
Les Cahiers du GERAD ISSN: 0711–2440

A structured approach to

model logical constraints

M. Gamache

G–2015–48

May 2015

Les textes publiés dans la série des rapports de recherche Les

Cahiers du GERAD n’engagent que la responsabilité de leurs
auteurs.

La publication de ces rapports de recherche est rendue possible
grâce au soutien de HEC Montréal, Polytechnique Montréal,
Université McGill, Université du Québec à Montréal, ainsi que
du Fonds de recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec,
2015.

The authors are exclusively responsible for the content of their
research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possi-
ble thanks to the support of HEC Montréal, Polytechnique
Montréal, McGill University, Université du Québec à Montréal,
as well as the Fonds de recherche du Québec – Nature et tech-
nologies.

Legal deposit – Bibliothèque et Archives nationales du Québec,
2015.

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





A structured approach to

model logical constraints

Michel Gamache

GERAD & Department of Mathematics and Indus-
trial Engineering, Polytechnique Montréal, Montréal
(Québec) Canada, H3C 3A7

michel.gamache@polymtl.ca

May 2015

Les Cahiers du GERAD

G–2015–48

Copyright c© 2015 GERAD



ii G–2015–48 Les Cahiers du GERAD

Abstract: This paper presents a structured approach to model logical constraints (expressions that contain
propositions and logical operators) in a linear program using binary variables. The approach proceeds in
three steps: (1) translating the English sentences into logical compound propositions; (2) transforming these
compound propositions in a conjunctive normal form; and (3) creating a linear inequality for each clause of
the conjunctive normal form. A detailed example describing the use of this approach is provided.

Key Words: Logical constraints, proposition, clause, conjunctive normal form, linear programming, binary
variables.

Résumé : Cet article présente une approche structurée pour modéliser des contraintes logiques (expressions
qui contiennent des propositions et des opérateurs logiques) dans un programme linéaire en utilisant des
variables binaires. L’approche procède en trois étapes : (1) traduire les phrases en propositions logiques;
(2) transformer ces propositions en clauses; et (3) créer une inéquation linéaire pour chaque clause. Un
exemple détaillé décrivant l’utilisation de cette approche est donné.



Les Cahiers du GERAD G–2015–48 1

1 Motivations

Building a linear programming model is not an easy task, especially when constraints involve logical ex-
pressions, i.e. expressions that contain propositions and logical operators. A proposition is a declarative

sentence that is either true or false, but not both. It is represented by a propositional variable. In linear

programming, such propositions occur frequently when it is necessary to know if a machine is on or off, if an

event has occurred or not, if a candidate has been selected or not, etc. Propositions are represented using

binary variables (also called Boolean or 0-1 variables). Often, logical operators or connectives, such as and,
or, and not, link these propositions together to create new compound propositions that are called, in this

paper, logical expressions. Examples of logical expressions occur in different contexts: a machine M1 can be

used only when machines M2 and M3 are already used to their maximal capacity; in open pit mines, a block

of material can be extracted only when the k blocks of material immediately above it have been extracted;
in scheduling, tasks T2 and T3 can start only when task T1 is finished; if job J is processed, then machines

M1 or M2 and machines M3 or M4 must be in operation, etc.

In the previous examples, translating the restrictions into constraints represented by linear equations is

not always trivial. Often, a trial and error approach is used to build the linear inequalities and to make sure

that they satisfy all the possible combinations of values of the propositional variables. To the knowledge of
the author, no books of operations research dedicated for undergraduate students provides an approach for

translating these logical constraints into constraints of a linear programming model. The objective of this

paper is to present a structured approach for modelling such logical expressions. The approach proceeds

in three steps that consist of : (1) translating English sentences into logical expresions; (2) rewriting these

logical expressions in a specific syntax; and (3) converting these expressions in linear inequalities.

The next section provides a reminder of some notions of logic and sets up the elements for the first step of

the approach, i.e. the translation from English sentences to logical expressions. The third section establishes

the link between logical expressions, when these expressions are written under a specific syntax, and linear

inequalities. This syntax will permit the translation of complex logical expressions into linear inequalities.

Finally, Section 4 presents the application of this approach to a small academic problem.

2 Reminder on some basic knowledge of logic

In this section, we give the basic definitions of some elements of logics that will help to translate English

sentences into logical expressions. We also show how to transform this logical expression in equivalent

expressions that will be more useful for the translation of logical expressions into linear constraints.

2.1 Definitions

In the following definitions, let p and q be two propositional variables. The truth value of a propositional
variable is true, denoted T , if the proposition is true; it is false, denoted F , in the opposite. Four logical

operators can be used to form compound propositions: the negation, the conjunction, the disjunction, and

the implication.

Proposition not p, denoted ¬p or p and called the negation of p, is a logical operator that is equal to the

opposite value of p. A truth table can be used to display the relationships between the truth values of p and
¬p. This truth table and those associated with the following operators have been grouped in Table A in the

Appendix.

Proposition p and q, denoted p∧ q or p · q and called the conjunction of p and q, is true when both p and

q are true and is false otherwise.

Proposition p or q, denoted p ∨ q and called the disjunction of p and q, is false when both p and q are
false and is true otherwise. A disjunction is either inclusive or exclusive. An inclusive disjunction is true

when at least one proposition is true. The inclusive disjunction is the one that has just been defined. An

exclusive disjunction, denoted p ⊕ q is true when exactly one of proposition p and proposition q is true. It



2 G–2015–48 Les Cahiers du GERAD

is false when both propositions are false and when both are true. In the following text, all conjunctions are

inclusive.

Proposition p implies q, denoted p → q and called the implication, is a proposition that is false when p is

true and q is false, and true otherwise. Proposition p is called the hypothesis and q the consequence.

The biconditionnal, denoted A ↔ B, is a proposition that is true when A and B have the same truth

values, and is false otherwise.

2.2 Translating statements into logical expressions

The translation of statements into logical expressions is difficult. Particularly, much difficulty arises from

compound propositions involving implications; more precisely, the identification of the hypothesis and the
consequence. Most often, the hypothesis will be associated with the keyword if and the consequence with

the keyword then. Figure 2.1 illustrates the translation of an implication.

If proposition p then proposition q

hypothesis consequence

p → q

Figure 2.1: Identification of the hypothesis and the consequence

Books on discrete mathematics offer some tricks in order to translate some English statements into logical

expressions (see Rosen (2003), Dossey et al. (2005)). For example, Rosen (2003) shows 12 different ways to
write an English statement for the logical expression p → q. Some examples will be given in Section 4.

Such translations necessitate a good knowledge of the language into which the statement has been written.

Since each language has its own characteristics, it makes difficult to develop a general concept that will be

language independent. It is not the intention of the author to develop more on this issue. Readers are invited

to consult the above references to develop their skills for writing logical expressions.

2.3 Equivalences

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

An equivalence allows substituting a compound proposition with another compound proposition having the

same truth value. Table 2.1 presents some well established equivalences between logical expressions. These

equivalences will be essential in Section 3 for rewriting compound proposition under a specific syntax that
will ease their translation into linear equations.

3 Translating compound propositions into linear equations

Some compound propositions can be easily translated into linear inequalities. This is the case for the

disjunction of two or more propositions and the negation of a proposition. Using logical equivalences and

knowing how to translate these compound propositions into linear inequalities, it will be shown that some

complex logical expressions can be translated quite easily into constraints of a linear programming model.



Les Cahiers du GERAD G–2015–48 3

Table 2.1: Equivalences between logical expressions

Name Equivalence Identificator

Commutative laws p ∨ q ≡ q ∨ p eqv01
p ∧ q ≡ q ∧ p eqv02

Associative laws (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) ≡ p ∨ q ∨ r eqv03
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) ≡ p ∧ q ∧ r eqv04

Distributive laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) eqv05
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) eqv06

De Morgan’s law ¬(p ∧ q) ≡ ¬p ∨ ¬q eqv07
¬(p ∨ q) ≡ ¬p ∧ ¬q eqv08

Negation laws p ∨ ¬p ≡ T eqv09
p ∧ ¬p ≡ F eqv10

Implication (p → q) ≡ ¬p ∨ q eqv11
Biconditionnal (p ↔ q) ≡ (p → q) ∧ (q → p) eqv12

In the proposed approach, the compound proposition representing the logical expression should be ex-

pressed as a clause or a conjunctive normal form. A clause, denoted C, is an inclusive disjunction of propo-
sitional variables or negations of these propositional variables, while a conjunctive normal form or a clausal

normal form is a conjunction of clauses. For example, A ∨B ∨ ¬C ∨ F is a clause, while (¬A ∨ B) ∧ (C) is

in a conjunctive normal form. In the latter, (¬A ∨B) and (C) are two clauses.

A conjunctive normal form C1∧C2∧· · ·∧Cn is true only when all the clauses C1, C2, . . . , Cn are true. Based

on the assumption that we can find a linear inequality for each clause that composes the conjunction, this
logical expression can be translated into a set of n constraints, one for each clause.

3.1 Translating a clause into a linear inequality

In linear programming, a logical expression is a constraint that must be satisfied by any feasible solution.

The word ”satisfy” means that when we use the value of the solution in the constraint, the relation expressed

by this constraint is ”true”.

Let the clause C ≡ p1 ∨ p2 ∨ · · · ∨ pn . The clause C is true when at least one propositional variable among
p1, p2, . . . , pn is true. Let xi be a binary variable associated with a propositional variable pi such as

xi =

{

1 if the propositional variable pi is true;

0 otherwise.

If x1, x2, . . . , xn are associated with propositional variables p1, p2, . . . , pn respectively, then it means that

at least one variable must be equal to 1. This sentence can be translated into the following linear inequality:

p1 ∨ p2 ∨ · · · ∨ pn ≡ x1 + x2 + · · ·+ xn ≥ 1 (3.1)

Table 3.1 compares the clause and its equivalent inequality in linear algebra in order to highlight the
equivalence between both expressions.

3.2 Negation

Let xp be a binary variable that represents the propositional variable p and xp be a binary variable that

represents ¬p. From the previous definition, we know that xp = 1 when p is true; otherwise xp = 0. From

the definition of xp and ¬p, it becomes obvious that xp = 0 when p is true, i.e. when xp = 1. Similarly,
xp = 1 when p is false, i.e. xp = 0.



4 G–2015–48 Les Cahiers du GERAD

Table 3.1: Equivalence between the logical expression and the inequality

p q p ∨ q xp xq xp + xq ≥ 1

T T T 1 1 2 ≥ 1 ≡ T

T F T 1 0 1 ≥ 1 ≡ T

F T T 0 1 1 ≥ 1 ≡ T

F F F 0 0 0 ≥ 1 ≡ F

From these observations, we can deduce the following equation:

¬p ≡ xp = 1− xp (3.2)

Table 3.2 compares the logical expression and its equivalent equation in linear algebra in order to highlight

the equivalence between both expressions.

Table 3.2: Equivalence between the compound proposition and the inequality

p ¬p xp 1− xp

T F 1 0 ≡ F

F T 0 1 ≡ T

3.3 Implication

The logical expression If p is true, then q must be true is equivalent to the implication, i.e. p → q. From

(eqv11) in Table 2.1, that implication is equivalent to

p → q ≡ ¬p ∨ q

which is a clause. From equations (3.1) and (3.2) , one can deduce the following equivalences:

p → q ≡ ¬p ∨ q

≡ (1− xp) + xq ≥ 1
≡ xp ≤ xq

Table 3.3 compares the logical expression and its equivalent equation in linear algebra in order to highlight

the equivalence between both expressions.

Table 3.3: Equivalence between the compound proposition and the inequality

p q p → q xp xq xp ≤ xq

T T T 1 1 1 ≤ 1 ≡ T

F T T 0 1 0 ≤ 1 ≡ T

T F F 1 0 1 ≤ 0 ≡ F

F F T 0 0 0 ≤ 1 ≡ T

The proposed approach can be summarized in three steps:

Step 1 Translate English sentences into compound propositions;

Step 2 Use the logical equivalences to transform the compound propositions into a clause or a conjunctive

normal form;

Step 3 Use equations (3.1) and (3.2) to translate in each clause in a linear inequality.

Section 4 presents an academic example that illustrates the use of this technique to translate logical

expressions into linear equations.



Les Cahiers du GERAD G–2015–48 5

4 Example

Suppose that a project director wants to constitute a group of 8 scientists that will have to work together

for one year in a laboratory emulating the conditions of the biosphere, without getting in contact with the

external world. Among all the candidates who applied for a job, twelve of them (denoted A to L ) remain

in competition to obtain a place in the biosphere. To compose the best team of scientists, the project
director must take into account different characteristics of the candidates, such as their domain of research,

the languages they speak and their psychological profile in order to evaluate their affinity with the other

candidates, etc. After analyzing the candidates, a score between 0 and 20 is given for each candidate, where

a score of 20 represents the best candidate and 0 the worst. Table 4.1 gives the score of each candidate.

Table 4.1: Score of the candidates

Candidate Score Candidate Score

A 10 G 13
B 12 H 15
C 14 I 18
D 11 J 11
E 14 K 10
F 15 L 18

The problem consists of maximizing the score of the team while also taking into account the following

restrictions while composing the team:

(a) Candidates A, E and H are chemists, and the team must have at least one chemist;

(b) Candidate A is epileptic and he can be selected only if F and G are selected since both are doctors;

(c) Candidate B speaks Russian only, she cannot be selected unless candidate H or I is selected since these

two candidates are the only one who can speak Russian;

(d) Due to psychological incompatibility, if candidate E is selected, than candidate F or candidate G must

be rejected;

(e) Candidates I and J cannot be selected, if candidates C and D are selected;

(f) If I or H is selected, then J or K must be selected;

(g) If K is selected, then L must be selected, and vice-versa since they are husband and wife;

(h) If candidate A is chosen, then candidate B or candidate C must be chosen, but not candidate D.

To elaborate the linear program for this problem, let xi be a binary variable such that :

xi =

{

1 if candidate i is selected;

0 otherwise.

The objective function, which consists of maximizing the score of the team, can be written as follows:

maxZ = 10xA + 12xB + · · ·+ 10xK + 18xL

Let us now see how these logical expressions are translated into linear inequalities.

(a) Candidates A, E and H are chemists, and the team must have at least one chemist;

This sentence is translated into a logical expression:

A ∨ E ∨H

Since this logical expression is represented by a unique clause, this clause is simply translated into the

following linear equation:

xA + xE + xH ≥ 1



6 G–2015–48 Les Cahiers du GERAD

(b) Candidate A is epileptic and he can be selected only if F and G are selected since both

are doctors;

This sentence is equivalent to: If candidate A is selected, then candidates F and G must be selected.

Step 1: Translate the English sentence into a compound proposition

If A is selected then F and G

must be selected

hypothesis consequence

A → (F ∧G)

Figure 4.1: Illustration of Step 1 for question (b)

Step 2: Transform the compound proposition in a conjunctive normal form

A → (F ∧G) ≡ ¬A ∨ (F ∧G) (eqv11)
≡ (¬A ∨ F ) ∧ (¬A ∨G) (eqv06)

Step 3: Write the linear inequality associated with each clause

Clause 1: (¬A ∨ F )
(¬A ∨ F ) ≡ (1− xA) + xF ≥ 1

≡ xA ≤ xF

Clause 2: (¬A ∨G)
(¬A ∨G) ≡ (1− xA) + xG ≥ 1

≡ xA ≤ xG

These two equations can be combined into one equation:

2xA ≤ xF + xG

(c) Candidate B speaks Russian only, she cannot be selected unless candidate H or I is

selected since these two candidates are the only one who can speak Russian;

This sentence is equivalent to: If candidate B is selected, then candidates H or I must be selected.

Step 1: Translate the English sentence into a compound proposition

If B is selected then H or I

must be selected

hypothesis consequence

B → (H ∨ I)

Figure 4.2: Illustration of Step 1 for question (c)

Step 2: Transform the compound proposition in a conjunctive normal form

B → (H ∨ I) ≡ ¬(B) ∨ (H ∨ I) (eqv11)
≡ (¬B ∨H ∨ I) (eqv03)

Step 3: Write the linear inequality associated with each clause

(¬B ∨H ∨ I) ≡ (1− xB) + xH + xI ≥ 1
≡ xB ≤ xH + xI

(d) Due to psychological incompatibility, if candidate E is selected, than candidate F or

candidate G must be rejected;

This sentence is equivalent to: If candidate E is selected, then candidates F is not selected or G is not

selected.



Les Cahiers du GERAD G–2015–48 7

Step 1: Translate the English sentence into a compound proposition

If E is selected then F is not selected or

G is not selected

hypothesis consequence

E → (¬F ∨ ¬G)

Figure 4.3: Illustration of Step 1 for question (d)

Step 2: Transform the compound proposition in a conjunctive normal form

E → (¬F ∨ ¬G) ≡ ¬E ∨ (¬F ∨ ¬G) (eqv11)
≡ ¬E ∨ ¬F ∨ ¬G (eqv03)

Step 3: Write the linear inequality associated with each clause

Clause 1: ¬E ∨ ¬F ∨ ¬G

¬E ∨ ¬F ∨ ¬G ≡ (1− xE) + (1− xF ) + (1− xG) ≥ 1
≡ xE + xF + xG ≤ 2

(e) Candidates I and J cannot be selected, if candidates C and D are selected;

This sentence is equivalent to: If candidate C and D are selected, then candidates I and J are not

selected.

Step 1: Translate the English sentence into a compound proposition

If C and D

are selected

then I is not selected and

J is not selected

hypothesis consequence

C ∧D → (¬I ∧ ¬J)

Figure 4.4: Illustration of Step 1 for question (e)

Step 2: Transform the compound proposition in a conjunctive normal form

(C ∧D) → (¬I ∧ ¬J) ≡ ¬(C ∧D) ∨ (¬I ∧ ¬J) (eqv11)
≡ (¬C ∨ ¬D) ∨ (¬I ∧ ¬J) (eqv08)
≡ (¬C ∨ ¬D ∨ ¬I) ∧ (¬C ∨ ¬D ∨ ¬J) (eqv06)

Step 3: Write the linear inequality associated with each clause

Clause 1: (¬C ∨ ¬D ∨ ¬I)

(¬C ∨ ¬D ∨ ¬I) ≡ (1 − xC) + (1− xD) + (1 − xI) ≥ 1
≡ xC + xD + xI ≤ 2

Clause 2: (¬C ∨ ¬D ∨ ¬J)

(¬C ∨ ¬D ∨ ¬J) ≡ (1− xC) + (1− xD) + (1− xJ ) ≥ 1
xC + xD + xJ ≤ 2

These two equations can be combined into the following equation:

2(xC + xD) + xI + xJ ≤ 4

(f) If I or H is selected, then J or K must be selected;

This sentence is equivalent to: If candidate I or H is selected, then candidates J or K is selected.



8 G–2015–48 Les Cahiers du GERAD

If I or H

is selected

then J is selected or

K is selected

hypothesis consequence

H ∨ I → (J ∨K)

Figure 4.5: Illustration of Step 1 for question (f)

Step 1: Translate the English sentence into a compound proposition

Step 2: Transform the compound proposition in a conjunctive normal form

(I ∨H) → (J ∨K) ≡ ¬(I ∨H) ∨ (J ∨K) (eqv11)
≡ (¬I ∧ ¬H) ∨ (J ∨K) (eqv08)
≡ (¬I ∨ J ∨K) ∧ (¬H ∨ J ∨K) (eqv05)

Step 3: Write the linear inequality associated with each clause

Clause 1: (¬I ∨ J ∨K)

(¬I ∨ J ∨K) ≡ (1− xI) + xJ + xK ≥ 1
≡ xJ + xK ≤ xI

Clause 2: (¬H ∨ J ∨K)

(¬H ∨ J ∨K) ≡ (1− xH) + xJ + xK ≥ 1
xJ + xK ≤ xH

These two equations can be combined into the following equation:

2(xJ + xK) ≤ xI + xH

(g) If K is selected, then L must be selected, and vice-versa since they are husband and wife

This sentence is equivalent to: If candidate K is selected, then candidate L is selected, and if K is not

selected, then L is not selected.

Step 1: Translate the English sentence into a compound proposition

If K is selected

then L is selected and

If K is not selected

then L is not selected

(K → L) ∧ (¬K → ¬L)

Figure 4.6: Representation of the biconditional : question (g)

Step 2: Transform the compound proposition in a conjunctive normal form

K ↔ L ≡ (K → L) ∧ (L → K) (eqv12)
≡ (¬K ∨ L) ∧ (¬L ∨K) (eqv11)

Step 3: Write the linear inequality associated with each clause

Clause 1: (¬K ∨ L)
(¬K ∨ L) ≡ (1− xK) + xL ≥ 1

≡ xK ≤ xL



Les Cahiers du GERAD G–2015–48 9

Clause 2: (¬L ∨K)
(¬L ∨K) ≡ (1− xL) + xK ≥ 1

xL ≤ xK

These two equations are equivalent to the following one:

xK = xL

(h) If candidate A is chosen, then candidate B or candidate C must be chosen, but not

candidate D.

This sentence is equivalent to: If candidate A is selected, then candidates B or C is selected, but not

candidate D.

Step 1: Translate the English sentence into a compound proposition

If A is selected then B or C is selected,

and D is not selected

hypothesis consequence

A → ((B ∨ C) ∧ ¬D)

Figure 4.7: Illustration of Step 1 for question (h)

Step 2: Transform the compound proposition in a conjunctive normal form

A → ((B ∨ C) ∧ ¬D) ≡ ¬A ∨ ((B ∨ C) ∧ ¬D) (eqv11)
≡ (¬A ∨B ∨C) ∧ (¬A ∨ ¬D) (eqv06)

Step 3: Write the linear inequality associated with each clause

Clause 1: (¬A ∨B ∨ C)

(¬A ∨B ∨ C) ≡ (1− xA) + xB + xC ≥ 1
≡ xB + xC ≥ xA

Clause 2: (¬A ∨ ¬D)
(¬A ∨ ¬D) ≡ (1− xA) + (1− xD) ≥ 1

xA + xD ≤ 1

Finally, a constraint must be added to make sure that 8 candidates are selected among the 12 candidates.

L
∑

i=A

xi = 8.

The linear program is summarized as follows:

max Z = 10xA + 12xB + · · ·+ 10xK + 18xL

subject to:
xA + xE + xH ≥ 1
2xA − xF − xG ≤ 0
xB − xH − xI ≤ 0
xE + xF + xG ≤ 2

2(xC + xD) + xI + xJ ≤ 4
2(xJ + xK)− xI − xH ≤ 0

xK − xL = 0
xB + xC − xA ≥ 0

xA + xD ≤ 1
∑L

i=A xi = 8
xi ∈ {0, 1} i = A,B, . . . , L



10 G–2015–48 Les Cahiers du GERAD

The optimal solution to this problem is to select candidates B, C, E, F , H , I, K, and L which provides

a score of 116 for the team.

5 Conclusion

For the last ten years, this approach has been presented in an undergraduate course of operations research
in an engineering school. First, the students must develop a linear model to solve the biosphere problem.

The modelling of logical constraints into linear inequalities represents a major challenge for the majority of

the students. Most of them use a trial and error approach to develop those equations. Most of the time,

especially when implication proposals are involved, the resulting inequalities from their approach are valid
when the binary variable representing the hypothesis is equal to 1, but are invalid or too restrictive compared

to the statement of the problem when this variable is equal to 0. With this exercise, students realize that

modelling such logical constraints is not an easy task.

The approach based on logic is then presented. The students retry the formulation of a linear program for

the biosphere problem using this approach. The major difficulty is to translate each constraint into a logical
expression. However, when this translation is well done, finding equivalent logical expressions, dividing the

logical expression into clauses and translating these clauses into inequalities do not pose any problem.

Since the approach based on logic provides a systemic method that is easy to use, it gives the students

confidence and considerably improves their ability to model such difficult constraints.

Appendix A Truth Table

p q ¬p p ∧ q p ∨ q p⊕ q p → q p ↔ q

T T F T T F T T

T F F F T T F F

F T T F T T T F

F F T F F F T T

References

[1] K. H. Rosen, Discrete Mathematics and its Applications, Fifth Edition, McGraw Hill. 2003.

[2] Dossey, John A., Otto, Albert D., Spence, Lawrence E., Vanden Eynden, C., Discrete Mathematics, Fifth

Edition, Pearson. 2005.


	Motivations
	Reminder on some basic knowledge of logic
	Definitions
	Translating statements into logical expressions
	Equivalences

	Translating compound propositions into linear equations
	Translating a clause into a linear inequality
	Negation
	Implication

	Example
	Conclusion
	Truth Table

