = K, and the additional CVA.

Figure 2: Impact of WWR, Bermudan put option. Parameters are K = 50, r = 0.05, T = 1, M = 100,
σ = 0.2.

Figure 3: Impact of WWR, Bermudan put option. Parameters are K = 50, r = 0.05, T = 1, M = 100,
σ = 0.2.

It is interesting to note that the presence of WWR may imply a decrease in the CVA for Bermudan

options. Indeed, when the price of the underlying asset is low, a negative correlation between the hazard rate

and the price of the underlying asset increases the probability of early exercise, and consequently decreases

counterparty risk. This is not the case for European options, as illustrated in Figure 4.

4.3 Jump-diffusion model

Our third set of results is obtained by specifying a different market model, namely, Merton’s (1976) jump-

diffusion model. Accordingly, the price dynamics under the risk-neutral measure are described by

St = S0 exp

(
(r − eη+

φ2

2 α− 1

2
σ2)t+ σZt

) Nt∏
i=1

(Ji + 1) (31)

1For a put option, a decrease in the price of the underlying asset increases both the exposure and the probability of default.
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Figure 4: Impact of WWR on European and Bermudan put options. Parameters are K = 50, r = 0.05,
T = 1, M = 100, σ = 0.2.

where the jump size log(Ji+1) is a Gaussian random variable of mean η and standard deviation φ, and where

Nt is a Poisson process with intensity α. In turbulent times, when counterparty risk is present, jumps in the

asset price may well be a better assumption than the constant volatility of the lognormal model. As pointed

out previously, the DP algorithm can accommodate any market model. However, a more complex model and

added volatility may require additional processing time and number of grid points to attain a given level of

precision. To illustrate the accuracy of the DP procedure, Figure 5 shows the convergence of the DP price

to the analytical Merton formula for a European risk-free option, as the number of grid points increases.

Figure 5: Log error as a function of the number of grid points in the DP procedure for Merton’s jump-diffusion
model. Parameters are S0 = K = 50, r = 0.05, σ = 0.2, α = 0.25, η = 0, φ = 0.1, T = 1. Benchmark for the
European case is the Merton analytical formula. Benchmark for the Bermudan case (M = 100) is computed
with 600 grid points.

Figure 5 and Table 3 also illustrate the results obtained for the corresponding vulnerable Bermudan

option with a zero recovery rate (optimal exercise strategy) for various grid sizes, using the DP approach

(the benchmark is the value at n = 600). It shows that a precision of 10−4 is attained with 60 grid points in

around 3 seconds.

Finally, Table 4 presents the results obtained using simulation and DP for various parameter values.

Simulation results are presented for both the naive and optimal strategies for comparison purposes; however,

it is important to note that exercise strategies cannot be obtained by simulation, and must be previously

computed using DP. Simulations were performed using 106 samples and required 78 CPU seconds, with a

precision of the order of 10−2.
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Table 3: Precision and computing time as a function of the number of grid points, vulnerable Bermudan
option under the jump-diffusion model. Parameters are K = 50, r = 0.05, σ = 0.2, α = 0.25, η = 0, φ = 0.1,
T = 1, M = 100.

n 60 80 100 120 Benchmark

Value 2.98608573 2.985426525 2.985333179 2.9853466 2.985349358
Error 0.000736372 7.71675E-05 1.61791E-05 2.7581E-06
CPU seconds 3.125 4 4.8438 5.8281

Table 4: Adjusted price of a Bermudan put option in the jump-diffusion model. Parameters are S0 = K = 50,
r = 0.05, α = 0.25, η = 0, φ = 0.1, T = 1, M = 100.

λ σ DP(optimal) Simulation(optimal) DP(naive) Simulation(naive)

0.1 0.2 2.9853 [2.9832, 2.9860] 2.9796 [2.9776, 2.9806]
0.1 0.15 2.1373 [2.1361, 2.1381] 2.1341 [2.1336, 2.1356]
0.1 0.25 3.8513 [3.8484, 3.8522] 3.8427 [3.8419, 3.8459]

0.05 0.2 3.0646 [3.0634, 3.0655] 3.0631 [3.0619, 3.0641]
0.05 0.15 2.1902 [2.1893, 2.1907] 2.1894 [2.1886, 2.1901]
0.05 0.25 3.9583 [3.9575, 3.9602] 3.9561 [3.9559, 3.9587]

0.15 0.2 2.9109 [2.9097, 2.9130] 2.8989 [2.8959, 2.8995]
0.15 0.15 2.0873 [2.0857, 2.0880] 2.0804 [2.0799, 2.0823]
0.15 0.25 3.7512 [3.7504, 3.7548] 3.7333 [3.7295, 3.7343]

4.4 Stochastic hazard rate

We now consider a stochastic hazard rate following a CIR process (Cox et al., 1985; Schönbucher, 2003):

dλt = ξ(θ − λt)dt+ ν
√
λtdBt,

where Bt is a Brownian motion. We assume that St follows a geometric Brownian motion, independent

from λt, and that R= 0. Here, the state vector Xt = (St, λt) is bidimensional, requiring a two-dimensional

discretization grid, where nS and nλ are the number of discretization points for the underlying asset price

and the hazard rate respectively.

In the European case, the value of a vulnerable option can be obtained analytically, and Figure 6 illustrates

the convergence of the DP price to the analytical value as the grid size and configuration change. A precision

of 10−4 can be reached in 3 seconds with 60 grid points for the underlying asset and 80 for the hazard rate.

Figure 6: Precision (log error) as a function of grid size and computation time (CPU seconds). Parameter
values are S0 = K = 50, λ0 = 0.1, r = 0.05, σ = 0.2, θ = 0.1, ξ = 0.5, ν = 0.2, M = 12, T = 1.
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Figure 7 provides the convergence information for a corresponding Bermudan option with 12 exercise

opportunities. In this case, the benchmark is approximated by the value obtained by DP with nS = 300 and

nλ = 300. A precision of 10−5 is reached in 10 seconds with a 100×100 grid.

Figure 7: Precision (log error) as a function of grid size and computation time (CPU seconds). Parameter
values are S0 = K = 50, λ0 = 0.1, r = 0.05, σ = 0.2, θ = 0.1, ξ = 0.5, ν = 0.2, M = 12, T = 1.

4.5 Swaps and swaptions with stochastic hazard rate and WWR

In our last set of results, we consider swaps and swaptions, assuming that the evolution of the interest and

hazard rates is described by CIR processes, that is

drt = ξr(θr − rt)dt+ νr
√
rtdB

1
t , (32)

dλt = ξλ(θλ − λt)dt+ νλ
√
λtdB

2
t . (33)

WWR is present when the two processes are correlated, where ρ denotes the correlation coefficient between

the Brownian motions B1
t and B2

t :

dB1
t dB

2
t = ρdt.

In practice, Equations (32) and (33) could also be shifted by deterministic functions in order to match the

observed term structure of interest rates and credit spreads.

Under (32)–(33), when ρ = 0, the joint density of the state variable
(
rtm+1

, λtm+1

)
can be expressed

analytically. When the correlation is not null, no closed-form densities are available. In this case, the CIR

processes can be approximated by Vasicek processes:

drt = ξr(θr − rt)dt+ νr
√
rtmdB

1
t for t ∈ [tm, tm+1]

dλt = ξλ(θλ − λt)dt+ νλ
√
λtmdB

2
t for t ∈ [tm, tm+1] .

Table 5 compares the CVA (in basis points) of an interest rate swap, obtained by Monte Carlo simulation

and by the DP recursion (20)–(22) for various values of ρ, at (t = 0, r0, λ0). The DP procedure uses 128 ×
128 = 16, 384 grid points, while the simulation uses 500, 000 samples and 180 time-discretization nodes.

All DP results are within the simulation confidence intervals. The DP procedure requires less memory and

computation time to produce the CVA at all payment dates and for all possible values of the state vector

than simulation requires to produce a single estimate. The impact of correlation is illustrated in Figure 8.

We now evaluate a Bermudan swaption to enter the swap evaluated in Table 5. Table 6 presents the

default-free value and the CVA of the swaption at (t = 0, r0, λ0) in basis points, when the optimal exercise

strategy is used. The first CVA evaluation (CVA1) is computed by assuming that the swap is default-free.

The second evaluation (CVA2) accounts for the possibility of counterparty default in the swap contract,

where we assume that the hazard rate process is the same for both the swaption and the swap, and that

recovery upon default is null in both cases (R= 0).
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Figure 8: Impact of ρ on the CVA of a swap. Parameters are as in Table 5.

Table 5: CVA of a swap, CIR model with correlation. Parameters are γ = 0.05, T = 1, M = 12, R = 0,
r0 = 0.05, θr = 0.05, ξr = 0.5, νr = 0.1, λ0 = 0.1, θλ = 0.1, ξλ = 0.5, νλ = 0.2.

ρ DP Simulation

0 1.7104 [1.6693, 1.7312]
0.25 1.8958 [1.8447, 1.9102]
0.50 2.0873 [2.0296, 2.1001]
0.75 2.2847 [2.2769, 2.3513]

CPU seconds 48.48 92.83

Table 6: CVA of a swaption, CIR model with correlation. Parameters are as in Table 5.

ρ Default-free CVA1 CVA2

0 36.7740 6.3108 10.0919
0.25 36.7740 7.3799 10.7681
0.50 36.7740 8.4463 11.2375
0.75 36.7740 9.5137 12.0284

CPU seconds 0.219 53 80

A first observation is that neglecting the counterparty risk of the underlying swap may lead to significant

undervaluation of the CVA, reaching 37% in this example for ρ = 0. A second observation is that the time

required to compute the CVA of the swaption by DP is of the same order as the time required to compute
a single instance of the CVA of the underlying swap by simulation. This means that, even with a very

coarse grid, accounting for the CVA of the underlying swap using a simulation approach is computationally

prohibitive.

5 Conclusion

This paper proposes a recursive formulation of the CVA that allows its evaluation using a dynamic program-

ming approach. The DP algorithm can be used to evaluate the CVA of contracts with optional or stochastic

stopping times, and can accommodate a wide range of market and default models. The DP approach is

computationally more efficient than Monte Carlo simulation, providing a complete characterization of the

CVA at all possible stopping times and for all possible states of the world, and doing so in less time and

using less memory than simulation requires for a single evaluation. Moreover, for contracts with optional

exercise features, the DP approach allows for the computation of the optimal exercise strategy and provides

the corresponding CVA, which is not possible using Monte Carlo simulation.

Illustrative examples are provided to show the flexibility of the proposed approach, and numerical exper-

iments for various contracts and models illustrate its precision and efficiency.
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6 Appendix: Implementation details

6.1 Dynamic program

The recursive approach to CVA valuation can be equated to solving the following general dynamic program:

vm (x) = fm
(
E
[
Gmvm+1

(
Xtm+1

)
|Xtm = x

])
, m = 0, ...,M − 1 (34)

vM (x) = 0 (35)

where fm is a known function and Gm is a random variable, possibly multidimensional, and where we assume

that the joint density of
(
Gm, Xtm+1

)
under the risk-neutral measure, conditional on Xtm = x, is known.

To simplify the exposition, we describe the implementation when the state space is unidimensional, where

x ∈ [0,∞). Suppose that the function vm+1 is known analytically on [0,∞). At a given x, since both the

joint density and the function vm+1 are analytical, computation of E
[
Gmvm+1

(
Xtm+1

)
|Xtm = x

]
amounts

to evaluating the integral of an analytically known function.

In order to solve the dynamic program (34)–(35), we compute vm on a finite grid and use a spectral

interpolation scheme to obtain an analytical interpolation function v̂m approximating vm. Starting from the

known function vM , this process yields, by backward induction, analytical interpolation functions v̂m (x) for

all evaluation dates tm.

More precisely, define a set G = {xj , j = 1, ..., n} of n grid points, such that

0 < x1 < x2 < ... < xn <∞

and a family of n basis functions, denoted by (ψj)j=1,...,n. An interpolation function v̂m (x) is defined by

v̂m (x) =

{ ∑n
j=1 c

m
j ψj(x) if x ∈ [x1, xn]

o(x) if x /∈ [x1, xn] ,

where o is an extrapolation function characterizing the behavior of v outside the localization interval, and

where the coefficients cj satisfy the linear system

vm (xi) =

n∑
j=1

cmj ψj(xi), i = 1, ..., n.

We use a spectral interpolation scheme with Chebyshev polynomials as basis functions. The use of these

interpolating functions is known to be efficient when combined with Chebyshev interpolation nodes (Breton

and de Frutos (2012)), and is often characterized by an exponential convergence. The computation of the

interpolating coefficients cj can be performed using a fast Fourier transform (FFT) algorithm.

Moreover, we evaluate the integrand for the computation of the expected value

E
[
Gmvm+1

(
Xtm+1

)
|Xtm = x

]
on G and interpolate it using the same spectral interpolation scheme. The integration over the interval [x1, xn]

of the resulting interpolation function is analytic, and corresponds to the Clenshaw-Curtis quadrature.

The extension of this approach to cases where the state space is multidimensional (corresponding to, e.g.,

asset prices, stochastic volatilities, stochastic interest rates) is straightforward and involves a multidimensional

grid and multidimensional Chebyshev interpolation. However, the computational burden of the recursive

approach increases significantly with the dimension of the state space.

The recursive approach to CVA valuation yields M analytical functions, which can be used to evaluate

the CVA at any date tm ∈ T , and for any possible value of the market factors and hazard rate. Each function

is completely characterized by the n coefficients cmj , j = 1, ..., n.

To conclude, it is worth mentioning that, for contracts with early exercise opportunities, an exercise

barrier divides the state space into two regions (Hm and Hm) at tm. Along this exercise barrier, the value
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function may present discontinuities (if the exercise strategy is not optimal) or changes in its curvature. As

a consequence, the interpolation of the value function by a polynomial may be less precise near the exercise

barrier. In our implementation, we adjusted the localization interval, at each evaluation date, so that its

boundary would coincide with the exercise barrier. This adjustment requires the numerical solution of the

equation V̂ Dtm(x) = V etm(x), where V̂ Dtm is a polynomial of degree n. We found that setting a boundary of

the localization interval to coincide with the exercise barrier can significantly improve the accuracy and the

convergence of the algorithm.

6.2 Simulation

For options with early exercise opportunities, our simulation experiment is performed assuming that the value

and exercise strategy of the risk-free option have already been computed and are available for all exercise

dates as a function of the asset price. Actually, we obtained these by solving the default-free dynamic

program (13)–(15) using spectral interpolation, as described in the preceding section.

We then simulate the default time τ and the underlying asset price trajectory using antithetic variates

to reduce simulation variance. For each sample path, we record the default time τ , the corresponding time

index j such that τ ∈ (tj−1, tj ], and the first date tk at which the price of the underlying asset is below the

exercise barrier. On a given sample path, if j > k, default occurs after the exercise of the option and the

exposure is 0. If, however, j ≤ k, default occurs during the time interval (tj−1, tj ] while the option is still

alive, and the exposure is set to the non-recovered fraction of the discounted default-free value. The CVA of

the vulnerable option is obtained by averaging the exposures on all sample paths.
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[11] Schönbucher, P.J. (2003). Credit Derivatives Pricing Models: Models, Pricing and Implementation. John Wiley
& Sons.


	Introduction
	Credit valuation adjustment model
	Notation
	General pricing formula
	Recursive pricing formula
	Optimal exercise
	Naive strategy

	Application examples
	European options
	Bermudan options
	Interest rate swaps
	Interest-rate Bermudan swaptions
	Wrong-way risk

	Numerical experiments
	Bermudan options under GBM: Comparative results
	Impact of WWR
	Jump-diffusion model
	Stochastic hazard rate
	Swaps and swaptions with stochastic hazard rate and WWR

	Conclusion
	Appendix: Implementation details
	Dynamic program
	Simulation


