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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





Mean Field Linear Quadratic
Teams

Jalal Arabneydi

Aditya Mahajan

GERAD & Department of Electrical and Computer En-
gineering, McGill University, Montreal (Quebec) Canada,
H3A 0E9

j.arabneydi@gmail.com

aditya.mahajan@mcgill.ca

November 2015

Les Cahiers du GERAD

G–2015–121

Copyright c© 2015 GERAD



ii G–2015–121 Les Cahiers du GERAD

Abstract: In this paper, we investigate team optimal control of a population of heterogeneous LQ (Linear
Quadratic) agents. The population consists of finite distinct sub-populations so that agents in each sub-
population are homogeneous. For each agent, the state evolves linearly (i.e. linear dynamics) and the cost is
quadratic in state and action. The agents are coupled in both dynamics and cost through the empirical mean
(also called mean-field) of states and actions of agents. Each agent observes its local state and the mean-
field. This information structure is called mean-field sharing information structure and it is a non-classical
decentralized information structure. The objective of agents is to team up with each other to minimize the
total cost. We identify the team-optimal solution and show that it is unique and linear. The optimal gains are
computed by the solution of appropriate Riccati equations. One of the key salient features of our approach is
that the computational complexity of our solution does not depend on the number of agents, yet it depends
on the number of sub-populations. This implies that the optimal strategy can be computed without any
knowledge on the number of agents. We generalize our results to tracking problem, infinite horizon, and
infinite population.

Acknowledgments: Authors gratefully acknowledge the support of Groupe d’études et de recherche en
analyse des décisions (GERAD) and the Natural Sciences and Engineering Research Council of Canada
through Grant NSERC-RGPIN 402753-11 for funding this research, without which the present study could
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1 Introduction

In this paper, we study a class of team-optimal control systems that we call mean-field LQ (Linear Quadratic)

teams. In general, mean-field LQ teams belong to the class of models that are broadly classified as mean-field

LQG systems and emerge in various applications including smart grids [1], communication [2], finance [3],

emergent behaviour [4], etc.

In mean-field LQ teams, the system consists of a finite number heterogeneous agents with linear dynamics

and quadratic costs that are coupled through the empirical mean of states (also called the mean-field) and

actions of agents. Every agent observes the local state of itself and the mean-field. The agents need to coop-

erate to minimize a common (mean-field coupled) cost. Mean-field LQ Teams emerge in diverse applications.

For example, in smart grids, each demand (consumer) is influenced by the aggregate consumption of all

demands in the grid. In particular, the aggregate consumption of demands has a direct impact on the power

generation (in the grid) or the price (in the market) or both. The higher consumption, the higher generation

or higher price or both. Hence, each demand is affected by the aggregate consumption (i.e. mean-field) of

all demands. This scenario may be modelled as mean-field LQ teams.

In general, finding team-optimal solution of mean-field LQ teams is challenging. In particular,

1) Mean-field LQ teams are conceptually difficult due to the decentralized nature of information available

to agents. The agents need to cooperate with each other to minimize a common cost function while they

have different information. This discrepancy in information makes it difficult to establish cooperation

among agents. In particular, the information structure is non-classical which, in general, is conceptually

more difficult than other classes, i.e., classical and partial nested information structures. We refer reader

to [5] for more details.

2) Mean-field LQ teams are computationally difficult for large number of agents because the computational

complexity of finding the team-optimal solution increases exponentially with respect to the number of

agents.

To best of our knowledge, there does not exist any general approach in the literature that provides the

team-optimal solution of mean-field LQ teams for finite number of agents. However, there are few results

in some special cases. For example, such a team-optimal solution is computed in [6], where agents are only

coupled in the cost (no coupling in dynamics), variables are scalar, and total cost function is in the form of

discounted infinite horizon.

Due to the above difficulties, most of the results in the literature focus attention on the case of countably

infinite number of agents [6–13]. The key intuition behind these results is that in the case of countably

infinite number of agents, the action of a single agent has no effect on the dynamics of the mean-field. This

decoupling reduces the problem to one in which one generic agent is interacting with the mass. A consistent

solution of this interaction provides an approximately optimal solution to the case with asymptotically large

number of agents.

In this paper, we take an alternative approach and provide the team-optimal solution in general case. We

assume every agent observes its own local state and the mean-field of the system. We analyze the problem

with arbitrary number (not necessarily large) of agents and show that the optimal strategy is unique, identical

within sub-populations, and linear in the local state and the mean-field. To compute the optimal gains, we

derive decoupled Riccati equations that do not depend on the number of agents, thus the results are valid

for any number of agents.

This paper is organized as follows. We present the model and problem formulation in Section 2.1 and

main results in Section 2.2. We then describe two different variations of the model of Section 2.1 with their

main results as follows: major-minor in Section 2.4 and tracking problem in Section 2.5. In Section 3, we

provide the proofs of the results given in Section 2. We extend the main results to infinite horizon setup in

Section 4 and infinite population in Section 5. At last, we conclude the paper in Section 6.
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1.1 Notation

Given a set A, |A| denotes its size. Given vectors x, y, z (of possibly different dimensions), vec(x, y, z) denotes

[xᵀ, yᵀ, zᵀ]ᵀ. Superscripts index agents (indexed by i) or types (indexed by k). Given a set N of agents and

states xi, i ∈ N , (all of same dimension), 〈(xi)i∈N 〉 denotes the mean-field 1
|N |
∑|N |
i=1 x

i of (xi)i∈N . Given a set

A of states xn (of possibly different dimensions), n ∈ A, we use bold letters x to denote x = vec(x1, . . . , x|A|).

Given a random variable x, E[x] denotes its mean and var(x) denotes its variance. Upper case letters A,B,

etc. denote matrices; lower case letters x, y, etc. denote (column) vectors. Given a matrix A, Tr(A) denotes

its trace. Given a square matrix A, A ≥ 0 (respectively A > 0) denotes that A is positive semi-definite

(respectively positive definite). For any matrix A or vector x, Aᵀ and xᵀ denote their transpose, respectively.

We also use the short hand notation xa:b for vec(xa, xa+1, . . . , xb). R refers to the set of real numbers.

2 Finite population models and results

2.1 Model and problem formulation

Consider a heterogeneous population of N agents where each agent belongs to one of K possible types,

{1, . . . ,K}. Let K = {1, . . . ,K} denote the set of types (of sub-populations) and for any k ∈ K, N k denote

the sub-population of type k and N denote the entire population i.e. N = ∪k∈KN k.

The state of agent i, i ∈ N , is denoted by xit and its action by uit at time t. For type k ∈ K and agent

i ∈ N k, the state xit belongs to Rdkx and action uit belongs to Rdku . For ease of notation, we denote the joint

state by xt = (xit)i∈N and joint action by ut = (uit)i∈N .

The mean-field of states1 x̄kt of sub-population of type k, k ∈ K, is the empirical mean of the states of all

agents in that sub-population, i.e.,

x̄kt := 〈(xit)i∈Nk〉 =
1

|N k|
∑
i∈Nk

xit, k ∈ K. (1)

The mean-field of states of the entire population is denoted by x̄t as follows:

x̄t = vec(x̄1
t , . . . , x̄

K
t ). (2)

Similarly, the mean-field of actions ūkt of sub-population of type k, k ∈ K, is the empirical mean of the actions

of all agents in that sub-population, i.e.,

ūkt := 〈(uit)i∈Nk〉 =
1

|N k|
∑
i∈Nk

uit, k ∈ K. (3)

The mean-field of actions of the entire population is denoted by ūt as follows:

ūt = vec(ū1
t , . . . , ū

K
t ). (4)

A summary of the above notation is presented in Table 1 for ease of reference.

2.1.1 Dynamics

Agents of the same type have identical dynamics. The dynamics of agents are coupled through the mean-field

of states and actions. In particular, for type k ∈ K, the state of agent i ∈ N k evolves as follows.

xit+1 = Akt x
i
t +Bkt u

i
t +Dk

t x̄t + Ekt ūt + wit, (5)

where Akt , B
k
t , Dk

t , and Ekt are matrices of appropriate dimensions, the initial state xi1 is a random variable,

and {wit}Tt=1 is a noise process. Let wt = (wit)i∈N . We make the following assumptions on the primitive

random variables:
1In the rest of the paper, we refer to mean-field of states simply as mean-field.
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Table 1: Summary of the notation used in this paper

Notation used for agent i ∈ N k of type k ∈ K

xi
t ∈ Rdkx State of agent i

ui
t ∈ Rdku Action of agent i

Notation used for sup-population of type k ∈ K = {1, . . . ,K}

N k Entire sub-population of type k

x̄k
t = 〈(xi

t)i∈Nk 〉 Mean-field of states at time t

ūk
t = 〈(ui

t)i∈Nk 〉 Mean-field of actions at time t

Notation used for entire population

N =
⋃

k∈KN k Entire population

xt = (xi
t)i∈N Joint state of entire population at time t

ut = (ui
t)i∈N Joint action of entire population at time t

x̄t = vec(x̄1
t , . . . , x̄

K
t ) Mean-field of states of entire population at t

ūt = vec(ū1
t , . . . , ū

K
t ) Mean-field of actions of entire population at t

Assumption (A1) The primitive random variables {x1, {wt}Tt=1} are mutually independent.

Assumption (A2) For all i ∈ N and for all t, wit has zero mean and finite variance; in addition, xi1 has

finite variance.

Note that the initial joint state x1 and the joint noise wt, t ≥ 1, may be correlated across agents. For some

of the results, we assume a stronger version of (A1) as follows.

Assumption (A1′) In addition to (A1), for all i ∈ N , (xi1)i∈N are independent and for each t, (wit)i∈N are

independent. Also, for each type k ∈ K, (xi1)i∈Nk are identically distributed and for each t, (wit)i∈Nk are

identically distributed.

2.1.2 Per-step cost

At time t, the system incurs a cost that depends on the local state and action of the agents and the mean-field

of states and actions as follows. For t = 1, . . . , T − 1,

ct(xt,ut, x̄t, ūt) = x̄ᵀ
t P

x
t x̄t + ūᵀ

t P
u
t ūt +

∑
k∈K

 1

|N k|
∑
i∈Nk

[
xit

ᵀ
Qkt x

i
t + uit

ᵀ
Rkt u

i
t

] (6)

and t = T ,

cT (xT , x̄T ) = x̄ᵀ
TP

x
T x̄T +

∑
k∈K

 1

|N k|
∑
i∈Nk

xiT
ᵀ
QkTx

i
T

 , (7)

where P xt , Put , Qkt , and Rkt are symmetric matrices of appropriate dimension that satisfy the following

conditions:

Qkt ≥ 0, ∀k ∈ K, diag{Q1
t , . . . , Q

K
t }+ P xt ≥ 0,

Rkt > 0, ∀k ∈ K, diag{R1
t , . . . , R

K
t }+ Put > 0.

(8)

Note that we do not require P xt and Put to be semi-positive definite as long as above inequities hold.
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2.1.3 Observation model and information structure

Agent i perfectly observes its local state xit and the global mean-field x̄t. Agents perfectly recall all the data

they observe. Thus, agent i chooses action U it as follows.

uit = git(x
i
1:t, u

i
1:t−1, x̄1:t). (9)

We call the above observation model mean-field sharing information structure. The function git is called

the control law of agent i. The collection gi = (gi1, g
i
2, . . . , g

i
T ) is called the control strategy of agent i. The

collection g = (gi)i∈N is called the control strategy of the system.

The performance of strategy g is given by

J(g) = Eg

[ T−1∑
t=1

ct(xt,ut, x̄t, ūt) + cT (xT , x̄T )

]
, (10)

where the expectation is with respect to the measure induced on all the system variables by the choice of

strategy g.

2.1.4 The optimization problem

We are interested in the following optimization problem.

Problem 1 In the model described above, find a strategy g∗ that minimizes (10), i.e.,

J∗ := J∗(g∗) = inf
g
J(g), (11)

where the infimum is taken over all strategies of form (9).

We presented the model in its simplest form. The results presented below also apply to the following variations

of the basic model.

1) The per-step cost has cross-terms of (xit, x̄t) and (uit, ūt) as follows:

ct(xt,ut, x̄t, ūt) = x̄ᵀ
t P

x
t x̄t + ūᵀ

t P
u
t ūt +

∑
k∈K

 1

|N k|
∑
i∈Nk

[
xit

ᵀ
Qkt x

i
t + xit

ᵀ
Sx,kt x̄t + uit

ᵀ
Su,kt ūt + uit

ᵀ
Rkt u

i
t

]
This cost can be re-written in the form of (6) as follows:

ct(xt,ut, x̄t, ūt) = x̄ᵀ
t (P xt + Sxt )x̄t + ūᵀ

t (Put + Sut )ūt +
∑
k∈K

 1

|N k|
∑
i∈Nk

[
xit

ᵀ
Qkt x

i
t + uit

ᵀ
Rkt u

i
t

] ,
where

Sxt := vec(Sx,1t , . . . , Sx,Kt ), Sut := vec(Su,1t , . . . , Su,Kt ).

2) The per-step cost has cross-terms of (xit, u
i
t), (xit, ūt), (uit, x̄t) and (x̄t, ūt). This can be treated in the

same manner as cross-terms are treated in the centralized LQR.

3) The per-step cost is to minimize a tracking error. We give the details of this case in Section 2.5.

2.2 Main result

Theorem 1 Under (A1) and (A2), we have the following results for Problem 1.

1) Structure of optimal strategy: The optimal strategy for Problem 1 is unique and is linear in local state

and the mean-field of the system. In particular,

uit = L̆kt (xit − x̄kt ) + L̄kt x̄t (12)

where the above gains are obtained by the solution of K + 1 Riccati equations: one for computing each

L̆kt , k ∈ K, and one for L̄t := vec(L̄1
t , . . . , L̄

K
t ).
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2) Riccati equations: Let

Āt : = diag(A1
t , . . . , A

K
t ) + vec(D1

t , . . . , D
K
t ),

B̄t : = diag(B1
t , . . . , B

K
t ) + vec(E1

t , . . . , E
K
t ),

Q̄t : = diag(Q1
t , . . . , Q

K
t ), R̄t := diag(R1

t , . . . , R
K).

For t = 1, . . . , T − 1:

L̆kt = −
(
Bkt

ᵀ
M̆k
t+1B

k
t +Rkt

)−1

Bkt
ᵀ
M̆k
t+1A

k
t (13)

and

L̄t = −
(
B̄ᵀ
t M̄t+1B̄t + R̄t + Put

)−1
B̄ᵀ
t M̄t+1Āt, (14)

where {M̆k
t }Tt=1 and {M̄t}Tt=1 are the solutions of following Riccati equations:

M̆k
T = QkT , M̄T = Q̄T + P xT , (15)

and for t = T − 1, . . . , 1,

M̆k
t = −Akt

ᵀ
M̆k
t+1B

k
t

(
Bkt

ᵀ
M̆k
t+1B

k
t +Rkt

)−1

Bkt
ᵀ
M̆k
t+1A

k
t +Akt

ᵀ
M̆k
t+1A

k
t +Qkt , (16)

and

M̄t = −Āᵀ
t M̄t+1B̄t

(
B̄ᵀ
t M̄t+1B̄t + R̄t + Put

)−1
B̄ᵀ
t M̄t+1Āt + Āᵀ

t M̄t+1Āt + Q̄t + P xt . (17)

3) Optimal performance: Let

Σ̆kt :=
1

|N k|
∑
i∈Nk

var(wit − w̄kt ), Σ̄t := var(w̄t),

Ξ̆k :=
1

|N k|
∑
i∈Nk

var(xi1 − x̄k1), Ξ̄ := var(x̄1),

µ̆i :=
1√
|N k|

E(xi1 − x̄k1), µ̄ := E(x̄1).

Then, the optimal cost is given by

J∗ =

T∑
t=1

[∑
k∈K

Tr
(

Σ̆kt M̆
k
t+1

)
+ Tr(Σ̄tM̄t+1)

]
+
∑
k∈K

Tr
(

Ξ̆kM̆k
1

)
+ Tr(Ξ̄M̄1) +

[∑
k∈K

∑
i∈Nk

µ̆iᵀM̆k
1 µ̆

i

]
+ µ̄ᵀM̄1µ̄. (18)

To implement the optimal control strategies:

• all agents must compute L̄1:T−1 by solving the Riccati equation (15) and (17),

• agents of type k must compute L̆k1:T−1 by solving the Riccati equation (15) and (16).

Then, an individual agent i of type k, upon observing the local state xit and the global mean-field x̄t, chooses

its local control action according to (12).

Remark 1 Under (A1′) and (A2), for each type k ∈ K, let Σkt , Ξk, and µk denote var(wit), var(xi1), and

E(xi1), respectively, for i ∈ N k. Then,

Σ̆kt =
|N k| − 1

|N k|
Σkt , Σ̄t = diag(Σ1

t , . . . ,Σ
K
t ),

Ξ̆k =
|N k| − 1

|N k|
Ξk, Ξ̄ = diag(Ξ1, . . . ,ΞK),

µ̆k = 0, µ̄ = vec(µ1, . . . , µK).
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2.3 Salient features of the result

1. The linear quadratic mean-field model presented in Section 2.1 is a decentralized system with non-

classical information structure that is neither partially nested nor quadratic invariant; yet linear control

laws are optimal.

2. All agents in a sub-population of a particular type have identical optimal control laws. Although the

agents of the same type are exchangeable (i.e., if i, j ∈ N k, then interchanging i and j does not affect

the dynamics or the cost), in general, it is not optimal to use identical control laws at exchangeable

agents (see [14] for a counterexample).

3. The solution and the solution complexity depend on the number of types but not on the number of

agents of each type. In particular, the Riccati equations of (15)–(17) do not depend on |N k|, k ∈ K.

4. Consider the above model with a centralized information structure, i.e., at time t, all agents have access

to (x1:t,u1:t−1). As part of the proof of Theorem 1 (see Section 3), we show that the optimal control

laws under centralized information are implementable under mean-field sharing. Hence, the optimal

decentralized performance, given by (18), is the same as the optimal centralized performance.

5. From an implementation point of view, the above feature has an interesting consequence. If we have

the freedom to design the information structure, then there is no advantage of sharing anything beyond

the mean-field. Note that the mean-field can be shared using distributed consensus algorithms.

6. When the number of agents for all sub-populations goes to infinity, the Riccati equations remain

the same; however, the mean-field becomes a deterministic process that can be pre-computed (using

Ā1:t, B̄1:t, L̄1:t). Therefore, the mean-field sharing information structure is informationally equivalent

to the completely decentralized information structure (where agent i knows only (xi1:t, u
i
1:t−1)). Thus,

when every sub-population is infinite, the optimal control laws under completely centralized informa-

tion (i.e. (x1:t,u1:t−1)) are implementable under completely decentralized information structure (i.e.

(xi1:t, u
i
1:t−1)). We present a generalization of this model in Section 5.

2.4 Special case of a major agent and population of minor agents

Consider the model of Section 2.1 with the population of N (minor) agents and one additional agent, called

the major agent. As in Section 2.1, the population of N minor agents consists of K types {1, . . . ,K}.

For the minor agent i, i ∈ N , the state is denoted by xit and the action is denoted by uit. For the major

agent, the state is denoted by x0
t and the action is denoted by u0

t . We assume x0
t ∈ Rd0x and u0

t ∈ Rd0u .

The mean-field of states and actions of minor agents are given by x̄t = vec(x̄1
t , . . . , x̄

K
t ) and ūt =

vec(ū1
t , . . . , ū

K
t ) respectively where x̄kt and ūkt are given by (1) and (3), respectively.

2.4.1 Dynamics

The state of major agent evolves as follows.

x0
t+1 = A0

tx
0
t +B0

t u
0
t +D0

t x̄t + E0
t ūt + w0

t . (19)

The state of minor agent i with type k, i ∈ N k, evolves as follows.

xit+1 = Akt x
i
t +Bkt u

i
t +Dk

t x̄t + Ekt ūt +Hx,k
t x0

t +Hu,k
t u0

t + wit. (20)

2.4.2 Per-step cost

At time t, the system incurs a cost that depends on the local state, local action, mean-field of states and

actions of minor agents and the local state and action of major agent as follows. For t = 1, . . . , T − 1,
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ct(xt,ut, x̄t, ūt, x
0
t , u

0
t ) = x0

t
ᵀ
Q0
tx

0
t + u0

t
ᵀ
R0
tu

0
t +

∑
k∈K

 1

|N k|
∑
i∈Nk

[
xit

ᵀ
Qkt x

i
t + uit

ᵀ
Rkt u

i
t

]
+ x̄ᵀ

t P
x
t x̄t + ūᵀ

t P
u
t ūt + 2x0

t
ᵀ
P x,0t x̄t + 2u0

t
ᵀ
Pu,0t ūt, (21)

and t = T ,

cT (xT , x̄T , x
0
T ) = x0

T
ᵀ
Q0
Tx

0
T +

∑
k∈K

 1

|N k|
∑
i∈Nk

xiT
ᵀ
QkTx

i
T

+ x̄ᵀ
TP

x
T x̄T + 2x0

T
ᵀ
P x,0T x̄T , (22)

where P x,0t , P xt , Pu,0t , Put , Q0
t , Q

k
t , R0

t , and Rkt are symmetric matrices of appropriate dimension. Let

Q̄t := diag(Q0
t , Q

1
t , . . . , Q

K
t ), R̄t := diag(R0

t , R
1
t , . . . , R

K
t ),

P̄ xt :=

[
0 P x,0t

P x,0t P xt

]
, P̄ut :=

[
0 Pu,0t

Pu,0t Put

]
.

Then, above matrices satisfy the following conditions:

Qkt ≥ 0, ∀k ∈ K, Q̄t + P̄ xt ≥ 0,

Rkt > 0, ∀k ∈ K, R̄t + P̄ut > 0.
(23)

2.4.3 Information structure

The major agent observes its local state and the mean-field of states of minor agents and chooses action

according to

u0
t = g0

t (x0
1:t, u

0
1:t−1, x̄1:t). (24)

In addition to its local state, the minor agent i perfectly observes the mean-field of states of minor agents

and the local state of major agent and chooses action according to

uit = git(x
i
1:t, u

i
1:t−1, x̄1:t, x

0
1:t). (25)

The performance of joint strategy (g,g0), where g0 := {g0
1 , . . . , g

0
T }, is given by

JMM (g,g0) = E(g,g0)

[ T−1∑
t=1

ct(xt,ut, x̄t, ūt, x
0
t , u

0
t ) + cT (xT , x̄T , x

0
T )

]
(26)

where the expectation is with respect to the measure induced on all the system variables by the choice of

strategy (g,g0). We are interested in the following optimization problem.

Problem 2 In the model described above, find a joint strategy (g∗,g0∗) that minimizes (26), i.e.,

J∗MM := J∗MM (g∗,g0∗) = inf
g,g0

JMM (g,g0). (27)

where the infimum is taken over all strategies of the form (24) and (25).

A variation of the above model was first introduced in [8] and other variations have been investigated in

[15–18].

Corollary 1 Under (A1) and (A2), we have the following results for Problem 2.

1) Structure of optimal strategy: The optimal strategy for Problem 2 is unique and is linear in local state,

the mean-field of the minor agents, and the state of major agent. In particular,
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u0
t = L̂0

tx
0
t + L̄0

t x̄t, (28)

and

uit = L̆kt (xit − x̄kt ) + L̄kt x̄t + L̂kt x
0
t , (29)

where the above gains are computed by the solution of K + 1 Riccati equations: one for computing each

L̆kt , k ∈ K (which are the same as in Theorem 1), and one for Lt :=


L̂0
t L̄0

t

L̂1
t L̄1

t
...

...

L̂Kt L̄Kt

 .
2) Riccati equations: The Riccati equations for L̆kt are the same as in Theorem 1. Let

Āt := diag{A0
t , A

1
t , . . . , A

K
t }+


0 D0

t

Hx,1
t D1

t
...

...

Hx,K
t DK

t

 ,

B̄t := diag{B0
t , B

1
t , . . . , B

K
t }+


0 E0

t

Hu,1
t E1

t
...

...

Hu,K
t EKt

 .
For t = 1, . . . , T − 1:

Lt = −
(
B̄ᵀ
t M̄t+1B̄t + R̄t + P̄ut

)−1
B̄ᵀ
t M̄t+1Āt, (30)

where {M̄t}Tt=1 is the solution of the following Riccati equation:

M̄T = Q̄T + P̄ xT . (31)

and for t = T − 1, . . . , 1,

M̄t = −Āᵀ
t M̄t+1B̄t

(
B̄ᵀ
t M̄t+1B̄t + R̄t + P̄ut

)−1
B̄ᵀ
t M̄t+1Āt + Āᵀ

t M̄t+1Āt + Q̄t + P̄ xt . (32)

3) Optimal performance: Let Σ̆kt , Ξ̆k, µi, i ∈ N k, k ∈ K, be defined as in Theorem 1. Let

Σ̄t := var(vec(w0
t , w̄t)), Ξ̄ := var(vec(x0

1, x̄1)),

µ̄ := E(vec(x0
1, x̄1)).

Then, the optimal cost is given by

J∗MM =

T∑
t=1

[∑
k∈K

Tr
(

Σ̆kt M̆
k
t+1

)
+ Tr(Σ̄tM̄t+1)

]
+
∑
k∈K

Tr
(

Ξ̆kM̆k
1

)

+ Tr(Ξ̄M̄1) +

∑
k∈K

∑
i∈Nk

µ̆iᵀM̆k
1 µ̆

i

+ µ̄ᵀM̄1µ̄. (33)

The proof is presented in Section 3.3.

2.5 Generalization to tracking cost function

Consider a tracking problem in which we are given a tracking signal {skt }Tt=1, skt ∈ Rdkx for the mean-field of

type k, k ∈ K, and a tracking signal {rit}Tt=1, rit ∈ Rdkx , for each agent i ∈ N k.
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Define r̄kt := 〈(rit)i∈Nk〉, k ∈ K, r̄t := vec(r̄1
, . . . , r̄

K
t ), and st = vec(s1

t , . . . , s
K
t ). The tracking cost is as

follows. For t = 1, . . . , T − 1,

ct(xt,ut, x̄t, ūt) = (x̄t − st)
ᵀP xt (x̄t − st) + ūᵀ

t P
u
t ūt +

∑
k∈K

 1

|N k|
∑
i∈Nk

[
(xit − rit)

ᵀ
Qkt (xit − rit) + uit

ᵀ
Rkt u

i
t

] ,
and for t = T ,

cT (xT , x̄T ) = (x̄T − sT )ᵀP xT (x̄T − sT ) +
∑
k∈K

 1

|N k|
∑
i∈Nk

(xiT − riT )
ᵀ
QkT (xiT − riT )

 .
We assume that, in addition to the observation specified in Section 2.1.3, agent i also knows {rit, r̄t, st}Tt=1.

The rest of the model is the same as in Section 2.1. The performance of strategy g is given by

JT (g) = Eg

[ T−1∑
t=1

ct(xt,ut, x̄t, ūt) + cT (xT , x̄T )

]
, (34)

where the expectation is with respect to the measure induced on all the system variables by the choice of

strategy g. We are interested in the following optimization problem.

Problem 3 In the model described above, find a strategy g∗ that minimizes (34), i.e.,

J∗T := J∗T (g∗) = inf
g
JT (g), (35)

where the infimum is taken over all strategies of form (9).

Theorem 2 Under (A1) and (A2), we have the following results for Problem 3.

1) Structure of optimal strategy: The optimal strategy for Problem 3 is unique and is linear in local state

and the mean-field of the system. In particular,

uit = L̆kt (xit − x̄kt ) + L̄kt x̄t + F̆ kt v
i
t + F̄ kt v̄t, (36)

where the above gains are obtained by the solution of K + 1 Riccati equations defined in Theorem 1. In

particular, gains {L̆kt , L̄kt }T−1
t=1 are the same as in Theorem 1.

2) Riccati equations: Let {M̆k
t }Tt=1 and {M̄t}Tt=1 be the solution of (K+1) Riccati equations defined in

Theorem 1. For t = 1, . . . , T − 1:

F̆ kt =
(
Bkt

ᵀ
M̆k
t+1B

k
t +Rkt

)−1

Bkt
ᵀ
, (37)

and

F̄t =
(
B̄ᵀ
t M̄t+1B̄t + R̄t + Put

)−1
B̄ᵀ
t , (38)

where F̄t =: vec(F̄ 1
t , . . . , F̄

K
t ). For t = T ,

viT = QkT r
i
T , v̄T = Q̄T r̄T + P xT sT (39)

and for t = T − 1, . . . , 1,

vit = (Akt −Bkt L̆kt )ᵀvit+1 +Qkt r
i
t (40)

and

v̄t = (Āt − B̄tL̄t)ᵀv̄t+1 + Q̄tr̄t + P xt st. (41)
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3) Optimal performance: For t = T ,

αiT = riT
ᵀ
QkT r

i
T , ᾱT = r̄ᵀT Q̄T r̄T + sT

ᵀP xT sT , (42)

and for t = T − 1, . . . , 1,

αit = −2vi
ᵀ
t+1B

k
t (Bkt

ᵀ
M̆k
t+1B

k
t +Rkt )−1Bkt

ᵀ
vit+1 + rit

ᵀ
Qkt r

i
t + αit+1 (43)

and

ᾱt = −2v̄ᵀt+1B̄t(B̄
ᵀ
t M̄t+1B̄t + R̄t + Put )−1B̄ᵀ

t v̄t+1 + r̄ᵀt Q̄tr̄t + st
ᵀP xt st + ᾱt+1. (44)

Then,

J∗T = J∗ + ᾱ1 +
∑
k∈K

1

|N k|
∑
i∈Nk

αi1 −
∑
k∈K

r̄kt
ᵀ
Qkt r̄

k
t . (45)

The proof is presented in Section 3.4. To implement the optimal control strategies:

• all agents must compute L̄1:T−1 and barF1:T−1 by solving the Riccati equation (15) and (17) and

compute the global reference trajectory v̄1:T by solving the backward equation (39) and (41),

• agents of type k must compute L̆k1:T−1 and F̆ k1:T−1 by solving the Riccati equation (15) and (16),

• an individual agent i of type k computes a local reference trajectory vi1:T by solving the backward

equation (39) and (40).

Then, an individual agent i of type k, upon observing the local state xit and the global mean-field x̄t, chooses

its local control action according to (36).

3 Proof of the result for finite population

The main idea of the proof is as follows. We construct an auxiliary system whose state, control actions,

and per-step cost are equivalent to xt, ut, and ct(·), respectively (modulo a change of variables that we

describe later). However, this auxiliary system is centrally controlled by a single agent that has access to all

the information available to the N decentralized agents in the original system. We show that the optimal

centralized solution of this auxiliary system can be implemented in the original decentralized system, and is

therefore also optimal for the decentralized system.

3.1 The auxiliary system

Define x̆it = xit − x̄kt and ŭit = uit − ūkt . The auxiliary system is a centralized system with state x̊t =

vec((x̆it)i∈N , x̄t) and action ůt = vec((ŭit)i∈N , ūt). Note that x̊t is equivalent to xt and ůt is equivalent to ut.

The dynamics are the same as the model in Section 2. In particular,

x̆it+1 = Akt x̆
i
t +Bkt ŭ

i
t + w̆it, (46)

where w̆it := wit − w̄kt and w̄kt := 〈(wit)i∈Nk〉 and

x̄t+1 = Ātx̄t + B̄tūt + w̄t (47)

where w̄t := vec(w̄1
t , . . . , w̄

K
t ). The per-step cost of the auxiliary model is given by ct(xt,ut, x̄t, ūt) at

t ≤ T − 1 and terminal cost cT (xT , x̄T ) at t = T . In the auxiliary system, there is a single centralized agent

that chooses ůt based on the observations. In particular, the centralized agent observes x̊t and chooses ůt
according to

ůt = g̊t(̊x1:t, ů1:t−1). (48)
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The performance of strategy g̊ := (̊g1, . . . , g̊T ) is given by

J̊ (̊g) = Eg̊

[ T−1∑
t=1

ct(xt,ut, x̄t, ūt) + cT (xT , x̄T )

]
, (49)

where the expectation is with respect to the measure induced on all system variables by the choice of

strategy g̊. We are interested in the following optimization problem.

Problem 4 In the auxiliary model, find strategy g̊∗ that minimizes (49), i.e.,

J̊∗ := J̊∗(̊g∗) = inf
g̊
J̊ (̊g), (50)

where the infimum is taken over all strategies of the form (48).

Let J∗ and J̊∗ denote the optimal cost for Problem 1 and Problem 4, respectively. Since the per-step cost is

the same in both cases, but Problem 4 is centralized, we have that J∗ ≥ J̊∗. We identify the optimal control

laws for the auxiliary system and show that these laws can be implemented in, and therefore are optimal for,

the original decentralized system.

A critical step in the proof is to rewrite the per-step cost ct(xt,ut, x̄t, ūt) and terminal cost cT (xT , x̄T )

in terms of x̊t and ůt. For that matter, we need the following key result.

Lemma 1 For any x = vec(x1, . . . , xN ) and x̄ = 〈x〉, let x̆i = xi − x̄, i ∈ {1, . . . , N}. Then, for any matrix

Q of appropriate dimension,

1

N

N∑
i=1

xi
ᵀ
Qxi =

1

N

N∑
i=1

x̆i
ᵀ
Qx̆i + x̄ᵀQx̄. (51)

Proof. The result follows from elementary algebra and the observation that
∑N
i=1 x̆

i = 0.

Note that Lemma 1 is similar to Huygens–Steiner theorem in physics-mechanics [19].

An immediate consequence of Lemma 1 is the following:

Corollary 2 For any time t, ct(xt,ut, x̄t, ūt) = c̊t(̊xt, ůt) such that for t = 1, . . . , T − 1,

c̊t(̊xt, ůt) = c̄t(x̄t, ūt) +
∑

i∈Nk,k∈K

c̆kt (x̆it, ŭ
i
t),

and t = T ,

c̊T (̊xT ) = c̄T (x̄T ) +
∑

i∈Nk,k∈K

c̆kT (x̆iT ),

where for t = 1, . . . , T − 1,

c̄t(x̄t, ūt) = x̄ᵀ
t (Q̄t + P xt )x̄t + ūᵀ

t (R̄t + Put )ūt,

c̆kt (x̆it, ŭ
i
t) =

1

|N k|

[
x̆it

ᵀ
Qkt x̆

i
t + ŭit

ᵀ
Rkt ŭ

i
t

]
,

and t = T ,

c̄T (x̄T ) = x̄ᵀ
T (Q̄T + P xT )x̄T ,

c̆kT (x̆iT ) =
1

|N k|

[
x̆iT

ᵀ
QkT x̆

i
T

]
.
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Note that the auxiliary model has linear dynamics and in Corollary 2 we have shown that the cost is

quadratic in the state and the control actions. Thus, the optimal control actions are linear in the state and

the corresponding optimal gains can be obtained by solving an appropriate Riccati equation. However, the

size of state x̊t of the auxiliary system increases with the number of agents (e.g. N), thus, a naive attempt

to obtain an optimal solution will involve solving for O(N2) dimensional Riccati equations. We present an

alternative approach in the next section that involves solving K + 1 Riccati equations whose dimensions are

independent of N .

3.2 The optimal solution of the auxiliary system

The auxiliary system is a stochastic linear quadratic system. From the certainty equivalence principle [20], we

know that the optimal control law is unique and identical to the control law in the corresponding deterministic

problem, whose dynamics are given by

x̆it+1 = Akt x̆
i
t +Bkt ŭ

i
t, (52)

and

x̄t+1 = Ātx̄t + B̄tūt, (53)

and the per-step cost is c̊t(̊xt, ůt) given by Corollary 2.

Note that this system consists on (N +1) components: N components with state x̆it and action ŭit, i ∈ N ,

and one component with state x̄t and action ūt. The first N components are split into K classes of identical

components – one for each type. The components have decoupled dynamics and decoupled cost. Thus, the

optimal control law of each class may be identified separately. Therefore, we have the following:

Theorem 3 The optimal control strategy of auxiliary model is unique and given by

ŭit = L̆kt x̆
i
t, ūt = L̄tx̄t, i ∈ N k, k ∈ K, (54)

where the gains {L̆kt }T−1
t=1 and {L̄t}T−1

t=1 are given as in Theorem 1.

To complete the proof of Theorem 1, note that

uit = ŭit + ūkt = L̆kt (xit − x̄kt ) + L̄kt x̄t.

Thus, the control laws specified in Theorem 1 are the optimal centralized control laws, and, a fortrori, the

optimal decentralized control laws.

3.3 Proof of Corollary 1

The major-minor model may be viewed as a special case of the model of Section 2.1. If we consider the

major agent as a sub-population of a different type, say type 0, then the mean-field x̄0
t of type 0 is x0

t because

|N 0| = 1. Thus, the mean-field of the entire population is vec(x0
t , x̄t). Consequently, the dynamics (19) and

(20) are of the form (5); the cost (21) and (22) are of the form (6) and (7), respectively, and the information

structure (24) and (25) is same as (9). Thus, we can directly use Theorem 1 to solve Problem 2. The direct

use of Theorem 1 will give K + 2 Riccati equations. However, one of these is redundant because one of the

types (types 0) has a sub-population of size 1. In particular, when constructing the auxiliary system in the

proof of Theorem 1 in Section 3, x̆0
t := x0

t − x̄0
t becomes zero by definition. Therefore, the solution is given

by K + 1 Riccati equations as shown in Corollary 1.

3.4 Proof of Theorem 2

As in the proof of Theorem 1 described in Section 3, define x̆it = xit− x̄kt , ŭit = uit− ūkt , x̊t = vec((x̆it)i∈N , x̄t),

and ůt = vec((ŭit)i∈N , ūt). We identify a cost function c̊t(̊xt, ůt) as in Corollary 2.
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Lemma 2 For any time t, ct(xt,ut, x̄t, ūt) = c̊t(̊xt, ůt) such that for t = 1, . . . , T − 1,

c̊t(̊xt, ůt) = c̄t(x̄t, ūt) +
∑

i∈Nk,k∈K

c̆kt (x̆it, ŭ
i
t)−

∑
k∈K

r̄kt
ᵀ
Qkt r̄

k
t ,

and t = T ,

c̊T (̊xT ) = c̄T (x̄T ) +
∑

i∈Nk,k∈K

c̆kT (x̆iT )−
∑
k∈K

r̄kT
ᵀ
QkT r̄

k
T ,

where for t = 1, . . . , T − 1,

c̄t(x̄t, ūt) =

([
1
1

]
x̄t −

[
r̄t
st

])ᵀ [
Q̄t 0
0 P xt

]([
1
1

]
x̄t −

[
r̄t
st

])
+ ūᵀ

t (R̄t + Put )ūt,

c̆kt (x̆it, ŭ
i
t) =

1

|N k|

[
(x̆it − rit)

ᵀ
Qkt (x̆it − rit) + ŭit

ᵀ
Rkt ŭ

i
t

]
.

and t = T ,

c̄T (x̄T ) =

([
1
1

]
x̄T −

[
r̄T
sT

])ᵀ [
Q̄T 0
0 P xT

]([
1
1

]
x̄T −

[
r̄T
sT

])
,

c̆kT (x̆iT ) =
1

|N k|

[
(x̆iT − riT )

ᵀ
QkT (x̆iT − riT )

]
.

Note that per-step cost is decomposed into terms that depend only on (x̄t, ūt) and terms that depend only

on (x̆it, ŭ
i
t) (and terms that do not depend on the control strategy). The rest of the proof follows along the

same lines as the proof of Theorem 1. In particular, the auxiliary system consists of N + 1 components; N

components with state x̆it and action ŭit, i ∈ N , and one component with state x̄t and action ūt. The first

N components are split into K classes. All agents in a class have identical dynamics and similar tracking

cost but have different reference trajectory. Therefore, from standard results in LQR tracking problem, the

optimal control law of agent i ∈ N k of type k ∈ K is given by

uit = ŭit + ūkt =
[
L̆kt (xit − x̄kt ) + F̆ kt v

i
t

]
+
[
L̄kt x̄t + F̄ kt v̄t

]
,

where gains {L̆kt , L̄kt , F̆ kt , F̄ kt }T−1
t=1 are identical for all agents of type k, v̄t is identical for all agents of all types,

and vit is separate for each agent.

4 Infinite horizon

The results presented in Section 2 generalize to infinite horizon setup in a natural manner. Assume that the

model and the cost are time-invariant, i.e., {Akt , Bkt , Dk
t , E

k
t , Q

k
t , R

k
t , P

x
t , P

u
t } do not depend on time; hence,

we remove the subscript t. The rest of the model is as same as that in Section 2.1. Consider the infinite

horizon long-term average and the infinite horizon discounted cost setups as follows:

Problem 5 Find a strategy g that minimizes the following cost:

J̃(g) = lim
T→∞

Eg

[
1

T

T∑
t=1

c(xt,ut, x̄t, ūt)

]
, (55)

where the expectation is with respect to the measure induced on all the system variables by the choice of

strategy g.
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Problem 6 Given discount factor β ∈ (0, 1), find a strategy g that minimizes the following cost:

J̃β(g) = Eg

[ ∞∑
t=1

βt−1c(xt,ut, x̄t, ūt)

]
, (56)

where the expectation is with respect to the measure induced on all the system variables by the choice of

strategy g.

Assumption (A-AC) For each type k, (Ak, Bk) are stabilizable. In addition, (Ā, B̄) defined in Theorem 1

are stabilizable.

Theorem 4 Under (A1), (A2), and (A-AC), we have the following results for Problem 5.

1) Structure of optimal strategy: The optimal strategy for Problem 5 is unique and is linear in local state

and the mean-field of the system. In particular,

uit = L̆k(xit − x̄kt ) + L̄kx̄t (57)

where the above gains are obtained by the solution of K+1 algebraic Riccati equations. one for computing

each L̆k, k ∈ K, and one for L̄ := vec(L̄1, . . . , L̄K).

2) Algebraic Riccati equations: Let Ā, B̄, Q̄, and R̄ be defined as in Theorem 1. For t = 1, . . . , T − 1:

L̆k = −
(
Bk

ᵀ
M̆kBk +Rk

)−1

Bk
ᵀ
M̆kAk (58)

and

L̄ = −
(
B̄ᵀM̄B̄ + R̄+ Pu

)−1
B̄ᵀM̄Ā, (59)

where M̆k and M̄ are the solutions of the following algebraic Riccati equations:

M̆k = −AkᵀM̆kBk
(
Bk

ᵀ
M̆kBk +Rk

)−1

Bk
ᵀ
M̆kAk +Ak

ᵀ
M̆kAk +Qk, (60)

and,

M̄ = −ĀᵀM̄B̄
(
B̄ᵀM̄B̄ + R̄+ Pu

)−1
B̄ᵀM̄Ā+ ĀᵀM̄Ā+ Q̄+ P x. (61)

3) Optimal performance: Let

Σ̆k :=
1

|N k|
∑
i∈Nk

var(wit − w̄kt ), Σ̄ := var(w̄t). (62)

Then, the optimal cost is given by

J̃∗ =
∑
k∈K

Tr
(

ΣkM̆k
)

+ Tr(Σ̄M̄). (63)

Proof. The proof follows along the same lines as the proof of Theorem 1. We construct an auxiliary system

as in Section 3, which consists of N + 1 components with decoupled dynamics and cost. Since the cost is

infinite-horizon long run average, the optimal solution is given by appropriate algebraic Riccati equations.

Assumption (A-Dis) For each type k, (
√
βAk,

√
βBk) are stabilizable. In addition, (

√
βĀ,
√
βB̄) are stabi-

lizable, where (Ā, B̄) are defined in Theorem 1.

Theorem 5 Under (A1), (A2), and (A-Dis), we have the following results for Problem 6.
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1) Structure of optimal strategy: The optimal strategy for Problem 6 is unique and is linear in local state

and the mean-field of the system. In particular,

uit = L̆k(xit − x̄kt ) + L̄kx̄t (64)

where the above gains are obtained by the solution of K+1 algebraic Riccati equations: one for computing

each L̆k, k ∈ K, and one for L̄ := vec(L̄1, . . . , L̄K).

2) Algebraic Riccati equations: Let Ā, B̄, Q̄, and R̄ be defined as in Theorem 1. Then, optimal gains L̆k

and L̄ are computed as in Theorem 4 where M̆k and M̄ are the solutions of the following algebraic

Riccati equations:

M̆k = −βAkᵀM̆kBk
(
Bk

ᵀ
M̆kBk + β−1Rk

)−1

Bk
ᵀ
M̆kAk + βAk

ᵀ
M̆kAk +Qk, (65)

and,

M̄ = −βĀᵀM̄B̄
(
B̄ᵀM̄B̄ + β−1

(
R̄+ Pu

))−1
B̄ᵀM̄Ā+ βĀᵀM̄Ā+ Q̄+ P x. (66)

3) Optimal performance: Let Σ̆k and Σ̄ be as defined in (62) and Ξ̆k, Ξ̄, µ̆i, and µ̄ de defined as in Theo-

rem 1. Then, the optimal cost is given by

J̃∗β =
1

1− β

[∑
k∈K

Tr
(

Σ̆kM̆k
)

+ Tr(Σ̄M̄)

]
+
∑
k∈K

Tr
(

Ξ̆kM̆k
1

)

+ Tr(Ξ̄M̄1) +

∑
k∈K

∑
i∈Nk

µ̆iᵀM̆k
1 µ̆

i

+ µ̄ᵀM̄1µ̄. (67)

Proof. The proof is as same as that of Theorem 4.

5 Infinite population

Consider the scenario when the population is asymptotically large, yet the number of sub-populations (types)

is finite. Let K̂ ⊆ K denote a set of sub-populations (types) that are asymptotically large, i.e., |N k| =∞, k ∈
K̂. We model this scenario by making the following assumptions.

Assumption (A-Indep) At time t, for each type k ∈ K̂, the noises {wit}i∈Nk are i.i.d. random variables.

Assumption (A-Inf) Every agent knowns the initial joint mean-field x̄1.

We state some of the results under the following stronger assumption.

Assumption (A′-Inf) In addition to (A-Inf), all sub-populations are asymptotically large, i.e., K̂ = K.

Consider an information structure, that we call partial mean-field sharing that is smaller than mean-field

sharing information structure (but equivalently informative) as follows. In partial mean-field sharing, agent i

observes the local state xit and the mean-field of finite sub-populations i.e. (x̄kt )k∈K\K̂. Thus, agent i chooses

action according to

uit = git(x
i
1:t, u

i
1:t−1, {(x̄kτ )k∈K\K̂}

t
τ=1). (68)

Theorem 6 Under (A1), (A2), (A-Indep), and (A-Inf), the optimal control laws of Problem 1 given by The-

orem 1 (under mean-field sharing information structure) are implementable under partial mean-field shar-

ing information structure. In particular, define a process {zt}Tt=1, zt := vec(z1
t , . . . , z

K
t ), that is adapted to

{(x̄kt )k∈K\K̂}Tt=1 as follows. For every k ∈ K,

z̄kt =

{
x̄kt , k ∈ K\K̂
Akt−1z̄

k
t−1 + (Bkt−1L̄

k
t−1 +Dk

t−1)z̄t−1, k ∈ K̂.
(69)
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Then, the optimal control laws for Problem 1 are given by

uit = L̆kt (xit − z̄kt ) + L̄kt z̄t, (70)

where {L̆kt , L̄kt }T−1
t=1 are same as in Theorem 1.

Proof. Due to the law of large numbers, an immediate consequence of (A-Indep) is that w̄kt = 〈(wit)i∈Nk〉, k ∈
K̂, converges to its mean (i.e. zero by virtue of (A2)) as |N k|, k ∈ K̂, goes to infinity. Therefore, given the

optimal control laws of Problem 1, mean-field x̄kt , k ∈ K̂, evolves as follows:

x̄kt+1 = Akt x̄
k
t +Bkt L̄

k
t x̄t +Dk

t x̄t. (71)

At t = 1, every agent knowns x̄1 according to (A-Inf). At t > 1, every agent observes (x̄kt )k∈K\K̂ and computes

x̄kt , k ∈ K̂, by using (71) and one-step delayed x̄t−1 = vec(x̄1
t−1, . . . , x̄

K
t−1) that is known to every agent by

time t > 1. Hence, mean-field sharing information structure is constructable by partial mean-field sharing;

consequently, optimal control laws of Problem 1 given by Theorem 1 (under mean-field sharing information

structure) are implementable under partial mean-field sharing information structure as well.

Corollary 3 Under (A1), (A2), (A-Indep), and (A′-Inf), for Problem 1 the optimal control law is unique and

given by (12). Moreover, x̄t = vec(x̄1
t , . . . , x̄

K
t ) evolves deterministically as follows:

x̄kt+1 = Akt x̄
k
t + (Bkt L̄

k
t +Dk

t )x̄t. (72)

Corollary 3 implies that under (A1), (A2), (A-Indep), and (A′-Inf), the optimal solution may be interpreted

as follows.

uit = L̆kt x
i
t + αkt , (73)

where αkt is a deterministic process (that depends on the optimal gains {(L̆kτ , L̄kτ )k∈K}tτ=1 and the initial joint

mean-field x̄1). Thus, the optimal solution can be implemented under a completely decentralized information

structure i.e. one in which agent i only observes xit (and does not observe the mean-field x̄t). Under this

information structure, the optimal control law has the interpretation that each agent is implementing the

solution of a tracking problem.

6 Conclusion

In this paper, we presented a class of decentralized control systems that we call mean-field LQ teams. Finding

a team-optimal solution for mean-field LQ teams is conceptually and computationally difficult because the

information structure (i.e. mean-field sharing) is a non-classical decentralized information structure. To

overcome these difficulties, we took the following steps. At the first step, we constructed an auxiliary

system that has access to the complete centralized information. However, a naive attempt to solve the

auxiliary system involves solving Riccati equations of the size of population; hence, when population is

large, the solution will be computationally very expensive. For that matter, at the second step, we used an

alternative approach to solve the auxiliary system. The obtained Riccati equations do not depend on the

size of population and only depend on the number of sub-populations. At the last step, we showed that

the optimal strategy of centralized auxiliary system is implementable in the original decentralized system

(i.e. under mean-field sharing); hence, the obtained centralized optimal solution is also optimal for the

decentralized system. First implication of these results is that the decentralized performance and centralized

performance are equal. Second implication is that the optimal control strategy can be computed without any

knowledge on the size of population.

In particular, we identified the team-optimal solution and proved that it is unique and linear in local

state and (global) mean-field. We extended our results to tracking problem, infinite horizon, and infinite

population. When every population is asymptotically large, we showed that the obtained optimal strategy

can be implemented under completely decentralized information structure (where each agent only observes

its local state and action and does not observe mean-field).
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Note that all the results of this paper are also applicable to the continuous-time. Under natural as-

sumptions, the obtained results may be modified to continuous time by replacing the discrete-time Riccati

equations with their continuous-time counterparts.
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