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Legal deposit – Bibliothèque et Archives nationales du Québec,
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Abstract: Large size optimization problems are usually successfully solved by using some metaheuristic
approach. Nowadays, there is a trend to combine several metaheuristics into a new hybrid method in
order to demonstrate that it is superior to each of its constituents. In this paper, we apply Basic variable
neighborhood search for solving Minimum differential dispersion problem using only the Swap neighborhood
structure in both descent (intensification) and shaking (diversification) steps. Despite the simplicity of the
method, results obtained by our heuristic significantly outperforms the results obtained by a hybrid heuristic
that combines GRASP and exterior path relinking rules. This fact confirms that simplicity is not just user
friendly desirable property of heuristic, but it could also contribute to get more efficient and effective method
than by using complex hybrid metaheuristics.
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1 Introduction

Given a set N of n elements and the distances dij between any two elements i and j, the dispersion or

diversity problems (DP) consist of finding a subset S ⊂ N such that an objective function based on the

distances between elements in S is maximized or minimized. The objective function may represent either

efficiency-based measure that considers some dispersion quantity for the entire selection S, or equity-based

measure that guarantees equitable dispersion among the selected elements. Widely studied problems that

use efficiency-based objective functions are the Maximum diversity problem (MDP), in which the goal is to

find subset S so that the sum of the distances between the selected elements is maximized, and The Max-Min

diversity problem (MMDP), in which the goal is to find subset S so that the minimum distance between the

selected elements is maximized. The problems that consider equity-based measures have been introduced by

Prokopyev et al. [22]. They are: Maximum mean dispersion problem (Max-Mean DP), Minimum differential

dispersion problem (Min-Diff DP), and Maximum min-sum dispersion problem (Max-Min-sum DP). The first

problem includes finding a subset S, so that the average distance between the selected elements is maximized;

the second deals with finding a subset S so that the difference between the maximum sum and the minimum

sum of the distances to the other selected elements is minimized. Finally, the Max-Min-sum DP consists of

finding a subset S so that the minimum sum of the distances to the other selected elements is maximized. In

all aforementioned problems, except Max-Mean DP, the cardinality of the subset S must be equal to a given

number m.

Some applications of diversity problems that use efficiency-based measures arise in the context of facility

location (locating facilities according to distance, accessibility, impacts, etc) [7, 6, 14, 23], maximally di-

verse/similar group selection (e.g., biological diversity, admissions policy formulation, committee formation,

curriculum design, market planning, etc.) [1, 8, 9, 15, 26], and densest subgraph identification [13]. On the

other hand, diversity problems that use equity-based measures have applications in the context of urban

public facility location, where the fairness among candidate facility locations is important [25], selection of

homogeneous groups [2], dense/regular subgraph identification [13], and equity-based measures in network

flow problems [3].

In this paper we study the Minimum differential dispersion problem (Min-Diff DP). Formally, Min-Diff

DP may be formulated in the following way. Let S be a subset of a given set N whose cardinality is equal to

m. The differential dispersion of this subset, δ(S) is calculated as

δ(S) = max
i∈S

∆(i)−min
j∈S

∆(j)

where ∆(i) =
∑

k∈S,k 6=i dik represents the sum of distances of element i from all remaining elements in S.

Therefore, the combinatorial formulation of the Min-Diff DP is as follows: find a subset S∗ ⊂ N , |S∗| = m

with the minimum differential dispersion, i.e.,

S∗ = argmin
S⊂N,|S|=m

δ(S) (1)

Mathematical programming formulation of the Min-Diff DP may be stated in the following way. Let

xi be a binary variable that indicates whether element i belongs to S or not. Further, let Li and Ui

denote lower and upper bounds on the value of
∑

j 6=i,j∈N dij calculated as Li =
∑

j 6=i,j∈N min{0, dij} and

Ui =
∑

j 6=i,j∈N max{0, dij}. Finally, let M+ and M− denote an upper bound on Ui and a lower bound on

the Li values, respectively. Then Min-Diff DP may be formulated as 0-1 Mixed Integer Program as follows

(for details see [22]):

min
t,r,s,x

t (2)

subject to

t ≥ r − s (3)

r ≥
∑
j,j 6=i

dijxj − Ui(1− xi) +M−(1− xi), i ∈ N ; (4)
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s ≤
∑
j,j 6=i

dijxj − Li(1− xi) +M+(1− xi), i ∈ N ; (5)

∑
i∈N

xi = m; (6)

x ∈ {0, 1}n (7)

Min-Diff DP is a NP-hard problem [22]. For solving it, several approaches are proposed in the literature.

Prokopyev et al. [22] used CPLEX 9.0 MIP solver to solve the above MIP formulation. CPLEX solver

succeeded to solve only small size instances up to |N | = 40 and m = 15, consuming more than 2500 seconds.

For solving larger instances, they proposed generic GRASP heuristic (for solving dispersion problems using

equity-based measure). More recently, Duarte et al. [5] proposed specialized GRASP heuristic, as well as

a hybrid approach that combines GRASP and exterior path relinking. The last mentioned hybrid heuristic

may be considered as a state-of-the-art heuristic for solving Min-Diff DP.

In this paper we suggest Basic variable neighborhood search for solving Min-Diff DP. Only a swap

neighborhood structure is used in both the descent and the perturbation of an incumbent solution. Despite

its simplicity, the results obtained at benchmark test instances significantly outperforms the state-of-the-art

results, obtained by hybrid of GRASP and exterior path relinking based heuristic, published recently in

Information Sciences journal [5]. Therefore, we can conclude that, sometimes, inclusion of many ideas in the

search is not necessary to get excellent computational results: the less is more.

The rest of the paper is organized as follows. In the next section, we give rules of our heuristic, and in

section 3 we report on computational results. Section 4 concludes the paper.

2 Variable neighborhood search for Min-Diff DP

Finding an optimal solution for large size Min-Diff DP is unlikely to be possible in reasonable time, thus,

heuristic methods are a preferable option for finding good or near-optimal solutions. For that reason, we

propose an efficient variable neighborhood Search (VNS) [18, 11] based heuristic to tackle Min-Diff DP.

VNS is a flexible framework for building heuristics for approximately solving combinatorial and continuous

global optimization problems. The main idea is systematical exploration of several neighborhood structures

during the search for an optimal (or near-optimal) solution. The foundations of VNS are based on the

following observations: (i) A local optimum relatively to one neighborhood structure is not necessarily the

local optimal for another neighborhood structure; (ii) A global optimum is a local optimum with respect
to all neighborhood structures; (iii) Empirical evidence shows that for many problems all local optima are

relatively close to each other.

The work of a VNS based heuristic consists of applying alternately an improvement procedure and a

shaking procedure, together with neighborhood change step, until reaching predefined stopping condition.

An improvement procedure used within VNS heuristic may be either simple local search,that explores one

neighborhood structure, or some more advanced procedure that explores several neighborhood structures.

Such explorations could also be organized in different ways: (i) sequential variable neighborhood descent;

(ii) Composite (or Nested) VND; (iii) Mixed nested [12]. On the other hand, a shaking procedure is used

to possibly resolve local optima traps in which the used improvement procedure may be stuck. Typical

stopping criteria for VNS heuristic are maximal number of iterations that may be performed, or maximum

CPU time allowed to be consumed. The VNS based heuristics have been successfully applied to solving many

optimization problems (see e.q., [19, 20, 16] for recent successful applications).

The proposed VNS heuristic, named VNS MinDiff, uses one neighborhood structure within both im-

provement procedure and shaking procedure. In what follows, we give thorough description of the proposed

heuristic. More precisely, we provide a description of a procedure for creating an initial solution, the defini-

tion of the used neighborhood structure, the description of the used shaking procedure, as well as the outline

of entire heuristic.
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An initial solution for our heuristic is created in the random fashion (see Algorithm 1). Namely, an initial

solution is created choosing m random elements from the set N . Such a solution is further improved applying

alternately local search procedure and shaking procedure together with neighborhood change step, as shown

in Algorithm 2. The whole process is repeated until, the imposed time limit of tmax seconds is reached.

Besides this parameter, VNS MinDiff has parameter pmax, which defines the maximal value of the parameter

of the shaking procedure, which will be described later.

Algorithm 1: Procedure for creating an initial solution

Function Initial solution();
1 S = ∅;
2 for i = 1 to m do
3 Select j in N \ S at random;
4 S ← S ∪ {j};
end

Algorithm 2: VNS heuristic for solving Min-Diff DP

Function VNS MinDiff(S, pmax, tmax);
1 S ← Initial solution ();
2 repeat
3 k ← 1;
4 while p ≤ pmax do
5 S′ ← Shake(S, p); /* Shaking */
6 S′′ ← LS(S′); /* Local search */
7 p← p+ 1; /* Next neighborhood */
8 if S′′ is better then S then
9 S ← S′′; p← 1; /* Make a move */

end

end
10 t← CpuTime();

until t > tmax;
11 Return S;

Local search used within VNS MinDiff is based on the exploration of the swap neighborhood structure

defined as:

Swap(S) = {S′ ⊂ N ||S ∩ S′| = |S| − 1, |S′| = |S|}.
This neighborhood structure is defined by the move that involves exchanging one selected element by the one

which does not belong to S. In order to evaluate efficiently each solution in that neighborhood, we use an

auxiliary array (already mentioned in the Introduction), denoted by ∆, that enable us to deduce the value

of a solution S′ in O(m) time complexity. Namely, each element in the array ∆ represents the sum of the

distances of an element i ∈ N to the selected elements in the set S (i.e., ∆(i) =
∑

j∈S,j 6=i dij). Hence, in order

to evaluate the value of the solution S′ obtained by replacing a selected element k with an unselected element

l, it suffices to determine the minimum and the maximum of values δ(i) = ∆(i)−dik +dil ,i ∈ S ∪{l}, i 6= k.

Note that these two values determine the value of the solution S′, as being the difference between them.

Depending on a search strategy used to explore this neighborhood structure, we distinguish the first

improvement local search (denoted by LS FI) which uses the first improvement search strategy (as soon as

an improving solution is detected it is set to be the new incumbent solution), and the best improvement local

search (denoted by LS BI), which uses the best improvement search strategy (the best among all improving

solutions (if any) is set to be the new incumbent solution). Regardless of the used search strategy, if the change

of incumbent solution occurs, the search is resumed to start from the new incumbent solution, otherwise the

procedure finishes its work. Note that each change of the incumbent solution requires update of the array

∆, which may be performed in O(n) since each element ∆(i) may be updated in the constant time.
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Shaking In order to escape from a local optima trap generated by a local search procedure, VNS heuristic

employs the shaking procedure Shake(S,p), presented at Algorithm 3.

Algorithm 3: Shaking procedure

Function Shake(S,p);
1 for i = 1 to p do
2 Select S′ in Swap(S) at random;
3 S ← S′;

end

The shaking procedure has two parameters: a solution S and a parameter p. The parameter p determines

the number of iterations performed within the shaking procedure. At each of p iterations, the shaking

procedure generates a random solution from the swap neighborhood of the current solution. At the output,

the procedure returns the last generated solution.

3 Computational results

In this section we evaluate performances of the proposed VNS MinDiff heuristic, which has been coded in C++

language and run on a computer with an Intel Core i7 2600 CPU (3.4 GHz) and 16GB of RAM. For testing

purposes, we use benchmark test instances, usually referred to as MDPLIB, that are publicly available at

http://www.optsicom.es/mdp/mdplib_2010.zip. Instances are divided into three groups (having in total

190 instances):

• SOM data set. This data set consists of 20 test instances whose sizes range from n = 25 and m = 2

to n = 500 and m = 200. These instances were created with a generator developed by Silva et al. [24].

• GKD data set. This data set contains 70 test instances whose sizes range from n = 10 and m = 2

to n = 500 and m = 50. The instances are created by randomly choosing points from the square

[0, 10] × [0, 10], while the distance between each two points is calculated as the Euclidean distance.

These instances were introduced in Glover et al. [9].

• MDG data set. This data set consists of 100 test instances, and their sizes range from n = 500

and m = 50 to n = 3000 and m = 600. The distance matrices in these instances are generated by

selecting real numbers between 0 and 10 from a uniform distribution. For extensive description of these

instances, refer to Duarte and Marti [4], Marti et al. [17], and Palubeckis [21].

3.1 First vs best search strategy

The first part of experiments is devoted to discovering the most suitable search strategy for exploration of swap

neighborhood structure regarding overall performance of VNS MinDiff. Thus, we distinguish VNS MinDiff BI

that uses LS BI as a local search, and VNS MinDiff FI that uses LS FI as a local search. Regardless of the

used search strategy, after extensive testing, we set VNS MinDiff parameter pmax to the smaller value between

n and 30. The time limit, i.e., parameter tmax, is set to n seconds. Both VNS variants have been executed

ten times, with different random seeds on each instance.

Comparative results are summarized in Tables 1 and 2. For each VNS variant, we report the average

values of the best, the average and the worst solution values found on a ceratin data set regarding ten runs

(columns ‘best’, ‘avg.’ and ‘worst’, respectively). In columns ‘times’, the average CPU times consumed by

VNS variants to solve an instance from a certain data set are provided. On each instance, the percentage

deviation of the best found solution value by VNS MinDiff BI over ten runs from the corresponding best

found solution value attained by VNS MinDiff FI (in ten runs) is calculated using the formula:

VNS MinDiff BI− VNS MinDiff FI

VNS MinDiff BI
· 100%.

In the similar way, on each test instance, the percentage deviation of the average solution value found by

VNS MinDiff BI from the corresponding average solution value found by VNS MinDiff FI, and the percentage

http://www.optsicom.es/mdp/mdplib_2010.zip
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deviation of the worst solution value found VNS MinDiff BI from the corresponding worst solution value

found by VNS MinDiff FI are computed. Hence, in the last three columns of Table 1, we report the average

of these values over all instances from the same data set. In Table 1, the row before the last one contains the

averages of the average values reported for each data set, while the last row provides average values calculated

considering the union of those three data set as one data set. Since data sets contain unequal number of

instances, the average values calculated considering the union of those three data sets as one data set do not

coincide with the average values calculated as the averages of the average values over each data set.

Table 1: First versus best improvement search strategy within basic VNS

VNS MinDiff BI VNS MinDiff FI (%)dev.

Data set best avg. worst time best avg. worst time best avg. worst

SOM 18.40 20.09 21.75 121.47 18.45 20.32 22.15 112.70 0.18 -2.83 -4.02
GKD 45.99 49.67 55.12 111.34 45.08 46.85 49.13 129.44 4.74 5.78 7.18
MDG 3052.07 3290.12 3521.92 1077.87 3114.59 3281.61 3451.08 1097.54 -6.62 -6.05 -5.80

Average: 1038.82 1119.96 1199.59 436.89 1059.38 1116.26 1174.12 446.56 -0.57 -1.03 -0.88

Total average: 1625.23 1752.05 1876.24 621.105 1657.81 1746.56 1836.79 637.20 -1.72 -1.36 -0.83

In Table 2, for each data set, we report the number of instances (# wins) where: the best solution offered

by one VNS variant is better than the best solution found by another (Column ‘best’); the average solution

offered by one VNS variant is better than the average solution found by another (Column ‘avg.’); and the

worst solution offered by one VNS variant is better than the worst solution found by another (Column

‘worst’).

Table 2: First vs. best improvement search strategies - number of wins

VNS MinDiff BI VNS MinDiff FI

Data set # of instances best avg. worst best avg. worst

SOM 20 8 15 12 5 4 3
GKD 70 7 12 13 30 35 33
MDG 100 82 85 78 15 15 20

Total 190 97 112 103 50 54 56

From the results presented in Tables 1 and 2, the following interesting observations may be derived:

(i) VNS MinDiff BI performs better than VNS MinDiff FI on non-Euclidean instances (i.e., on SOM and

MDG sets) in terms of both precision and cpu time spent in the search. The opposite is true for the

GKD instances (where the average solution value found by VNS MinDiff FI is 5.78% better than the

average solution value found by VNS MinDiff BI). The similar pattern regarding comparison of the

first and the best search strategies (in solving travelling salesman problem) is observed in [10]. This

is the reason why our final heuristic VNS MinDiff uses the best improvement local search strategy for

non-Euclidean instances and the first improvement for Euclidean.

(ii) On the entire set of instances VNS MinDiff BI performs better, since there were more non-Euclidean

than Euclidean instances in all 3 data sets. Namely, the number of wins achieved by VNS MinDiff BI re-

garding all 190 instances is about two times larger than the number of wins achieved by VNS MinDiff FI.

(iii) On MDG data set containing the largest instances, VNS MinDiff BI performs much better than

VNS MinDiff FI. On 82 (out of 100) instances VNS MinDiff FI the best solution found by

VNS MinDiff BI is better than the best one of VNS MinDiff FI.

3.2 Comparison with the state-of-the-art approach

In this section we compare the results obtained by VNS MinDiff with the results found by a hybrid heuristic

that combines GRASP and exterior path relinking (GRASP EPR) [5]. The comparison on each data set is
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performed comparing the results of GRASP EPR with those of VNS MinDiff BI or with those of VNS MinDiff FI.

On data sets SOM and MDG, where VNS MinDiff BI exhibits better performance than VNS MinDiff FI, the

results of GRASP EPR are compared with the results of VNS MinDiff BI, while on the data set GKD, the results

of GRASP EPR are compared with the results of VNS MinDiff FI. GRASP EPR were tested on a computer with

an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB of RAM. It was executed a single time on each instance. On

the other hand, VNS MinDiff BI and VNS MinDiff BI have been executed ten times, with different random

seeds on each instance.

The comparison is presented in Tables 3–7. In these tables, we report the following values for each test

instance: solution value found by GRASP EPR (column ‘GRASP EPR’); CPU time consumed by GRASP EPR until

reaching that solution (column ‘GRASP EPR time’); the best, the average, and the worst solution values found

by a considered VNS MinDiff variant over ten runs (columns ‘VNS MinDiff best’, ‘VNS MinDiff avg.’ and

‘VNS MinDiff worst’, respectively); the deviation of these values from the corresponding value reported in

column ‘GRASP EPR’ (columns ‘(%)imp. best’, (%)imp. avg.’ and ‘(%)imp. worst’, respectively ); and finally,

the average CPU time consumed by a considered VNS MinDiff variant over ten runs to solve the considered

test instance (column ‘VNS MinDiff time’). The values in columns ‘(%)imp. best’, ‘(%)imp. avg.’, ‘(%)imp.

worst’ are computed using the formula

GRASP EPR− VNS MinDiff

GRASP EPR
· 100%,

and ‘VNS MinDiff best’, ‘VNS MinDiff avg.’ and ‘VNS MinDiff worst’, values instead of VNS MinDiff, re-

spectively.

From the results presented in Tables 3–7, we may infer the following:

(i) VNS MinDiff significantly outperforms GRASP EPR. Except on 20 small instances in GKD data, where

the same solution by two heuristics are obtained, for all other instances, but one, our VNS MinDiff

heuristic established new best known solutions. We found 169 new best known solutions, we had 20

ties and on instance MDG-a 18 n500 m50 we did not reach the best solution found by another method.

In fact, for the MDG instances, we found 99 (out of 100) new best known solutions and just one was

worst. We did not make much efforts to improve best known solutions (by increasing maximum cpu

Table 3: Computational results on SOM data set

VNS MinDiff (%)imp.

Test instance GRASP EPR time best avg. worst time best avg. worst

SOM-b 01 n100 m10 2 0.70 1 1 1 1.24 50.00 50.00 50.00
SOM-b 02 n100 m20 6 3.04 4 4.5 5 23.80 33.33 25.00 16.67
SOM-b 03 n100 m30 10 5.80 8 8.6 9 18.06 20.00 14.00 10.00
SOM-b 04 n100 m40 13 8.72 12 12.2 13 30.55 7.69 6.15 0.00
SOM-b 05 n200 m20 5 5.93 3 3.9 4 68.52 40.00 22.00 20.00
SOM-b 06 n200 m40 13 24.92 10 10.5 11 87.63 23.08 19.23 15.38
SOM-b 07 n200 m60 19 51.93 16 16.7 18 75.09 15.79 12.11 5.26
SOM-b 08 n200 m80 27 74.15 22 24 26 64.26 18.52 11.11 3.70
SOM-b 09 n300 m30 9 23.38 7 7.4 8 83.01 22.22 17.78 11.11
SOM-b 10 n300 m60 17 88.86 15 16.2 17 97.65 11.76 4.71 0.00
SOM-b 11 n300 m90 27 173.61 22 24.1 26 94.03 18.52 10.74 3.70
SOM-b 12 n300 m120 36 300.00 29 31.9 34 135.42 19.44 11.39 5.56
SOM-b 13 n400 m40 12 53.34 10 10.4 11 80.32 16.67 13.33 8.33
SOM-b 14 n400 m80 24 239.43 19 21.3 23 165.73 20.83 11.25 4.17
SOM-b 15 n400 m120 38 400.00 30 31.7 34 204.59 21.05 16.58 10.53
SOM-b 16 n400 m160 54 400.00 40 43.4 47 255.04 25.93 19.63 12.96
SOM-b 17 n500 m50 13 114.40 12 12.8 13 195.87 7.69 1.54 0.00
SOM-b 18 n500 m100 26 500.00 23 25.1 27 232.08 11.54 3.46 -3.85
SOM-b 19 n500 m150 47 500.00 36 39.6 45 248.05 23.40 15.74 4.26
SOM-b 20 n500 m200 69 500.00 49 56.4 63 268.57 28.99 18.26 8.70

Average: 23.35 173.41 18.40 20.09 21.75 121.47 21.82 15.20 9.32
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Table 4: Computational results on GKD data set

VNS MinDiff (%)imp.

Test instance GRASP EPR time best avg. worst time best avg. worst

GKD-b 01 n25 m2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GKD-b 02 n25 m2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GKD-b 03 n25 m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GKD-b 04 n25 m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GKD-b 05 n25 m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GKD-b 06 n25 m7 12.72 0.17 12.72 12.72 12.72 0.32 0.00 0.00 0.00
GKD-b 07 n25 m7 14.10 0.16 14.10 14.10 14.10 0.01 0.00 0.00 0.00
GKD-b 08 n25 m7 16.76 0.16 16.76 16.76 16.76 0.00 0.00 0.00 0.00
GKD-b 09 n25 m7 17.07 0.17 17.07 17.07 17.07 0.00 0.00 0.00 0.00
GKD-b 10 n25 m7 23.27 0.31 23.27 23.27 23.27 0.66 0.00 0.00 0.00
GKD-b 11 n50 m5 1.93 0.19 1.93 1.93 1.93 0.03 0.00 0.00 0.00
GKD-b 12 n50 m5 2.12 0.17 2.05 2.05 2.05 1.08 3.29 3.29 3.29
GKD-b 13 n50 m5 2.36 0.19 2.36 2.36 2.36 0.44 0.00 0.00 0.00
GKD-b 14 n50 m5 1.66 0.19 1.66 1.66 1.66 0.02 0.00 0.00 0.00
GKD-b 15 n50 m5 2.85 0.19 2.85 2.85 2.85 0.05 0.00 0.00 0.00
GKD-b 16 n50 m15 42.75 1.39 42.75 42.75 42.75 4.84 0.00 0.00 0.00
GKD-b 17 n50 m15 48.11 1.61 48.11 48.11 48.11 9.19 0.00 0.00 0.00
GKD-b 18 n50 m15 43.20 1.34 43.20 43.20 43.20 1.28 0.00 0.00 0.00
GKD-b 19 n50 m15 46.41 1.36 46.41 46.41 46.41 7.06 0.00 0.00 0.00
GKD-b 20 n50 m15 47.72 1.27 47.72 47.72 47.72 8.27 0.00 0.00 0.00
GKD-b 21 n100 m10 13.83 1.17 9.43 9.57 10.14 51.96 31.82 30.79 26.66
GKD-b 22 n100 m10 13.66 1.17 8.04 9.24 10.88 56.85 41.16 32.36 20.40
GKD-b 23 n100 m10 15.35 1.08 7.59 8.48 9.95 28.25 50.51 44.74 35.17
GKD-b 24 n100 m10 8.64 1.20 6.60 7.27 8.79 47.40 23.58 15.91 -1.79
GKD-b 25 n100 m10 17.20 1.33 6.91 9.44 10.43 47.72 59.80 45.12 39.36
GKD-b 26 n100 m30 168.73 9.44 159.19 159.19 159.19 19.18 5.65 5.65 5.65
GKD-b 27 n100 m30 127.10 9.72 124.17 124.17 124.17 32.57 2.30 2.30 2.30
GKD-b 28 n100 m30 106.38 10.42 106.38 106.38 106.38 28.50 0.00 0.00 0.00
GKD-b 29 n100 m30 137.45 10.05 135.85 135.85 135.85 44.95 1.17 1.17 1.17
GKD-b 30 n100 m30 127.48 9.28 127.27 128.64 134.11 39.71 0.16 -0.91 -5.20
GKD-b 31 n125 m12 11.75 3.14 11.05 11.05 11.05 40.15 5.89 5.89 5.89
GKD-b 32 n125 m12 18.79 2.22 11.79 13.42 15.02 69.67 37.25 28.60 20.04
GKD-b 33 n125 m12 18.53 2.50 9.76 11.86 14.44 68.55 47.35 36.02 22.10
GKD-b 34 n125 m12 19.49 2.26 10.79 13.82 15.60 77.14 44.65 29.10 19.95
GKD-b 35 n125 m12 18.11 2.31 7.53 10.54 12.24 70.00 58.43 41.83 32.45
GKD-b 36 n125 m37 155.43 17.74 125.55 127.96 135.18 69.46 19.23 17.68 13.03
GKD-b 37 n125 m37 198.89 19.44 195.80 197.20 201.01 81.01 1.56 0.85 -1.06
GKD-b 38 n125 m37 187.97 18.71 184.27 184.39 185.43 90.94 1.97 1.91 1.35
GKD-b 39 n125 m37 168.59 18.43 155.39 161.29 171.36 68.91 7.83 4.33 -1.64
GKD-b 40 n125 m37 178.19 18.18 161.68 173.08 174.34 89.29 9.27 2.87 2.16
GKD-b 41 n150 m15 23.35 4.39 16.46 19.95 22.13 54.41 29.50 14.53 5.19
GKD-b 42 n150 m15 26.79 4.59 15.16 19.28 21.83 66.04 43.39 28.03 18.52
GKD-b 43 n150 m15 26.75 4.15 13.30 16.94 19.80 77.15 50.31 36.70 26.01
GKD-b 44 n150 m15 25.94 4.32 15.31 17.97 20.70 66.67 40.99 30.71 20.19
GKD-b 45 n150 m15 27.77 4.36 14.38 19.23 22.73 79.91 48.23 30.75 18.16
GKD-b 46 n150 m45 227.75 34.37 207.81 212.65 232.53 120.67 8.76 6.63 -2.10
GKD-b 47 n150 m45 228.60 34.57 212.97 215.69 223.16 92.61 6.84 5.65 2.38
GKD-b 48 n150 m45 226.75 30.27 177.29 179.51 185.34 93.64 21.81 20.83 18.26
GKD-b 49 n150 m45 226.41 36.04 197.88 214.13 231.90 111.81 12.60 5.42 -2.42
GKD-b 50 n150 m45 248.86 33.04 220.76 229.22 243.67 116.62 11.29 7.89 2.08
GKD-c 01 n500 m50 16.85 186.20 8.54 10.07 12.11 397.95 49.33 40.25 28.17
GKD-c 02 n500 m50 16.53 189.93 8.57 10.40 11.29 383.66 48.13 37.08 31.70
GKD-c 03 n500 m50 18.50 181.71 8.01 10.23 12.70 345.83 56.72 44.73 31.35
GKD-c 04 n500 m50 18.87 173.69 8.54 10.01 11.23 397.43 54.75 46.94 40.46
GKD-c 05 n500 m50 18.45 182.91 9.27 11.32 12.94 274.06 49.77 38.63 29.83
GKD-c 06 n500 m50 17.92 183.83 8.74 10.02 13.69 403.46 51.21 44.09 23.61
GKD-c 07 n500 m50 17.54 173.60 10.05 11.05 12.10 422.10 42.68 37.02 31.00
GKD-c 08 n500 m50 19.86 186.61 9.52 10.94 13.35 393.58 52.04 44.90 32.77
GKD-c 09 n500 m50 17.96 169.37 8.93 10.23 12.12 348.37 50.28 43.07 32.54
GKD-c 10 n500 m50 17.10 180.95 9.12 10.57 12.06 303.23 46.65 38.18 29.47
GKD-c 11 n500 m50 15.77 184.50 8.09 9.54 11.58 392.04 48.73 39.47 26.55
GKD-c 12 n500 m50 17.71 179.79 8.00 10.59 12.34 353.99 54.85 40.24 30.36
GKD-c 13 n500 m50 17.04 184.04 9.06 10.56 13.56 338.66 46.86 38.05 20.44
GKD-c 14 n500 m50 19.27 181.15 9.62 10.63 12.31 344.63 50.09 44.84 36.13
GKD-c 15 n500 m50 17.65 177.48 8.61 10.58 12.60 274.57 51.20 40.05 28.60
GKD-c 16 n500 m50 16.32 179.78 8.81 10.54 12.60 379.18 45.99 35.42 22.77
GKD-c 17 n500 m50 17.56 180.31 8.83 9.92 10.52 359.28 49.75 43.49 40.08
GKD-c 18 n500 m50 19.03 180.01 9.62 11.30 13.75 317.63 49.45 40.64 27.76
GKD-c 19 n500 m50 18.15 192.12 8.41 10.18 11.49 301.02 53.64 43.90 36.69
GKD-c 20 n500 m50 18.53 182.48 8.14 10.23 12.75 294.80 56.05 44.80 31.20

Average: 52.57 56.99 45.08 46.85 49.13 129.44 24.78 19.46 13.70
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Table 5: Computational results on MDG data set

VNS MinDiff (%)imp.

Test instance GRASP EPR time best avg. worst time best avg. worst

MDG-a 01 n500 m50 13.53 179.47 11.34 12.26 12.67 151.84 16.19 9.39 6.36
MDG-a 02 n500 m50 12.99 176.56 11.67 12.45 12.94 189.10 10.16 4.14 0.38
MDG-a 03 n500 m50 13.34 172.91 11.71 12.22 12.82 311.65 12.22 8.43 3.90
MDG-a 04 n500 m50 13.41 178.02 11.56 12.34 12.94 258.35 13.80 8.01 3.50
MDG-a 05 n500 m50 13.50 164.69 12.05 12.50 12.77 233.59 10.74 7.39 5.41
MDG-a 06 n500 m50 12.95 180.56 10.87 12.15 12.74 328.59 16.06 6.19 1.62
MDG-a 07 n500 m50 13.09 173.27 10.95 12.14 13.17 292.69 16.35 7.30 -0.61
MDG-a 08 n500 m50 13.89 170.31 11.80 12.41 13.00 204.47 15.05 10.68 6.41
MDG-a 09 n500 m50 13.61 176.66 11.54 12.37 12.80 248.57 15.21 9.12 5.95
MDG-a 10 n500 m50 12.56 175.50 11.60 12.33 13.00 185.04 7.64 1.82 -3.50
MDG-a 11 n500 m50 13.21 174.29 11.25 12.12 12.68 117.75 14.84 8.29 4.01
MDG-a 12 n500 m50 13.01 182.68 12.17 12.53 12.87 251.91 6.46 3.70 1.08
MDG-a 13 n500 m50 12.70 170.06 12.05 12.41 12.99 298.51 5.12 2.31 -2.28
MDG-a 14 n500 m50 12.89 181.77 11.60 12.42 13.06 164.87 10.01 3.69 -1.32
MDG-a 15 n500 m50 13.51 178.36 11.55 12.39 12.91 221.15 14.51 8.33 4.44
MDG-a 16 n500 m50 13.19 176.83 12.15 12.64 13.12 240.76 7.88 4.19 0.53
MDG-a 17 n500 m50 12.48 180.14 11.76 12.32 12.73 276.39 5.77 1.32 -2.00
MDG-a 18 n500 m50 11.49 169.06 11.95 12.42 12.90 317.89 -4.00 -8.11 -12.27
MDG-a 19 n500 m50 13.50 177.66 11.50 12.34 12.93 241.46 14.81 8.58 4.22
MDG-a 20 n500 m50 13.20 175.63 11.66 12.18 12.60 253.48 11.67 7.75 4.55
MDG-a 21 n2000 m200 68.00 2000.00 50.00 53.10 57.00 1359.44 26.47 21.91 16.18
MDG-a 22 n2000 m200 70.00 2000.01 51.00 53.60 56.00 1490.53 27.14 23.43 20.00
MDG-a 23 n2000 m200 63.00 2000.00 52.00 54.30 57.00 959.98 17.46 13.81 9.52
MDG-a 24 n2000 m200 63.00 2000.00 48.00 53.00 58.00 1348.31 23.81 15.87 7.94
MDG-a 25 n2000 m200 57.00 2000.00 51.00 54.30 58.00 1255.08 10.53 4.74 -1.75
MDG-a 26 n2000 m200 68.00 2000.00 49.00 53.00 57.00 1136.47 27.94 22.06 16.18
MDG-a 27 n2000 m200 62.00 2000.00 50.00 54.70 58.00 1196.13 19.35 11.77 6.45
MDG-a 28 n2000 m200 64.00 2000.00 48.00 53.10 57.00 1280.44 25.00 17.03 10.94
MDG-a 29 n2000 m200 63.00 2000.01 51.00 53.00 56.00 1097.72 19.05 15.87 11.11
MDG-a 30 n2000 m200 65.00 2000.00 50.00 54.00 57.00 804.95 23.08 16.92 12.31
MDG-a 31 n2000 m200 67.00 2000.00 50.00 54.50 60.00 1084.71 25.37 18.66 10.45
MDG-a 32 n2000 m200 57.00 2000.00 51.00 54.60 61.00 1049.13 10.53 4.21 -7.02
MDG-a 33 n2000 m200 67.00 2000.01 49.00 53.70 60.00 1315.45 26.87 19.85 10.45
MDG-a 34 n2000 m200 59.00 2000.00 49.00 53.30 57.00 1058.42 16.95 9.66 3.39
MDG-a 35 n2000 m200 67.00 2000.00 53.00 54.70 56.00 1020.57 20.90 18.36 16.42
MDG-a 36 n2000 m200 57.00 2000.00 51.00 54.10 57.00 1300.08 10.53 5.09 0.00
MDG-a 37 n2000 m200 57.00 2000.00 49.00 52.90 56.00 1294.62 14.04 7.19 1.75
MDG-a 38 n2000 m200 65.00 2000.00 48.00 53.60 57.00 1263.25 26.15 17.54 12.31
MDG-a 39 n2000 m200 60.00 2000.00 51.00 54.00 58.00 1234.13 15.00 10.00 3.33
MDG-a 40 n2000 m200 62.00 2000.00 50.00 53.20 56.00 1056.70 19.35 14.19 9.68
MDG-b 01 n500 m50 1350.08 178.54 1185.11 1246.78 1296.49 266.17 12.22 7.65 3.97
MDG-b 02 n500 m50 1368.54 189.36 1182.48 1256.77 1322.03 245.14 13.60 8.17 3.40
MDG-b 03 n500 m50 1286.01 186.81 1070.87 1243.84 1310.09 331.21 16.73 3.28 -1.87
MDG-b 04 n500 m50 1300.24 185.34 1153.93 1240.57 1287.46 239.95 11.25 4.59 0.98
MDG-b 05 n500 m50 1258.79 185.03 1209.80 1262.90 1317.82 186.06 3.89 -0.33 -4.69
MDG-b 06 n500 m50 1272.73 182.13 1071.61 1227.71 1319.86 298.82 15.80 3.54 -3.70
MDG-b 07 n500 m50 1279.10 193.63 1099.68 1215.38 1311.55 256.32 14.03 4.98 -2.54
MDG-b 08 n500 m50 1315.79 185.12 1185.59 1245.45 1316.97 247.01 9.90 5.35 -0.09
MDG-b 09 n500 m50 1346.91 175.09 1154.33 1232.61 1261.83 243.90 14.30 8.49 6.32
MDG-b 10 n500 m50 1339.82 179.28 1198.08 1242.15 1289.55 272.05 10.58 7.29 3.75

Average: 292.82 907.10 254.90 274.72 288.81 619.62 14.97 9.07 4.11
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Table 6: Computational results on MDG data set-continued

VNS MinDiff (%)imp.

Test instance GRASP EPR time best avg. worst time best avg. worst

MDG-b 11 n500 m50 1305.28 182.65 1145.73 1221.54 1275.68 249.64 12.22 6.42 2.27
MDG-b 12 n500 m50 1274.36 169.72 1165.43 1238.15 1294.60 252.95 8.55 2.84 -1.59
MDG-b 13 n500 m50 1337.33 185.02 1180.43 1238.00 1280.44 157.10 11.73 7.43 4.25
MDG-b 14 n500 m50 1291.06 191.77 1166.81 1247.25 1315.79 150.65 9.62 3.39 -1.92
MDG-b 15 n500 m50 1278.86 186.00 1220.83 1273.74 1314.10 281.51 4.54 0.40 -2.76
MDG-b 16 n500 m50 1328.66 180.79 1176.16 1248.31 1317.30 295.13 11.48 6.05 0.85
MDG-b 17 n500 m50 1299.00 179.15 1174.66 1252.52 1297.05 319.81 9.57 3.58 0.15
MDG-b 18 n500 m50 1321.87 174.22 1187.82 1267.94 1338.04 152.27 10.14 4.08 -1.22
MDG-b 19 n500 m50 1333.22 172.76 1175.26 1257.81 1291.88 369.35 11.85 5.66 3.10
MDG-b 20 n500 m50 1328.53 172.66 1151.34 1233.04 1285.53 271.70 13.34 7.19 3.24
MDG-b 21 n2000 m200 5073.98 2000.00 4083.16 4468.62 4737.59 1025.80 19.53 11.93 6.63
MDG-b 22 n2000 m200 5062.07 2000.00 4187.77 4540.42 4952.63 1039.79 17.27 10.30 2.16
MDG-b 23 n2000 m200 4899.35 2000.00 4237.38 4489.07 5171.39 1327.39 13.51 8.37 -5.55
MDG-b 24 n2000 m200 4780.51 2000.00 4212.28 4452.33 4708.87 1002.08 11.89 6.87 1.50
MDG-b 25 n2000 m200 5021.93 2000.00 4152.88 4435.36 4713.25 1375.81 17.31 11.68 6.15
MDG-b 26 n2000 m200 4959.65 2000.00 4039.92 4497.39 4798.83 1317.73 18.54 9.32 3.24
MDG-b 27 n2000 m200 4874.36 2000.00 4010.77 4486.90 4855.86 1079.71 17.72 7.95 0.38
MDG-b 28 n2000 m200 5245.69 2000.00 4206.07 4498.25 4798.32 844.44 19.82 14.25 8.53
MDG-b 29 n2000 m200 4955.58 2000.00 4214.79 4505.51 4809.00 1037.28 14.95 9.08 2.96
MDG-b 30 n2000 m200 5045.63 2000.00 4272.07 4564.38 4786.12 1022.86 15.33 9.54 5.14
MDG-b 31 n2000 m200 4962.72 2000.00 4328.97 4474.43 4710.96 1248.66 12.77 9.84 5.07
MDG-b 32 n2000 m200 4833.29 2000.00 4226.55 4484.07 4664.58 1069.63 12.55 7.23 3.49
MDG-b 33 n2000 m200 4973.32 2000.39 4037.50 4387.64 4786.52 1281.73 18.82 11.78 3.76
MDG-b 34 n2000 m200 4880.74 2000.00 4279.58 4480.58 4850.85 1038.31 12.32 8.20 0.61
MDG-b 35 n2000 m200 5061.54 2000.00 4018.60 4367.05 4679.23 1582.57 20.61 13.72 7.55
MDG-b 36 n2000 m200 4963.93 2000.00 4231.38 4433.05 4674.14 1067.68 14.76 10.69 5.84
MDG-b 37 n2000 m200 4801.03 2000.00 4100.54 4472.45 4834.64 1479.05 14.59 6.84 -0.70
MDG-b 38 n2000 m200 4946.67 2000.00 4136.67 4506.89 4802.26 1262.67 16.37 8.89 2.92
MDG-b 39 n2000 m200 5095.33 2000.44 4242.30 4450.95 4635.06 1219.16 16.74 12.65 9.03
MDG-b 40 n2000 m200 5001.89 2000.00 4249.76 4556.52 4804.78 1422.06 15.04 8.90 3.94
MDG-c 01 n3000 m300 7429.00 3001.50 6344.00 6595.40 7135.00 1455.45 14.60 11.22 3.96
MDG-c 02 n3000 m300 7781.00 3001.59 6109.00 6651.50 7183.00 1320.28 21.49 14.52 7.69
MDG-c 03 n3000 m300 7438.00 3001.63 6365.00 6828.70 7221.00 1639.72 14.43 8.19 2.92
MDG-c 04 n3000 m300 7212.00 3001.71 6304.00 6787.10 7215.00 1294.78 12.59 5.89 -0.04
MDG-c 05 n3000 m300 7346.00 3001.48 5954.00 6729.30 7282.00 1648.19 18.95 8.40 0.87
MDG-c 06 n3000 m400 10559.00 3002.86 8403.00 9422.10 10592.00 1861.19 20.42 10.77 -0.31
MDG-c 07 n3000 m400 9738.00 3003.16 8606.00 9308.60 9770.00 1847.39 11.62 4.41 -0.33
MDG-c 08 n3000 m400 10262.00 3002.85 8217.00 9206.80 10219.00 2009.81 19.93 10.28 0.42
MDG-c 09 n3000 m400 10202.00 3003.00 8478.00 9140.50 10337.00 2082.95 16.90 10.40 -1.32
MDG-c 10 n3000 m400 9266.00 3003.02 8244.00 9372.30 10129.00 1821.70 11.03 -1.15 -9.31
MDG-c 11 n3000 m500 13203.00 3005.46 11145.00 11998.90 13151.00 3014.47 15.59 9.12 0.39
MDG-c 12 n3000 m500 13458.00 3005.06 11366.00 12001.40 12709.00 3008.85 15.54 10.82 5.57
MDG-c 13 n3000 m500 11930.00 3004.86 10942.00 11832.40 12427.00 3012.91 8.28 0.82 -4.17
MDG-c 14 n3000 m500 13734.00 3005.04 10903.00 11455.20 12095.00 2736.52 20.61 16.59 11.93
MDG-c 15 n3000 m500 12091.00 3004.80 11051.00 12311.90 13282.00 3008.82 8.60 -1.83 -9.85
MDG-c 16 n3000 m600 16682.00 3007.55 13934.00 14732.10 15278.00 3006.15 16.47 11.69 8.42
MDG-c 17 n3000 m600 16673.00 3007.45 14086.00 14882.70 16184.00 3009.47 15.52 10.74 2.93
MDG-c 18 n3000 m600 15307.00 3007.09 13415.00 14515.20 15385.00 3006.68 12.36 5.17 -0.51
MDG-c 19 n3000 m600 14812.00 3007.68 13850.00 14821.90 15976.00 3005.60 6.49 -0.07 -7.86
MDG-c 20 n3000 m600 14462.00 3007.16 13532.00 14651.80 15396.00 3013.64 6.43 -1.31 -6.46

Average: 6842.45 2037.61 5849.23 6305.52 6755.03 1460.98 14.23 7.79 1.68

Table 7: Average results on each data set

VNS MinDiff (%)imp.

Data set GRASP EPR time best avg. worst time best avg. worst

SOM 23.35 173.41 18.40 20.09 21.75 121.47 21.82 15.20 9.32
GKD 52.57 56.99 45.08 46.85 49.13 129.44 24.78 19.46 13.70
MDG 3567.63 1472.35 3052.07 3290.12 3521.92 1040.30 14.60 8.43 2.89

Average: 1214.52 567.58 1038.52 1119.02 1197.60 430.40 20.40 14.37 8.64
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time or by increasing the number of 10 trials). However, for the curiosity, we just wanted to check on

that single instance, if we could improve the best known solution on it as well. We first increased the

tmax parameter from 500 seconds to 550 seconds. Once in 10 trials we got the new best value again

(equal to 11.34, the previous one was 11.49). It has been obtained after 504 seconds.

(ii) These new best known solutions are significantly better than the previous ones. This is especially true

on data set GKD, where VNS MinDiff improves the previous best known solutions values about 25%

on best known. Also, the improvements achieved on data sets SOM and MDG are remarkable, and

their % improvement are about 22% and 15%, respectively.

(iii) On each data set, the average improvement of VNS MinDiff achieved over GRASP EPR is greater or equal

to 14.37%.

(iv) On data sets SOM, GKD and MDG the worst improvements of VNS MinDiff achieved over GRASP EPR

are 9.32%, 13.70% and 2.89%, respectively.

(v) Regarding the average CPU time consumed, VNS MinDiff is faster than GRASP EPR on data sets MDG

and SOM, while on data set GKD, GRASP EPR is faster. However, regarding the average CPU time on

all test instances, it follows that VNS MinDiff needs less CPU time than GRASP EPR on average to solve

an instance (compare 430.40 seconds of VNS MinDiff and 567.58 of GRASP EPR).

All observations from above undoubtedly confirm superiority of VNS MinDiff over the current state-of-

the-art heuristic GRASP EPR.

4 Conclusion

In this paper we addressed the minimum differential dispersion problem. For solving this NP-hard opti-

mization problem, we propose basic Variable Neighborhood Search (VNS) based heuristic that uses just

interchange neighborhood structure in both intensification and diversification phases. The proposed VNS

based heuristic is tested on 190 benchmark instances. The results have been compared with those of a hybrid

heuristic that combines GRASP and exterior path relinking (GRASP EPR). The comparative analysis show

that our heuristic succeeded to establish 170 (out of 190) new best known solutions, improving the quality

of previous ones for about 20% on average! Additionally, the computational results disclosed that our VNS

is faster than (GRASP EPR) heuristics. All these facts indicate that the basic VNS, despite its simplicity

and user friendliness, significantly outperforms recent approach that combines GRASP and exterior path

relinking. We believe that our results will return area of heuristics to its original track: make an efficient and

effective algorithm to be as simple as possible: the less is more.

Future work may include development of either basic or more advanced VNS based heuristics for other

dispersion problems.
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