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Abstract: We consider the class of stochastic games played over finite event trees, that is, games where
the random process is an act of nature and is not influenced by the players’ actions. We suppose that the
players agree to form the grand coalition and maximize their joint payoff. If the cooperative solution is not
an equilibrium, then players may cheat on the agreement, unless a mechanism is designed to ensure that all
players implement their cooperative controls over time (and nodes). To sustain cooperation over the event
tree, we use behavior strategies known as grim trigger strategies. As we are dealing with a finite horizon, it is
well known that deviation from cooperation in the last stage cannot be deterred, as there is no possibility for
punishing the deviator(s). Consequently, we focus on epsilon (or approximated) equilibria. More specifically,
we prove the existence of an epsilon-perfect equilibrium, where the value of epsilon is calculated using the
game’s parameters. We illustrate our findings with a numerical example.

Key Words: Stochastic games, S-adapted strategies, cooperative solution, perfect ε-equilibrium, trigger
strategies.

Résumé : Nous considérons un jeu stochastique joué sur un arbre d’événements, et supposons que les joueurs
sont d’accord pour former la grande coalition et maximiser leur profit joint. Si la solution coopérative n’est
pas un équilibre, alors les joueurs peuvent tricher sur l’accord, à moins d’élaborer un mécanisme qui assure
que les joueurs implémentent leurs commandes coopératives à travers le temps (et les nœuds de l’arbre de
l’événement). Pour soutenir la coopération, nous utilisons les stratégies comportementales connues sous le
nom de stratégies d’enclenchement. Comme le jeu est à horizon fini, il est bien connu qu’une déviation de
la coopération à la dernière période ne peut pas être dissuadée, car il n’y a aucune possibilité pour punir
le ou les joueur(s) qui dévient. Par conséquent, nous nous concentrons sur des équilibres approximés. Plus
précisément, nous prouvons l’existence d’un équilibre epsilon-parfait, où la valeur d’epsilon est calculée en
utilisant les paramètres du jeu. Nous illustrons nos résultats avec des exemples numériques.

Mots clés : Jeux stochastiques, stratégies S-adaptées, solution coopérative, équilibre epsilon-parfait, straté-
gies d’enclenchement.
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1 Introduction

An important issue in cooperative dynamic games is the sustainability of the agreement over time, that
is, how to ensure that all players stick to their cooperative controls as time goes by. The literature in

(state-space) dynamic games has dealt with this issue along essentially two lines, namely, the design of time-

consistent mechanisms and cooperative equilibria. In a nutshell, the determination of a time-consistent

solution involves a two-step procedure. The first step is the computation of the cooperative solution of

the dynamic game and selection of an imputation, e.g., the Shapley value or an imputation from the core.
Second, a payment schedule must be defined over time such that: (i) the (possibly discounted) total stream

of payments to a player corresponds to her share in the overall cooperative game, that is, her imputation; (ii)

at any intermediate instant of time, the cooperative payoff-to-go dominates its noncooperative counterpart.

Observe that these payoffs-to-go are compared along the cooperative state trajectory, implying that the
players have implemented their cooperative controls so far.1 Further, a time-consistent solution is not an

equilibrium, nor is it based on unilateral-deviation thinking, that is, either there is an agreement where all

parties are on board, or there is no agreement at all. For a review of time consistency in differential games,

see Yeung and Petrosjan (2005) and Zaccour (2008). In a cooperative equilibrium approach, as the name

suggests, the idea is to make sure that the cooperative solution is an equilibrium, and, hence self-supported.
This is achieved by letting the players use non-Markovian (or history-based) strategies that effectively deter

any cheating on the cooperative agreement.

The objective of this paper is to design a cooperative equilibrium solution for stochastic dynamic games

played over event trees, that is, games where the random process is an act of nature and is not influenced by

the players’ actions.2 This class of games, which involves flow (control) and stock (state) variables, is useful
to model competition and cooperation between players interacting repeatedly over time in the presence of an

accumulation process. As an example, the set of players could be firms belonging to the same industry, where

each firm makes an investment (control variable) to increase its production capacity (state variable), and with

the price of the product being dependent on all firms’ outputs and on some random event (weather, state of
the economy, etc.). This class of games was initially introduced in Zaccour (1987) and Haurie et al. (1990) to

study noncooperative equilibria in the European natural gas market, involving four suppliers competing over

a long-term planning horizon in nine markets described by stochastic demand laws. The solution concept

was termed S -adapted equilibrium, where the S stands for sample of realizations of the random process (see

Haurie et al. (2012) for details, and Genc et al. (2007), Genc and Sen (2008) and Pineau et al. (2011) for
applications of this class of games to energy markets). Recently, interest has shifted to cooperative games

played over an event tree, with a focus on the sustainability of cooperation over time. Reddy et al. (2013)

proposed a node-consistent decomposition of the Shapley value, and Parilina and Zaccour (2015) constructed

a node-consistent core for these games. In this paper, our concern is not the allocation of the imputation over
nodes, but the construction in a finite-horizon setting of an approximated cooperative equilibrium solution.

We use a grim trigger strategy, which is a behavior strategy based on the following simple rule: if

cooperation has prevailed till now, then choose the cooperative control in the current stage; and if a deviation

has been observed, then implement a noncooperative (or punishing) control for the rest of the game. The

so-called folk theorem about the existence of a subgame perfect equilibrium in trigger strategies for infinitely
repeated games was proved long ago (see, e.g., Aumann and Shapley (1994)). Dutta (1995) proved a similar

theorem for stochastic games. Tolwinski et al. (1986) considered nonzero-sum differential games in strategies

with memory. These strategies were called cooperative, as they were built as behavior strategies incorporating

cooperative open-loop controls and feedback strategies used as threats in order to enforce the cooperative

agreement. Recently, Chistyakov and Petrosyan (2013) examined the problem of strong strategic support for
cooperative solutions in differential games, and Parilina (2014) stated some conditions for strategic support

of cooperative solutions in stochastic games.

1Kaitala and Pohjola (1990) proposed the concept of an agreeable solution, which requires that cooperative payoff-to-go
dominates noncooperative payoff-to-go along any state trajectory.

2The main difference between this class of games and classical stochastic games is that here players cannot influence the
transition between one decision node (or state) and another.
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Folk theorems are for infinite-horizon dynamic games. It is well known that enforcing cooperation in

finite-horizon games is more difficult, not to say generally elusive. The reason is that, at the last stage,

defection from the agreement is individually rational and this deviation cannot be punished. Using a
backward-induction argument, it is easy to show that the unique subgame perfect equilibrium in repeated

and multistage games is to implement Nash equilibrium controls at each stage of the finite game. This

clear-cut theoretical result has not always received empirical support, and in fact, experiments show that

cooperation may be realized, at least partially, in finite-horizon games (see, e.g. Angelova et al. (2013)).

The literature has came out with different ways to cope with the difficulties in enforcing cooperation
in finite-horizon dynamic games. For instance, Eswaran and Lewis (1986) proposed to support collusive

behavior in finite repeated games by having the players post bonds, which can be forfeited if they detect

from cooperative behavior. Radner (1980) proposed the idea of ε-equilibrium and proved its existence for

finitely repeated games.3 A third alternative can be used in the class of finitely repeated games when there

exist more than one Nash equilibria in a one-shot game (Benoit and Krishna (1985)).

Recently, the problem of the existence of a subgame-perfect ε-equilibrium in pure strategies has been

investigated. Solan and Vieille (2003) considered a two-player game with perfect information that has no

subgame-perfect ε-equilibrium in pure strategies, for a small ε, but has a subgame-perfect ε-equilibrium in

behavior strategies for any ε > 0. Flesch et al. (2014) also examined the existence of a subgame-perfect

ε-equilibrium in perfect information games with infinite horizon and Borel measurable payoffs. Flesch and
Predtetchinski (2015) proposed the concept of ϕ-tolerance equilibrium perfect-information games of infinite

duration where ϕ is a function of history. A strategy profile is said to be a ϕ-tolerance equilibrium, if, for any

history h, this strategy profile is a ϕ (h)-equilibrium in the subgame starting at h. This concept is close to the

one we investigate in this paper and to the contemporaneous perfect ε-equilibrium proposed in Mailath et al.
(2005). Contrary to Solan and Vieille (2003), Flesch et al. (2014) and Flesch and Predtetchinski (2015), we

examine finite horizon games with perfect information. Further, different authors retained different measures

for payoffs. For instance, Radner (1980) and Benoit and Krishna (1985) assumed that the payoff is the

average payoff for one stage of the game, whereas in Mailath et al. (2005) and here, the players’ payoffs are

given by a stream of discounted payments.

The rest of the paper is organized as follows: Section 2 recalls the main ingredients of the class of games

played over an event tree. Section 3 states the problem of strategic support and the main results. We provide

an illustrative example in Section 4, and briefly conclude in Section 5.

2 Game over event tree4

Let T = {0, 1, . . . , T } be the set of periods. The stochastic process is represented by an event tree, which
has a root node n0 in period 0 and a set of nodes N t =

{

nt
1, . . . , n

t
Nt

}

in period t = 1, . . . , T . Denote

by a(nt
l) ∈ N t−1 the unique predecessor of node nt

l ∈ N t on the event-tree graph for t = 1, . . . , T , and

by S(nt
l) ⊂ N t+1 the set of all possible direct successors of node nt

l ∈ N t for t = 0, . . . , T − 1. A path

from the root node n0 to a terminal node nT
l is called a scenario. Each scenario has a probability and

the probabilities of all scenarios sum up to 1. We denote by π(nt
l) the probability of passing through node

nt
l , which corresponds to the sum of the probabilities of all scenarios that contain this node. In particular,

π(n0) = 1 and π(nT
l ) is equal to the probability of the single scenario that terminates in (leaf) node nT

l .

Observe that each node nt
l ∈ N t represents a possible sample value of the history of the stochastic process

up to time t. The tree graph structure represents the nesting of information as one time period succeeds the
other.

Denote by M = {1, . . . ,m} the set of players. For each player j ∈ M , we define a set of decision

variables indexed over the set of nodes. Denote by uj(n
t
l) ∈ IRmj the decision variables of player j at

node nt
l , and let u(nt

l) = (u1(n
t
l), . . . , um(nt

l)). Let X ⊂ IRp, with p ∈ N+, be a state set. For each node

nt
l ∈ N t, t = 0, 1, . . . , T, let U

nt
l

j ⊂ IRµ
nt
l

j , with µ
nt
l

j ∈ N+, be the control set of player j. Denote by

3Nash-equilibrium, ε-equilibrium and subgame perfect ε-equilibrium for repeated games are described in Kalai (1987).
4This section draws heavily on Haurie et al. (2012) and Parilina and Zaccour (2015).



Les Cahiers du GERAD G–2015–55 3

Unt
l = U

nt
l

1 × · · · ×U
nt
l

j × · · · ×U
nt
l

m the product control sets. A transition function fnt
l (·, ·) : X ×Unt

l 7→ X is

associated with each node nt
l . The state equations are given by

x(nt
l) = fa(nt

l )
(

x
(

a
(

nt
l

))

, u
(

a
(

nt
l

)))

, (1)

u
(

a
(

nt
l

))

∈ Ua(nt
l ), nt

l ∈ N t, t = 1, . . . , T. (2)

At each node nt
l , t = 0, . . . , T − 1, the reward to player j is a function of the state and the controls of all

players, given by φ
nt
l

j (x(nt
l ), u(n

t
l)). At a terminal node nT

l , the reward to player j is given by the function

Φ
nT
l

j (x(nT
l )).

We assume that player j ∈ M maximizes her expected stream of payoffs discounted at rate λj (0 < λj < 1).

The state equations and the reward functions define the following multistage game, where we let

x = {x(nt
l) : n

t
l ∈ N t, t = 0, . . . , T },

u = {u(nt
l) : n

t
l ∈ N t, t = 0, . . . , T − 1},

and Jj(x,u) be the payoff to player j, that is,

Jj(x,u) =

T−1
∑

t=0

λt
j

∑

nt
l
∈N t

π(nt
l)φ

nt
l

j (x(nt
l ), u(n

t
l)) + λT

j

∑

nT
l
∈NT

π(nT
l )Φ

nT
l

j (x(nT
l )), j ∈ M, (3)

s.t.

x(nt
l) = fa(nt

l)(x(a(nt
l )), u(a(n

t
l))), (4)

u(a(nt
l)) ∈ Ua(nt

l ), nt
l ∈ N t, t = 1, . . . , T,

x(n0) = x0 given. (5)

Definition 1 An admissible S-adapted strategy of player j is a vector uj = {uj(n
t
l) : n

t
l ∈ N t, t = 0, . . . , T−1},

that is, a plan of actions adapted to the history of the random process represented by the event tree.

The S -adapted strategy vector of the m players is u = (uj : j ∈ M). We can thus define a game in

normal form, with payoffs Wj(u, x
0) = Jj(x,u), j ∈ M , where x is obtained from u as the unique solution

of the state equations that emanate from the initial state x0.

We point out that there is a subtle, but important, difference between open-loop and S -adapted informa-
tion structures (and equilibria). Indeed, whereas in an open-loop information structure, the controls and the

state equations are defined over time, they are defined (indexed) over the set of nodes of the event tree in an

S -adapted information structure.

If the players agree to cooperate, then they will maximize the sum of their discounted payoffs throughout

the entire horizon, that is,

max
uj :j∈M

∑

j∈M

Wj

(

u, x0
)

.

Denote the resulting vector of cooperative controls by u∗, which is found for the game starting from node n0

and state x0:
u∗ = arg max

uj :j∈M

∑

j∈M

Wj

(

u, x0
)

. (6)

Further, denote by x∗ = {x∗(nt
l) : n

t
l ∈ N t, t = 0, 1, . . . , T } the cooperative state trajectory generated by the

cooperative controls u∗.

For later use, we also need to determine the subgame starting from state x∗ (nt
l) at node nt

l ∈ N t,

t = 1, . . . , T −1. This subgame takes place on a tree subgraph Γ(nt
l) of the initial graph. The payoff of player

j ∈ M in this subgame is given as follows:

Wj

(

u(nt
l), x

∗
(

nt
l

))

=

T−1
∑

θ=t

λθ−t
j

∑

nθ
l
∈N θ

Γ

π(nθ
l |n

t
l)φ

nθ
l

j (x∗(nθ
l ), u(n

θ
l )) + λT−t

j

∑

nT
l
∈NT

Γ

π(nT
l |n

t
l)Φ

nT
l

j (x∗(nT
l )), (7)
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where N θ
Γ = N θ ∩ Γ(nt

l), u(n
t
l) = (uj(n

t
l) : j ∈ M) is an S -adapted strategy profile and uj(n

t
l) = {uj(n

θ
l ) :

nθ
l ∈ Γ(nt

l)} is an admissible S -adapted strategy of player j in the subgame starting from node nt
l , with initial

state x∗(nt
l). The term π(nθ

l |n
t
l) is the conditional probability5 that node nθ

l will be realized if the subgame
starts from node nt

l .

If the players cooperate in the subgame starting from state x∗ (nt
l), then they maximize the sum of their

total discounted payoffs, i.e.,
max

uj(nt
l
):j∈M

∑

j∈M

Wj

(

u(nt
l), x

∗
(

nt
l

))

,

and the cooperative controls in the subgame are given as follows:

u∗(nt
l) = arg max

uj(nt
l
):j∈M

∑

j∈M

Wj

(

u(nt
l), x

∗
(

nt
l

))

. (8)

Therefore, the payoff of player j in the cooperative subgame starting from node nt
l , with initial state x∗(nt

l),

nt
l ∈ N

t
, is equal to Wj (u

∗(nt
l), x

∗ (nt
l)), t = 1, . . . , T . Denote the trajectory of u∗(nt

l) on the path emanating
from node nτ

v ∈ N τ , τ > t, and terminating at node nT
w ∈ N T as u∗

(

[nτ
v , n

T
w]/n

t
l

)

.

3 Approximated cooperative equilibrium

Now, we consider the game played over an event tree as a game in extensive form with closed-loop information

structure. This means that each player knows not only the current node nt
l ∈ N t, t = 0, . . . , T and what she

played on the (unique) path leading from the initial node n0 to a(nt
l), but also what the other players did in

all previous periods. Let this path be (n0, n1
i1
, . . . , nt−1

it−1
, nt

l) and denote it by P (nt
l). The collection of nodes

and corresponding strategy profiles realized on path P (nt
l), except node nt

l , is called the History of Node nt
l

and is denoted by H(nt
l) = ((n0, u(n0)), (n1

i1
, u(n1

i1
)), . . . , (nt−1

it−1
, u(nt−1

it−1
))).

Definition 2 A behavior strategy σj = {σj(n
t
l) : nt

l ∈ N t, t = 0, . . . , T − 1} of player j ∈ M in the game

played over an event tree is a mapping that associates to each node nt
l an action uj(n

t
l) ∈ U

nt
l

j with each

history H(nt
l), that is,

σj(n
t
l) : H(nt

l) −→ U
nt
l

j .

In other words, a behavior strategy tells a player what to do at each node nt
l of the event tree Γ(n0).

Denote by Σj the set of behavior strategies of player j, by σ = (σ1, . . . , σm) a behavior strategy profile, and

by Σ = Σ1 × . . . × Σm the set of possible strategy profiles. For a given behavior strategy profile, we can
compute the expected payoff in all subgames, including the whole game, for any given initial state. To avoid

adding new notations, we denote the payoff of player j in the subgame starting at node nt
l and in state x(nt

l)

as a function of the behavior strategy profile, by

Wj(σ, x(n
t
l )) = Wj(u(n

t
l), x(n

t
l)),

where u(nt
l) is a trajectory of controls in the subgame starting at node nt

l and determined by profile σ.

Definition 3 A behavior strategy profile σ̂ is an ε-equilibrium if, for each player j ∈ M and each strategy

σj ∈ Σj, the following inequality holds:

Wj(σ̂, x
0) > Wj((σ̂−j , σj), x

0)− ε. (9)

Definition 4 A behavior strategy profile σ̂ is a perfect ε-equilibrium if, for each player j ∈ M , each node

nt
l ∈ N t, each strategy σj ∈ Σj , and if, for each history H(nt

l), the following inequality holds:

Wj(σ̂, x(n
t
l)|H(nt

l)) > Wj((σ̂−j , σj), x(n
t
l)|H(nt

l))− ε,

where Wj(σ̂, x(n
t
l)|H(nt

l)) is player j’s payoff in the subgame starting at node nt
l in state x(nt

l) given by

history H(nt
l) when the players use strategy profile σ̂.

5The conditional probability π(nθ

l
|nt

l
) can be calculated with the formula: π(nθ

l
|nt

l
) = π(nθ

l
)/π(nt

l
) if π(nt

l
) 6= 0; otherwise,

the subgame starting from node nt

l
cannot materialize.
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To strategically support cooperation in the finite-horizon dynamic game played over an event tree, we shall

construct an approximated equilibrium in behavior strategies with a closed-loop information structure. The

development is in line with what has been done in repeated games, modulo the fact that here we additionally
have a vector of state variables evolving over time. Before formally defining the grim trigger strategy that will

be used in this construction, let us suppose (i) that the players want to realize the cooperative trajectory u∗

from (6), and (ii) that if a player j deviates from cooperation at node a (nt
l), then the other players will

minmax her payoff in the subgame starting at nt
l in state x (nt

l). This minmax value is defined by

W j(x(n
t
l)) = min

σ−j∈
∏

p 6=j

Σp

max
σj∈Σj

Wj((σ−j , σj), x(n
t
l)),

that is, the gain that players in M\ {j} cannot prevent player j from achieving in the subgame starting in

node nt
l and state x(nt

l). Any vector σ−j satisfying

σ̂−j = arg min
σ−j∈

∏

p 6=j

Σp

max
σj∈Σj

Wj((σ−j , σj), x(n
t
l)), (10)

is a punishing minmax strategy against player j deviating, and is part of the grim trigger strategy defined

below. Denote by ûj(nt
l) = {ûj(nθ

l ) : nθ
l ∈ Γ(nt

l)} the controls corresponding to minmax strategy profile

σ̂ = (σ̂−j , σ̂j), which punishes player j in the subgame starting in node nt
l and state x(nt

l).

The grim trigger behavior strategy of a player consists of two behavior types or two modes:

The nominal mode. If the history of node nt
l coincides with

H∗(nt
l) = ((n0, u∗(n0)), (n1

i1
, u∗(n1

i1
)), . . . , (nt−1

it−1
, u∗(nt−1

it−1
))), (11)

i.e., all players used their cooperative controls on the path P
(

nt−1
it−1

)

, that is, from n0 until nt−1
it−1

, then

player j, j ∈ M implements u∗
j (n

t
l) in node nt

l .

The trigger mode. If the history of node nt
l is such that there exists a node n on the path P

(

nt−1
it−1

)

and

a deviating player j ∈ M , j 6= p, that is, the history H(n) of node n is part of H∗(nt
l), and (n, u(n)) is

not part of H∗(nt
l), but if we replace the control uj(n) of player j in node n by the cooperative control

u∗
j (n), then the pair (n, (u−j(n), u

∗
j (n))) will be (n, u∗(n)) and part of history H∗(nt

l). Then, player

p’s strategy is part of punishing strategy σ−j of M\ {j} from (10), with punishment starting from the

successor nodes of the node at which player j defected from cooperation.

Formally speaking, the trigger behavior strategy of player p ∈ M is defined as follows:

σ̂p(H(nt
l)) =



















u∗
p(n

t
l), if H(nt

l) = H∗(nt
l),

ûj
p(n

t
l), if there exists a node n on path P (nt

l)

and player j ∈ M , j 6= p such that H(n) ⊂ H∗(nt
l),

and (n, u(n)) /∈ H∗(nt
l), but (n, (u−j(n), u

∗
j (n))) ∈ H∗(nt

l),

(12)

where ûj
p(n

t
l) is player p’s control in node nt

l . The control ûj
p(n

t
l) implements the punishing strategy given

in (10) against player j (hence the superscript j in ûj
p(n

t
l)) in the subgame starting in the unique node that

belongs to the set S(n) ∩ P (nt
l).

To avoid further complicating the notation, we omitted the state argument in the punishing control and

the trigger strategy, but we stress that they depend on the state value. Let node n1 be a direct successor of
node n in which player j deviates. The collection of controls (u∗

−j(n), uj(n)) is then realized, and the state

value in node n1 can be calculated using the state dynamics x(n1) = fn(x∗(n), (u∗
−j(n), uj(n))). The control

ûj
p(n1) is part of the control profile

ûj(n1) = arg min
u−j(n1)=

(up(n1):p∈M\j)

max
uj(n1)

Wj((u−j(n1),uj(n1)), x(n1)).
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Now, in the subgame starting from node nt
l ∈ N t in state x(nt

l), the collection of punishing controls corre-

sponding to players in M\ {j} minmaxing strategies while player j maximizing her payoff is given by

ûj(nt
l) = (ûj

p(n
t
l) : p ∈ M),

where ûj
p(n

t
l) =

{

ûj
p(n

θ
l ) : n

θ
l ∈ Γ(nt

l)
}

. This collection of controls generates a minmax trajectory of states in

player j’s punishment in this subgame, that is,

x̂j(nt
l) = {x̂j(nθ

l ) : n
θ
l ∈ Γ(nt

l)}.

To construct the trigger strategies, we need to find m punishing strategy profiles for each subgame. Our
main result follows.

Theorem 1 In the game played over an event tree there exists a perfect ε-equilibrium in trigger strategies

with players’ payoffs (W1(u
∗, x0), . . ., Wm(u∗, x0)) where

ε = max
j∈M

max
nt
l∈N t

t=1,...,T−1

εj(n
t
l), (13)

where

εj(n
t
l) = max

uj(nt
l
)∈U

nt
l

j

{

φ
nt
l

j (x∗(nt
l), (u

∗
−j(n

t
l), uj(n

t
l)))− φ

nt
l

j (x∗(nt
l), u

∗(nt
l))

+

T−1
∑

θ=t+1

λθ−t
j

∑

nθ
l
∈N θ

Γ

π(nθ
l |n

t
l)
(

φ
nθ
l

j (x̂j(nθ
l ), û

j(nθ
l ))− φ

nθ
l

j (x∗(nθ
l ), u

∗(nθ
l ))

)

+ λT−t
j

∑

nT
l
∈NT

Γ

π(nT
l |n

t
l)
(

Φ
nT
l

j (x̂(nT
l ))− Φ

nT
l

j (x∗(nT
l ))

)







, (14)

and ûj(nθ
l ) is a control profile in node nθ

l corresponding to a minmax strategy profile σ̂j punishing player j

in the subgame, starting at the node belonging to the set S(nt
l) and in state fnt

l

(

x (nt
l) , (u

∗
−j(n

t
l), uj(n

t
l))

)

.

Therefore, the differences in the second and third lines also depend on the control uj(n
t
l). The state x̂j(nθ

l ),
nθ
l ∈ Γ(nθ

l ) is a state trajectory corresponding to ûj.

Proof. Consider the trigger behavior strategy σ̂ = (σ̂p : p ∈ M) defined in (12), and the subgame starting
from any node nt

l ∈ N t, t = 0, . . . , T − 1. If player j does not deviate from the cooperative trajectory in node

nt
l , then her payoff in this subgame will be given by

Wj(u
∗
(

nt
l

)

, x∗
(

nt
l

)

) = φ
nt
l

j (x∗(nt
l), u

∗(nt
l)) +

T−1
∑

θ=t+1

λθ−t
j

∑

nθ
l
∈N θ

Γ

π(nθ
l |n

t
l)φ

nt
l

j (x∗(nθ
l ), u

∗(nθ
l ))

+ λT−t
j

∑

nT
l
∈NT

Γ

π(nT
l |n

t
l)Φ

nT
l

j (x∗(nT
l )), (15)

where N θ
Γ = N θ ∩ Γ(nt

l), u
∗ (nt

l) = (u∗
j (n

t
l) : j ∈ M) is an S -adapted cooperative strategy profile.

Suppose player j deviates in node nt
l from the cooperative trajectory. In this case, she may secure the

following payoff in the subgame starting at node nt
l , given the information that the behavior strategy profile

σ̂ = (σ̂p(·) : p ∈ M) determined by (12) will materialize:

max
uj(nt

l
)∈U

nt
l

j

{

φ
nt
l

j (x∗(nt
l), (u

∗
−j(n

t
l), uj(n

t
l)))

+

T−1
∑

θ=t+1

λθ−t
j

∑

nθ
l
∈N θ

Γ

π(nθ
l |n

t
l)φ

nθ
l

j (x̂j(nθ
l ), û

j(nθ
l )) + λT−t

j

∑

nT
l
∈NT

Γ

π(nT
l |n

t
l)Φ

nT
l

j (x̂j(nT
l ))







, (16)
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where punishing minmax strategy starts to be implemented in nodes from S(nt
l). Then, we may compute

the benefit from deviation of player j in node nt
l as a difference between (16) and (15), namely:

εj(n
t
l) = max

uj(nt
l
)∈U

nt
l

j

{

φ
nt
l

j (x∗(nt
l), (u

∗
−j(n

t
l), uj(n

t
l)))− φ

nt
l

j (x∗(nt
l), u

∗(nt
l))

+

T−1
∑

θ=t+1

λθ−t
j

∑

nθ
l
∈N θ

Γ

π(nθ
l |n

t
l)
(

φ
nθ
l

j (x̂j(nθ
l ), û

j(nθ
l ))− φ

nθ
l

j (x∗(nθ
l ), u

∗(nθ
l ))

)

+ λT−t
j

∑

nT
l
∈NT

Γ

π(nT
l |n

t
l)
(

Φ
nT
l

j (x̂(nT
l ))− Φ

nT
l

j (x∗(nT
l ))

)







,

Calculating the maximum benefit from deviation for any subgame and any player, we obtain the value of ε

in the theorem statement, that is,

ε = max
j∈M

max
nt
l∈N t

t=1,...,T−1

εj(n
t
l).

And for ε equal to this value, the behavior strategy profile determined by (12) is a perfect ε-equilibrium by

construction.

4 Numerical illustrations

To illustrate the results of the previous section, we consider a three-player stochastic version of the determin-
istic model of pollution control in Germain et al. (2003). Denote by M = {1, 2, 3} the set of players, and by

T = {0, 1, 2, 3} the set of periods. Let u(nt
l) = (u1(n

t
l), u2(n

t
l), u3(n

t
l)) be the vector of countries’ emissions

of some pollutant and denote by x(nt
l) the stock of pollution at node nt

l in time period t. The evolution of

this stock is governed by the following difference equation:

x(nt
l) = (1 − δ(a(nt

l)))x(a(n
t
l )) +

∑

j∈M

uj(a(n
t
l)), (17)

x(n0) = x0, (18)

with the initial stock x0 at root node n0 being given, and δ(nt
l) (0 < δ(nt

l) < 1) is the stochastic rate of

pollution absorption by nature at node nt
l . We suppose that δ(nt

l) can take two possible values, that is,

δ(nt
l) ∈

{

δ, δ
}

, with δ < δ. The event tree is depicted in Figure 1. Let nodes n1
2, n

2
2, n

2
4 correspond to the low

level of pollution reduction δ, and nodes n0, n1
1, n

2
1, n

2
3 correspond to the high level of pollution reduction δ.

The damage cost is an increasing convex function in the pollution stock having the quadratic form

Dj(x(n
t
l)) = αjx

2(nt
l), j ∈ M , where αj is a strictly positive parameter. The cost of emissions is also given

by a quadratic function Cj(uj(n
t
l)) =

γj

2 (uj(n
t
l)− e)

2
, where e and γj are strictly positive constants.

n0

n1
1

n2
1

n3
1 n3

2

n2
2

n3
3 n3

4

n1
2

n2
3

n3
5 n3

6

n2
4

n3
7 n3

8 t = 3

t = 2

t = 1

t = 0

Figure 1: Event tree graph for T = 3.
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The total discounted cost Jj(x,u) to be minimized by player j ∈ M is given by

2
∑

t=0

λt
j

∑

nt
l
∈N t

π(nt
l)
(

Cj(uj(n
t
l)) +Dj(x(n

t
l))

)

+ λ3
j

∑

n3

l
∈N 3

π(n3
l )Dj(x(n

3
l )),

where x = {x(nt
l)} and u = {u(nt

l)}, n
T
l ∈ N t, λj ∈ (0, 1) is a discount rate of player j, subject to (17),

given initial stock x0 = 0 before the game starts and constraints: uj(n
t
l) ∈ [0, e] for any player j ∈ M and

any node nt
l ∈ N t, t = 0, 1, 2.

We use the following parameters for the numerical simulation:

α1 = 0.1, α2 = 0.2, α3 = 0.3,

γ1 = 0.9, γ2 = 0.8, γ3 = 0.7,

δ = 0.45, δ = 0.8, e = 30, λ1 = λ2 = λ3 = 0.9,

π(n1
1) = 0.6, π(n1

2) = 0.4,

π(n2
1) = 0.3, π(n2

2) = 0.3, π(n2
3) = 0.3, π(n2

4) = 0.1,

π(n3
1) = 0.1, π(n3

2) = 0.2, π(n3
3) = 0.1, π(n3

4) = 0.2,

π(n3
5) = 0.05, π(n3

6) = 0.25, π(n3
7) = 0.05, π(n3

8) = 0.05.

Using (6) and (8), we compute the cooperative controls for each possible subgame and for the whole game.

The cooperative state trajectory is given by

x∗(n0) x∗(n1
1) x∗(n1

2) x∗(n2
1) x∗(n2

2) x∗(n2
3) x∗(n2

4) x∗(n3
1)

0 55.177 55.177 63.4188 63.4188 79.0484 79.0484 72.8623

x∗(n3
2) x∗(n3

3) x∗(n3
4) x∗(n3

5) x∗(n3
6) x∗(n3

7) x∗(n3
8)

72.8623 88.6125 88.6125 75.0804 75.0804 94.7123 94.7123

We use (7) to compute the players’ costs in each of the subgames and report them in Table 1.

Table 1: Players’ costs in the cooperative control profile.

Time period t = 0 t = 1 t = 2

Node n0 n1

1
n1

2
n2

1
n2

2
n2

3
n2

4

W1(u(·), x∗(·)) 249.371 213.06 242.807 122.401 161.771 149.748 201.349
W2(u(·), x∗(·)) 381.031 344.644 394.864 214.701 279.02 267.534 351.835
W3(u(·), x∗(·)) 517.495 479.554 550.625 308.23 398.087 386.625 504.397

t = 3

n3

1
n3

2
n3

3
n3

4
n3

5
n3

6
n3

7
n3

8

53.0891 53.0891 78.5218 78.5218 56.3706 56.3706 89.7041 89.7041
106.178 106.178 157.044 157.044 112.741 112.741 179.408 179.408
159.267 159.267 235.565 235.565 169.112 169.112 269.112 269.112

For each player j ∈ M and any node nt
l ∈ N t, t = 0, . . . , T − 1 we need to solve the optimization problem

defined in (16), with min instead of max. Once we obtain these costs, we compute the differences with the

cooperative payoffs and give them in Table 2. Based on these differences, we determine the values εj(n
t
l) for

j ∈ M and nt
l ∈ N t, t = 0, 1, 2 (see Table 3).

From Table 3 we see that at root node n0, no player benefits from deviating from cooperation. At time

t = 1, only player 1 can gain by deviating, whereas at terminal period 2, all players gain by deviating, which is

expected. The largest benefits from deviation are realized simultaneously for all players in node n2
4. Finally,

we note that, in this example, ε is equal to 39.5753.
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Table 2: Maximum benefits from deviation for any subgame.

Time period t = 0 t = 1 t = 2

Node n0 n1

1
n1

2
n2

1
n2

2
n2

3
n2

4

Player 1 -5.16799 23.3117 31.4627 23.4217 34.6419 24.8694 39.5753
Player 2 -113.551 -29.5407 -22.8292 16.4602 24.3455 17.4776 27.8126
Player 3 -198.86 -72.3691 -67.1232 10.2658 15.1836 10.9003 17.346

Table 3: Values of εj(·) for any subgame and any player.

Time period t = 0 t = 1 t = 2

Node n0 n1

1
n1

2
n2

1
n2

2
n2

3
n2

4

ε1 0 23.3117 31.4627 23.4217 34.6419 24.8694 39.5753
ε2 0 0 0 16.4602 24.3455 17.4776 27.8126
ε3 0 0 0 10.2658 15.1836 10.9003 17.346

The game at hand belongs to the class of environmental games with negative externalities. Given the

general result that cooperation is hard to achieve in such setting (see, e.g., the survey in Jørgensen et al.

(2010)), the results in the above short-time horizon example come at no surprise. To get a hint of the impact

of having a longer time horizon, we now let the set of periods be T = {0, 1, . . . , 10}, with everything else
being equal.

The event tree is depicted in Figure 2. It is a binary tree, i.e., each node in periods t = 0, . . . , 9 has two

successors. The conditional probability of realization of the upward successor of any node is 1
3 and is 2

3 for
a downward successor.. So, for instance, we have probabilities π(n1

1) =
1
3 and π(n1

2) =
2
3 in period 1, and

probabilities π(n2
1) =

1
9 , π(n

2
2) =

2
9 , π(n

2
3) =

2
9 , π(n

2
4) =

4
9 for t = 2. The root node n0 and all upward (or

left-handed) nodes have the low rate δ of pollution absorption by nature, and all downward (or right-handed)

nodes have the high level δ of pollution absorption.

n0

n1
1

n2
1

...

n10
1 n10

2

...

n2
2

...
...

n1
2

n2
3

...
...

n2
4

...
...

n10
1023

n10
1024

t = 10

...

t = 2

t = 1

t = 0

· · ·

Figure 2: Event tree graph for T = 10.

As in the previous example, we compute the cooperative payoffs as well as the benefits from deviating
from the cooperative solution in all subgames. To save on space, in Tables 4 and 5, we only print the results

regarding the benefits of cheating on the agreement and the values of εj(n
t
l). (More precisely, we only show

the max values for each time period.) These tables show that the first time a player could benefit from

deviating from cooperation is player 1 in period 7. Interestingly, the other two players would only deviate

in the last period. The value of ε is equal to 45.1047. As under a cooperative regime, the total accumulated
pollution is lower than under noncooperation. The results obtained here are encouraging, not only from an

economic point of view, but also from environmental one.



10 G–2015–55 Les Cahiers du GERAD

Table 4: The maximal benefit from deviation in time period t calculated for the example with 10 periods.

Time period t 0 1 2 3 4 5 6 7 8 9

Player 1 -149.235 -118.987 -95.199 -73.6346 -51.7166 -28.2682 -2.97307 23.2051 43.7459 45.1047
Player 2 -574.617 -526.325 -471.976 -411.983 -345.605 -272.122 -191.187 -104.076 -18.9509 30.7436
Player 3 -898.113 -829.495 -748.881 -658.736 -558.577 -447.604 -325.568 -194.902 -68.3537 19.174

Table 5: The maximal εj in time period t calculated for the example with 10 periods.

Time period t 0 1 2 3 4 5 6 7 8 9

max
n
t
l
∈N t

ε1(nt

l
) 0 0 0 0 0 0 0 23.2051 43.7459 45.1047

max
nt
l
∈N t

ε2(nt

l
) 0 0 0 0 0 0 0 0 0 30.7436

max
nt
l
∈N t

ε3(nt

l
) 0 0 0 0 0 0 0 0 0 19.174

Figure 3 represents the relation between ε and discount factor λj = λ, j = 1, 2, 3 for the game with 10

time periods. The larger the discount factor, the larger is ε.

Table 6 demonstrates when players have the first positive benefit from deviation. Player 3 will not deviate

before the last period if λ > 0.3. But Player 1 has a positive benefit from deviation from period 0 onwards

when λ ∈ [0.01, 0.5]. And even if λ = 0.99, he may deviate in period 8 and onwards. With low discount
factors, players have lower benefits from deviation, when compared with the benefits from deviation with

high discount factors; however, with low discount factors, players may start to deviate earlier than with high

discount factors.

Figure 3: Value of ε as a function of discount factor λ.

Table 6: The first time period when the player has an incentive to deviate.

λ 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Player 1 0 0 0 0 0 0 1 2 5 7 8
Player 2 0 0 0 1 8 9 9 9 9 9 9
Player 3 0 1 5 9 9 9 9 9 9 9 9



Les Cahiers du GERAD G–2015–55 11

5 Concluding remarks

We showed in this paper how to construct an ε-cooperative equilibrium for the class of dynamic games
played over event trees. As this class offers a natural modeling framework in many areas, such as renewable

resources and environmental management, and given that cooperation is often desirable to, e.g., sustain the

resource or reduce emissions of pollutants, our developments can help in the design of long-term sustainable

agreements.

Here we suggested using minmax strategies to deter defection. The same approach can be followed to
implement other punishing strategies. For instance, the players can decide to punish a deviator by playing

their Nash strategies. If it is the case, then it suffices to specify this in the trigger mode of the behavior

strategy. Clearly, however, we would expect to obtain a higher value for ε, and it is likely that the players

will start deviating earlier than they would under minmax.
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