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Dépôt légal – Bibliothèque et Archives nationales du Québec,
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nologies.
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Abstract: A class of hybrid systems with both autonomous and controlled switchings and jumps is considered
where switching manifolds corresponding to autonomous switchings and jumps are allowed to be codimension
k submanifolds in Rn with 1 ≤ k ≤ n. Optimal control problems associated to this class of hybrid systems
are studied where in addition to running and terminal costs, costs associated to switching between discrete
states are allowed. Statements of the Hybrid Minimum Principle and Hybrid Dynamic Programming as well
as their relationship are presented in this general setting and an illustrative example is provided.
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1 Introduction

There is now an extensive literature on the optimal control of hybrid systems (see e.g. [1–15]). On one hand,

the generalization of the fundamental Pontryagin Maximum Principle (PMP) [16] results in the Hybrid

Minimum Principle (HMP) [1–8] that gives necessary conditions for the optimality of the trajectory and

the control inputs of a given hybrid system with fixed initial conditions and a sequence of autonomous

and controlled switchings. These conditions are expressed in terms of the minimization of the distinct

Hamiltonians defined along the hybrid trajectory of the system corresponding to a sequence of discrete

states and continuous valued control inputs on the associated time intervals. A feature of special interest

in the Hybrid Minimum Principle is the boundary conditions on the adjoint processes and the Hamiltonian

functions at autonomous and controlled switching times and states; these boundary conditions may be viewed

as a generalization of the optimal control case of the Weierstrass?Erdmann conditions of the calculus of

variations [17].

The generalization of Dynamic Programming [18] for hybrid systems, on the other hand, results in the

theory of Hybrid Dynamic Programming (HDP) which employs the optimal cost to go for the hybrid optimal

control problem as its fundamental notion. Under the assumption of smoothness of the value function, the

Principle of Optimality results in the celebrated Hamilton-Jacobi-Bellman (HJB) equation of HDP [9–12,

19–26]. In the case of non-smooth value functions, the so-called viscosity solutions give a general class of

solutions to the HJB equation [9–11].

The usual assumption in design, analysis and control of hybrid systems is that switching manifolds

corresponding to autonomous switchings and jumps are smooth codimension 1 sub-manifolds of Rn. In some

studies like hybrid stability, this assumption reduces the analysis by decoupling the sequence of switching

and the uniform convergence of hybrid executions within those with the same switching sequence. However,

in the hybrid optimal control context, the assumption of codimension 1 switching manifolds is not a necessity

since the optimality conditions are expressed in terms of the admissible controls and their corresponding

trajectories that satisfy the desired switching conditions. While numerous hybrid optimal control problems

can be considered where the system has switching manifolds with dimensions smaller than n− 1, i.e. where

switching manifolds are codimension k sub-manifold of Rn with k > 1, this class of hybrid systems has been

the subject of a limited number of studies in the hybrid optimal control context.

In past work of the authors (see [24–28]) the results of the Hybrid Minimum Principle are given for the

general class of hybrid optimal control problems with autonomous and controlled state jumps and in the

presence of a large range of running, terminal and switching costs. In this paper, the class of hybrid systems

under study is further generalized by letting the switching manifolds be codimension k sub-manifold of Rn,

with k ∈ {1, · · · , n}. In addition, as shown in [24–26], the adjoint process in the HMP and the gradient of the

value function in HDP are governed by the same dynamic equation and have the same boundary conditions

and hence are identical to each other. The same result is shown to hold in this paper in the presence of low

dimensional switching manifolds. Furthermore, an illustrative example is provided in which the continuous

state lies in R4 and the switching manifold is in R2, i.e. it is a codimension 2 sub-manifold of R4.

2 Hybrid systems

A hybrid system (structure) H is a septuple

H = {H := Q× Rn, I := Σ× U,Γ, A, F,Ξ,M} (1)

where the symbols in the expression are defined as below.

A0: Q = {1, 2, ..., |Q|} ≡
{
q1, q2, ..., q|Q|

}
, |Q| <∞ , is a finite set of discrete states (components).

H := Q× Rn is called the (hybrid) state space of the hybrid system H.

I := Σ × U is the set of system input values, where |Σ| < ∞ and U ⊂ Rm is the set of admissible input

control values, where U is an open bounded set in Rm which necessarily has compact closure Ū .
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The set of admissible (continuous) control inputs U (U) := L∞ ([t0, T∗) , U), is defined to be the set

of all measurable functions that are bounded up to a set of measure zero on [t0, T∗) , T∗ < ∞, where the

boundedness condition necessarily holds since admissible input functions take values in the open bounded

set U .

Γ : H×Σ→ H is a time independent (partially defined) discrete state transition map which is the identity

on the second (Rn) component.

Ξ : H × Σ→ H is a time independent (partially defined) continuous state jump transition map which is

the identity on the first (Q) component. All ξσ ∈ Ξ are assumed to be injective and continuously differentiable

in the continuous state x.

A : Q × Σ → Q denotes both a finite automaton and the automaton’s associated transition function on

the state space Q and event set Σ, such that for a discrete state q ∈ Q only the discrete controlled and

uncontrolled transitions into the q-dependant subset {A (q, σ) , σ ∈ Σ} ⊂ Q occur under the projection of Γ

on its Q components: Γ : Q×Rn ×Σ→ H|Q. In other words, Γ can only make a discrete state transition in

a hybrid state (q, x) if the automaton A can make the corresponding transition in q.

F is an indexed collection of vector fields {fq}q∈Q such that fq ∈ Ckf (Rn × U → Rn), kf ≥ 1, satisfies

a uniformx Lipschitz condition, i.e. there exists Lf < ∞ such that ‖fq (x1, u)− fq (x2, u)‖ ≤ Lf ‖x1 − x2‖,

x1, x2 ∈ Rn, u ∈ U , q ∈ Q. We also assume that there exists Kf < ∞ such that max
q∈Q

(
sup
u∈U

(‖fq (0, u)‖)
)
≤

Kf .

M = {mα : α ∈ Q×Q, } denotes a collection of switching manifolds such that, for any ordered pair

α = (p, q), mα is a smooth, i.e. C∞ codimension k sub-manifold of Rn, 1 ≤ k ≤ n, possibly with boundary

∂mα. In this paper, we consider time invariant switching manifolds and hence, each switching manifold is

described locally by mα =
{
x : m1

α (x) = 0 ∧ · · · ∧mk
α (x) = 0

}
. It is assumed that mα ∩ mβ = ∅, for all

α, β ∈ Q×Q,α 6= β, except in those cases where mα is identified with its reverse ordered version mᾱ giving

mα = mᾱ. �

A1: The initial state h0 := (q0, x (t0)) ∈ H is such that mq0,qj (x0) 6= 0, for all qj ∈ Q. �

3 Hybrid optimal control problems

A2: Let {lq}q∈Q, lq ∈ Cnl (Rn × U → R+), nl ≥ 1, be a family of running cost functions; {cσ}σ∈Σ ∈
Cnc (Rn × Σ→ R+), nc ≥ 1, be a family of switching cost functions; and g ∈ Cng (Rn → R+), ng ≥ 1, be a

terminal cost function satisfying the following:

There exists Kl <∞ and 1 ≤ γl <∞ such that |lq (x, u)| ≤ Kl (1 + ‖x‖γl), for all x ∈ Rn, u ∈ U , q ∈ Q.

There exists Kc <∞ and 1 ≤ γc <∞ such that |cσ (x)| ≤ Kc (1 + ‖x‖γc), for all x ∈ Rn, σ ∈ Σ.

There exists Kg <∞ and 1 ≤ γg <∞ such that |g (x)| ≤ Kg (1 + ‖x‖γg ), for all x ∈ Rn. �

Consider the initial time t0, final time tf <∞, initial hybrid state h0 = (q0, x0), and the upper-bound of

maximum number of swithchings L̄ <∞. Let

SL =
{

(t0, id) , (t1, σq0q1) , . . . ,
(
tL, σqL−1qL

)}
≡ {(t0, q0) , (t1, q1) , . . . , (tL, qL)} (2)

be a hybrid switching sequence and let IL := (SL, u) , u ∈ U be a hybrid input trajectory which subject to

A0 and A1 results in a (necessarily unique) hybrid state process (see [4]) and is such that L controlled and

autonomous switchings occur on the time interval [t0, T (IL)], where T (IL) ≤ tf . In this paper, the number

of switchings L is held fixed and we denote the corresponding set of inputs by {IL}.
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Define the hybrid cost on [t0, tf ] as

J (t0, tf , h0, L; IL) :=

L∑
i=0

∫ ti+1

ti

lqi (xqi (s) , u (s)) ds+

L∑
j=1

cσqj−1qj

(
xqj−1 (tj−)

)
+ g (xqL (tf )) (3)

subject to

ẋqi (t) = fqi (xqi (t) , u (t)) , a.e. t ∈ [ti, ti+1) , (4)

h0 = (q0, xq0 (t0)) = (q0, x0) , (5)

xqj (tj) = ξ
(
xqj−1 (tj−)

)
≡ ξ

(
lim
t↑tj

xqj−1 (t)

)
(6)

where 0 ≤ i ≤ L, 1 ≤ j ≤ L, tL+1 = tf <∞ and L+ 2 ≤ L̄ <∞.

Then the Hybrid Optimal Control Problem (HOCP) is to find the infimum Jo (t0, tf , h0, L) over the family

of input trajectories {IL}, i.e.

Jo (t0, tf , h0, L) = inf
IL
J (t0, tf , h0, L; IL) (7)

�

4 Hybrid minimum principle

Theorem 1 [29] Consider the hybrid system H together with the assumptions A0, A1 and A2 as above and

the HOCP (7) for the hybrid cost (3). Define the family of system Hamiltonians by

Hqj (x, λ, u) = λT fqj (x, u) + lqj (x, u) (8)

for x ∈ Rn, λ ∈ Rn, u ∈ U , qj ∈ Q. Then for the optimal switching sequence qo and along the optimal

trajectory xo there exists an adjoint process λo such that

ẋo =
∂Hqo

∂λ
(xo, λo, uo) , (9)

λ̇o = −∂Hqo

∂x
(xo, λo, uo) (10)

almost everywhere t ∈ [t0, tf ] with

xo (t0) = x0, (11)

xo (tj) = ξ (xo (tj−)) , (12)

λo (tf ) = ∇g (xo (tf )) , (13)

λo (tj−) ≡ λo (tj) = ∇ξTλo (tj+) + p n̂m +∇cσ, (14)

where p = 0 when tj indicates the time of a controlled switching and p ∈ R when tj indicates the time of an

autonomous switching, and

n̂m ‖ proj
span{∇mi}

fqj−1
(xo (tj−) , uo (tj−)) (15)

i.e. n̂m is a vector in Rn parallel to the projection of fqj−1
in the (generally non-orthogonal) vector space

generated by the span of
{
∇mi

qj−1qj

}
, i ∈ {1, · · · , k}.

Moreover, the Hamiltonian is minimized with respect to the control input

Hqo (xo, λo, uo) ≤ Hqo (xo, λo, u) (16)

for all u ∈ U ; and at a switching time tj the Hamiltonian satisfies

Hqj−1 (tj−) ≡ Hqj−1 (tj) = Hqj (tj) ≡ Hqj (tj+) (17)

�
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5 Hybrid dynamic programming and its relation to the hybrid mimimum
principle

In Hybrid Dynamic Programming the value function V evaluated at a time t ∈ [t0, tf ] and the state h = (q, x)

is defined as the optimal cost-to-go for the hybrid system (1) with the performance function (3). For simplicity

of notation, in the statement of Hybrid Dynamic Programming, we use x instead of xo in order to indicate

that x refers to the general solution of the corresponding HOCP passing through it. We adapt the same

notation for qo, toj , etc.

Theorem 2 [29] If at the instant t and the hybrid state (q, x) the value function V for the HOCP (3) is

differentiable then it necessarily satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

− ∂V

∂t
− inf

u
{lq (x, u) + 〈∇xV, fq (x, u)〉} = 0 (18)

In addition, the value function satisfies the following terminal time condition

V (tf , qL, x, 0) = g (x) (19)

and the boundary conditions

V (tj , q, x, L− j + 1) = min
σ
{V (tj ,Γ (q, σ) , ξ (x) , L− j) + cσ (x)} (20)

subject to

m1
σ (x) = 0, · · · ,mk

σ (x) = 0 (21)

if tj is a time of an autonomous switching; and

V (τ, q, x, L− j + 1) ≤ V (τ,Γ (q, σ) , ξ (x) , L− j) + cσ (x) (22)

with the equality achieved for τ = tj , the time of a controlled switching. �

Theorem 3 [29] If in addition to the assumptions A0, A1 and A2 the functions fq and lq are continuously

differentiable for all q ∈ Q, and the (necessarily Lipschitz) value function V is twice continuously differentiable

almost everywhere in Lebesgue sense on R×Rn then the adjoint process locally describes the gradient of the

value function, i.e. at all Lebesgue points and times

λo (t) = ∇xV (t, q, x, .))|x=xo a.e. t ∈ [t0, tf ] (23)

where xo denotes the optimal trajectory passing through the point x and λo is the adjoint process corre-

sponding to xo. �

6 Illustrative example

6.1 Problem formulation

Consider the following mechanical system with two point masses m1 and m2 each one attached to separate

spring and damper with the configuration depicted in Figure 1. The spring and the damper attached to the

mass m1 have the stiffness and damping coefficients k1 and c1 respectively and apply forces to m1 in the

direction of the x axis and the spring and the damper attached to the mass m2 have the stiffness and damping

coefficients k2 and c2 respectively and apply forces to m2 in the direction of the y axis. The neutral positions

for the springs k1 and k2 have the coordinates (d1, 0) and (0, d2) respectively in the coordinate system shown

in Figure 1. Denoting x1 := x, x2 := ẋ, x3 := y and x4 := ẏ the dynamics of the system is described as
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Figure 1: The system studied in the example

ẋ1 = x2

ẋ2 = − k1

m1
x1 −

c1
m1

x2 +
1

m1
u1 +

k1

m1
d1

ẋ3 = x4

ẋ4 = − k2

m2
x3 −

c2
m2

x4 +
1

m2
u2 +

k2

m2
d2

(24)

which has the matrix representation

ẋ = A1x+B1u+D1 (25)

with

A1 =


0 1 0 0
−k1
m1

−c1
m1

0 0

0 0 0 1

0 0 −k2
m2

−c2
m2

 ,

B1 =


0 0
1
m1

0

0 0
0 1

m2

 , D1 =


0

k1
m1
d1

0
k2
m2
d2

 (26)

When both masses pass through the origin at the same time a collision occurs. Denoting the time of the

collision by ts this incident corresponds to a switching manifold in the form of a codimension 2 submanifold

of R4 described by

m : {x1 (ts−) = 0 ∧ x3 (ts−) = 0} (27)

Consider a completely plastic collision in which the masses attach to each other and hence, the speeds

after the collision determined by the law of conservation of linear momentum are related to speeds before the

collision by
(m1 +m2) vx (ts+) ≡ (m1 +m2) vx (ts) = m1v1x (ts−)
(m1 +m2) vy (ts+) ≡ (m1 +m2) vy (ts) = m2v2y (ts−)

(28)
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that determines the corresponding autonomous jump map as
x1 (ts)
x2 (ts)
x3 (ts)
x4 (ts)

 =


1 0 0 0
0 m1

m1+m2
0 0

0 0 1 0
0 0 0 m2

m1+m2



x1 (ts−)
x2 (ts−)
x3 (ts−)
x4 (ts−)

 (29)

Assuming decoupled stiffness and damping in the two directions (see e.g. [30, 31]) the dynamics of the

system after the collision is described by

ẋ1 = x2

ẋ2 = − k1

m1 +m2
x1 −

c1
m1 +m2

x2 +
1

m1 +m2
u1 +

k1

m1 +m2
d1

ẋ3 = x4

ẋ4 = − k2

m1 +m2
x3 −

c2
m1 +m2

x4 +
1

m1 +m2
u2 +

k2

m1 +m2
d2

(30)

which has the matrix representation

ẋ = A2x+B2u+D2 (31)

with

A2 =


0 1 0 0
−k1

m1+m2

−c1
m1+m2

0 0

0 0 0 1

0 0 −k2
m1+m2

−c2
m1+m2

 ,

B2 =


0 0
1

m1+m2
0

0 0
0 1

m1+m2

 , D2 =


0

k1
m1+m2

d1

0
k2

m1+m2
d2

 (32)

For the hybrid system described above consider the optimal control problem

J (x0, T, u) =

∫ T

0

l (x, u) dt+ c (x (ts−)) + g (x (T )) (33)

with the running costs

l1 (x, u) = l2 (x, u) ≡ l (x, u) =
1

2

(
u2

1 + u2
2

)
=

1

2
uTu (34)

Take the switching cost as the kinetic energy just before switching (i.e. collision) which is

c (x (ts−)) =
1

2
m1 (x2 (ts−))

2
+

1

2
m2 (x4 (ts−))

2
(35)

and assume that the terminal cost penalizes the total energy at the final time T , i.e.

g (x (T )) =
1

2
(m1 +m2) (x2 (T ))

2
+

1

2
(m1 +m2) (x4 (T ))

2
+

1

2
k1 (x1 (T )− d1)

2
+

1

2
k2 (x3 (T )− d2)

2
(36)

Consequently, the hybrid optimal control problem is defined as finding the minimum of J in (33) and the

corresponding minimizing control inputs for the given system.
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6.2 The HMP results

Employing Theorem 1, the Hamiltonian is formed as

Hi (x, λ, u) = λT (Aix+Biu+Di) +
1

2
uTu (37)

The Hamiltonian minimization condition (16) gives

∂Hi

∂u
= 0 ⇒ uo = −BTi λo (38)

and hence, from (9) and (10)

ẋo = Aix
o −BiBTi λo +Di (39)

λ̇o = −ATi λo (40)

with the initial condition for xo given as

xo (0) = x0 (41)

and its boundary condition (12) given as

x (ts) = Px (ts−) (42)

where P is defined from (29) as

P =


1 0 0 0
0 m1

m1+m2
0 0

0 0 1 0
0 0 0 m2

m1+m2

 (43)

The terminal condition for λo is given from (13) as

λo (T ) = ∇g (x (T )) = G (x− rf ) (44)

with G and rf determined from (36) as

G =


k1 0 0 0
0 m1 +m2 0 0
0 0 k2 0
0 0 0 m1 +m2

 , rf =


d1

0
d2

0

 (45)

The boundary condition for λo is determined by (14) as

λo (tj−) ≡ λo (tj) = PTλo (tj+) + pn̂m + Cx (46)

with C defined from (35) as

C =


0 0 0 0
0 m1 0 0
0 0 0 0
0 0 0 m2

 (47)

and n̂m determined from (15) as

n̂m ‖ proj

span


 1

0
0
0

,
 0

0
1
0




{
A1x

o (ts−)−B1B
T
1 λ

o (ts−) +D1

}
=


x2 (ts−)

0
x4 (ts−)

0

 (48)
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Taking n̂m equal to its defining vector in (48), the boundary condition (46) becomes
λo1 (ts)
λo2 (ts)
λo3 (ts)
λo4 (ts)

 =


λo1 (ts+) + px2 (ts−)

m1

m1+m2
λo2 (ts+) +m1x2 (ts−)

λo3 (ts+) + px4 (ts−)
m2

m1+m2
λo4 (ts+) +m2x4 (ts−)

 (49)

The scalar parameter p and the switching time ts together with the optimal trajectory and its corre-

sponding adjoint process are determined by solving the differential equations (39) and (40) subject to the

initial, terminal and boundary conditions (41), (42), (44) and (49) together with the Hamiltonian continuity

condition from (17) as

λoT(ts+)

[
A2x

o
(ts+) −B2B

T
2 λ

o
(ts+) +D2

]
+

1

2
λoT(ts+)B1B

T
1 λ

o
(ts+)

= λoT(ts−)

[
A1x

o
(ts−) −B1B

T
1 λ

o
(ts−) +D1

]
+

1

2
λoT(ts−)B1B

T
1 λ

o
(ts−) (50)

or

λoT(ts+)

[
A2x

o
(ts+) −

1

2
B2B

T
2 λ

o
(ts+) +D2

]
= λoT(ts−)

[
A1x

o
(ts−) −

1

2
B1B

T
1 λ

o
(ts−) +D1

]
(51)

The results for the parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 1, d1 = d2 = 0.1, the initial

condition x0 = [−0.25 0 − 0.15 0]
T

and the terminal time T = 4 are demonstrated in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4

x
o

-0.3

-0.2

-0.1

0

0.1

0.2

x
1

x
2

x
3

x
4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ
o

-0.1

-0.05

0

0.05

0.1

0.15

λ
1

λ
2

λ
3

λ
4

0 0.5 1 1.5 2 2.5 3 3.5 4

u
o

-0.15

-0.1

-0.05

0

0.05

u
1

u
2

t

0 0.5 1 1.5 2 2.5 3 3.5 4

H

-0.003

-0.002

-0.001

0

H

Figure 2: The results for the parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 1, d1 = d2 = 0.1, the
initial condition x0 = [−0.25, 0,−0.15, 0]

T
and the terminal time T = 4
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6.3 HDP results from their relation to the HMP results

Employing Theorem 3 and the results of Theorem 1 established in the previous part, we find the value

function satisfying the necessary conditions in Theorem 2. To this end we rewrite equations (39) and (40) in

the matrix form [
ẋo

λ̇o

]
=

[
Ai −BiBTi
0 −ATi

] [
xo

λo

]
+

[
Di

0

]
(52)

and denote its state transition matrix by φi. Then the solution of (52) for t ∈ (ts, T ] can be written as[
xo (t)
λo (t)

]
= φ2 (t, ts)

[
xo (ts)
λo (ts+)

]
+

∫ t

ts

φ2 (t, τ)

[
D2 (τ)

0

]
dτ (53)

and also as [
xo (T )
λo (T )

]
= φ2 (T, t)

[
xo (t)
λo (t)

]
+

∫ T

t

φ2 (T, τ)

[
D2 (τ)

0

]
dτ (54)

Partitioning φ in the form of

φ2 (T, t) =

[
φ2,11 (T, t) φ2,12 (T, t)
φ2,21 (T, t) φ2,22 (T, t)

]
(55)

and denoting [
fd2,1 (t)
fd2,2 (t)

]
:=

∫ T

t

[
φ2,11 (T, t) φ2,12 (T, t)
φ2,21 (T, t) φ2,22 (T, t)

] [
D2 (τ)

0

]
dτ (56)

we can rewrite (54) as

xo (T ) = φ2,11 (T, t)xo (t) + φ2,12 (T, t)λo (t) + fd2,1 (t) (57)

λo (T ) = φ2,21 (T, t)xo (t) + φ2,22 (T, t)λo (t) + fd2,2 (t) (58)

Substituting xo (T ) and λo (T ) from (57) and (58) into (44) gives

G (φ2,11 (T, t)xo (t) + φ2,12 (T, t)λo (t) + fd2,1 (t)− rf ) = φ2,21 (T, t)xo (t) +φ2,22 (T, t)λo (t) + fd2,2 (t) (59)

or

[Gφ2,11 (T, t)− φ2,21 (T, t)]xo (t) +Gfd2,1 (t)−Grf − fd2,2 (t) = [φ2,22 (T, t)−Gφ2,12 (T, t)]λo (t) (60)

that gives

λo (t) = [φ2,22 (T, t)−Gφ2,12 (T, t)]
−1

[Gφ2,11 (T, t)− φ2,21 (T, t)]xo (t)

+ [φ2,22 (T, t)−Gφ2,12 (T, t)]
−1

[Gfd2,1 (t)−Grf − fd2,2 (t)] (61)

The existence of the inverse in the previous equation is provided by a theorem of Kalman [32]. Defining

K2 (t) := [φ2,22 (T, t)−Gφ2,12 (T, t)]
−1

[Gφ2,11 (T, t)− φ2,21 (T, t)] (62)

and

s2 (t) := [φ2,22 (T, t)−Gφ2,12 (T, t)]
−1

[Gfd2,1 (t)−Grf − fd2,2 (t)] (63)

the equation (61) is expressed as

λo (t) = K2 (t)xo (t) + s2 (t) , t ∈ (ts, T ] (64)

with

K2 (T ) = G (65)

s2 (T ) = −Grf (66)
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In particular, for the right limit at ts we have

λo (ts+) = K2 (ts)x
o (ts) + s2 (ts) (67)

Similarly, for the solution of (52) for t ∈ [0, ts) we have

xo (ts−) = φ1,11 (ts, t)x
o (t) + φ1,12 (ts, t)λ

o (t) + fd1,1 (t) (68)

λo (ts) = φ1,21 (ts, t)x
o (t) + φ1,22 (ts, t)λ

o (t) + fd1,2 (t) (69)

with the definition of fd1,1 (t) and fd1,2 (t) for t ∈ [0, ts) being[
fd1,1 (t)
fd1,2 (t)

]
:=

∫ ts

t

[
φ1,11 (ts, τ) φ1,12 (ts, τ)
φ1,21 (ts, τ) φ1,22 (ts, τ)

] [
D1 (τ)

0

]
dτ (70)

Using (42) and the boundary condition (46) we may write

λo (ts) = PTλo (ts+) + pn̂m + Cxo (ts−) = PT [K2 (ts)x
o (ts) + s2 (ts)] + pn̂m + Cxo (ts−)

=
[
PTK2 (ts)P + C

]
xo (ts−) + PT s2 (ts) + pn̂m (71)

Substituting xo (ts−) and λo (ts) from equations (68) and (69) we get

φ1,21 (ts, t)x
o (t) + φ1,22 (ts, t)λ

o (t) + fd1,2 (t)

=
[
PTK2 (ts)P + C

]
[φ1,11 (ts, t)x

o (t) + φ1,12 (ts, t)λ
o (t) + fd1,1 (t)] + PT s2 (ts) + pn̂m (72)

or [
φ1,22 (ts, t)−

[
PTK2 (ts)P + C

]
φ1,12 (ts, t)

]
λo (t)

=
([
PTK2 (ts)P + C

]
φ1,11 (ts, t)− φ1,21 (ts, t)

)
xo (t)

+
[
PTK2 (ts)P + C

]
fd1,1 (t)− fd1,2 (t) + PT s2 (ts) + pn̂m (73)

With the definition of

K1 (t) :=
[
φ1,22 (ts, t)−

[
PTK2 (ts)P+C

]
φ1,12 (ts, t)

]−1
( [
PTK2 (ts)P+C

]
φ1,11 (ts, t)−φ1,21 (ts, t)

)
(74)

and

s1 (t) :=
[
φ1,22 (ts, t)−

[
PTK2 (ts)P + C

]
φ1,12 (ts, t)

]−1( [
PTK2 (ts)P + C

]
fd1,1 (t)− fd1,2 (t) + PT s2 (ts) + pn̂m

)
(75)

it is concluded that

λo (t) = K1 (t)xo (t) + s1 (t) , t ∈ [0, ts) (76)

Note that the following relations hold by the definitions of Ki (t) and si (t):

K1 (ts) = PTK2 (ts)P + C (77)

s1 (ts) = PT s2 (ts) + pn̂m (78)

Taking the time derivative of (64) and (76) it can be shown that

K̇i = KiBiB
T
i Ki −KiAi −ATi Ki (79)

ṡi = −
(
ATi −KiBiB

T
i

)
si −KiDi (80)
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From equation (23) and the result of Theorem 3 the gradient of the value function is equal to the adjoint

process and hence

V (t, q2, x, 0) =
1

2
xTK2 (t)x+ s2 (t)

T
x+ α2 (t) (81)

where from Theorem 2 and the terminal condition (19), α2 (T ) should satisfy

α2 (T ) =
1

2
DT

2 D2 (82)

From Theorem 2 and the HJB equation (18) we must have

1

2
xT K̇2x+ ṡ2

Tx+ α̇2 +
1

2
(K2x+ s2)

T
B2B

T
2 (K2x+ s2)

+ (K2x+ s2)
T (
A2x−B2B

T
2 [K2x+ s2] +D2

)
= 0 (83)

which results in

1

2
xT
(
K̇2 +K2A2 +AT2 K2 −K2B2B

T
2 K2

)
x
(
ṡ2 +AT2 s2 −K2B2B

T
2 s2 +K2D2

)T
x

+ α̇2 −
1

2
sT2 B2B

T
2 s2 + sT2 D2 = 0 (84)

and hence (see also (79) and (80))

α̇2 =
1

2
sT2 B2B

T
2 s2 − sT2 D2, t ∈ (ts, T ] (85)

Similarly

V (t, q1, x, 1) =
1

2
xTK1 (t)x+ s1 (t)

T
x+ α1 (t) (86)

concludes that

α̇1 =
1

2
sT1 B1B

T
1 s1 − sT1 D1, t ∈ [0, ts) (87)

which, together with (85), gives

α̇i =
1

2
sTi BiB

T
i si − sTi Di (88)

For determining the boundary condition for α (t) at ts we consider the boundary condition (20) for V

that states

V (ts−, q1, x, 1) = V (ts+, q2, Px, 0) +
1

2
xTCx (89)

i.e.

1

2
xTK1 (ts−)x+ s1 (ts−)

T
x+ α1 (ts−) =

1

2
xT
[
PTK2 (ts+)P + C

]
x+ s2 (ts+)

T
Px+ α2 (ts+) (90)

From the boundary conditions for Ki and si in (77) and (78) we get

α1 (ts−) + pn̂Tmx = α2 (ts+) (91)

but since for all x ∈ {x : m (x) = 0}

n̂Tmx =
[
x2 (ts−) 0 x4 (ts−) 0

] 
0
x2

0
x4

 = 0 (92)

the boundary condition for α (t) at ts becomes

α1 (ts−) ≡ α1 (ts) = α2 (ts) ≡ α2 (ts+) (93)

Hence, the value function is constructed in the form of the equations (81) and (86) where Ki, si and αi
are respectively the solutions of (79), (80) and (88) with the terminal conditions (65), (66) and (82) and the

boundary conditions (77), (78) and (93). �
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7 Concluding remarks

The generalization of the hybrid optimal control theory to include the class of hybrid systems with low

dimensional switching manifolds makes possible the modelling and optimal control of a larger class of hybrid

systems including collision and rendez-vous problems. In general, for N masses to meet in the same location

simultaneously, the rendez-vous point corresponds to a codimesion dN submanifold in R2dN , the state space

corresponding to the dynamics of the N masses in the d-dimensional physical space, i.e. 3N constraints for

the 3 dimensional space, 2N constraints for planar motions and N constraints for linear motions.
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