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auteurs.

La publication de ces rapports de recherche est rendue possible
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Montréal, McGill University, Université du Québec à Montréal,
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3000, chemin de la Côte-Sainte-Catherine
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Abstract: In a static network reliability model one typically assumes that the failures of the components
of the network are independent. This simplifying assumption makes it possible to estimate the network
reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider is whether
this independence assumption can be relaxed, while still attaining an elegant and tractable model that permits
an efficient Monte Carlo algorithm for unreliability estimation. In this article we provide one possible answer
by considering a static network reliability model with dependent link failures, based on a Marshall-Olkin
copula, which models the dependence via shocks that take down subsets of components at exponential times,
and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo
method), its refinement called the turnip method, and generalized splitting (GS) methods, to estimate very
small unreliabilities accurately under this model. The PMC and turnip estimators have bounded relative
error when the network topology is fixed while the link failure probabilities converge to 0. When the network
(or the number of shocks) becomes too large, PMC and turnip eventually fail, but GS works nicely for very
large networks, with over 5000 shocks in our examples.
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Monte Carlo, permutation Monte Carlo, turnip.
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of the Réseau québécois de calcul haute performance (RQCHP).



Les Cahiers du GERAD G–2015–12 1

1 Introduction

Network reliability estimation problems occur in a wide range of situations and applications, including

telecommunications, transportation, energy supply, and many others (Barlow and Proschan, 1975; Gerts-

bakh and Shpungin, 2010). In this paper, we focus on a classical static network reliability problem in which a

given set of nodes of the network is selected a priori, a random subset of the links in the network fail, and we

want to estimate the reliability of the network, defined as the probability 1−u that the selected nodes are all

connected by operational links. For large networks, an exact computation of the reliability 1− u, or equiva-

lently of the unreliability u, is usually impractical and one has to rely on Monte Carlo techniques (Cancela

et al., 2009; Gertsbakh and Shpungin, 2010). In fact, computing u is known as a #P-complete computational

problem (Colbourn, 1987). When the network is highly reliable, u becomes a rare-event probability (it gets

very small) and direct (crude) Monte Carlo is also impractical. Various rare-event simulation methods have

been developed to address that problem. They include conditional Monte Carlo methods, importance sam-

pling, use of control variates, splitting techniques, and combinations of these; see Alexopoulos and Shultes

(2001), Botev et al. (2013), Botev et al. (2013), Cancela and El Khadiri (1995), Cancela and El Khadiri

(2003), Cancela et al. (2009), Cancela et al. (2014), Elperin et al. (1991), Gertsbakh and Shpungin (2010),

L’Ecuyer et al. (2011), Lomonosov and Shpungin (1999), Sahinoglu and Rice (2010), Tuffin et al. (2014), and

the references given there. All these methods were originally developed for the special case where the links

fail independently of each other.

In this setting where links are independent, both theory and empirical experiments tell us that for networks

of moderate size and extremely small unreliability u, the approximate zero-variance importance sampling

scheme of L’Ecuyer et al. (2011) and the turnip method (Gertsbakh and Shpungin, 2010), which is a refinement

of the permutation Monte Carlo (PMC) method of Elperin et al. (1991) and Lomonosov and Shpungin (1999),

are generally the best performers. In fact, these methods have been proved to give estimators with bounded

relative error (BRE), which means that their standard deviation divided by the mean u remains bounded,

when the link unreliabilities and u converge to 0 while the network is fixed. But when the size of the network

increases, these methods eventually become inefficient (unless the network has special structure). They do

not have BRE in an asymptotic regime where the number of links increases to infinity while u remains of

the same order. For very large networks where the link unreliabilities are not so small but u is small because

the nodes are connected by a huge number of paths (high redundancy), the best method we know is the

generalized splitting (GS) algorithm of Botev et al. (2013). It works for general networks having several

thousand links and u < 10−15, for example.

The PMC, turnip, and GS methods all rely on a vector Y of continuous latent variables, which represent

the repair times of all the links; that is, we turn the static system into a dynamic one in which we assume that

each link is initially failed, gets repaired at some random time, and the set of links that are repaired at time

1 are those that are considered operational in the static network. PMC and turnip only look at the order in

which the links are repaired (only the permutation, not the repair times) and compute the probability that

the network is failed at time 1, conditional on this order, as an estimator of u. For very large networks, the

important permutations, that contribute significantly to the unreliability, often are sampled much too rarely,

so we are again in a rare-event situation. To address this problem, GS learns adaptively the regions where it

is important to sample more, in the space of values of Y. There is also a dual scheme in which one assumes

that all links are initially operational, and one uses a latent vector Y of exponential failure times instead of

repair times; it also works for PMC, turnip, and GS.

Botev et al. (2013) use GS to construct a kernel density estimate that mimics the distribution conditional

on the rare event of network failure, and then use it as an importance sampling density. Empirically, this

method often performs better than GS. Botev et al. (2013, Section 8) adapted GS to a situation of dependent

links. They modeled the dependence via a normal or a t copula, and used a hit-and-run re-sampler in the

GS method. They were able to estimate very small unreliabilities accurately for a (classical) dodecahedron

network example with 20 nodes and 30 links. However, this approach becomes very time-consuming for large

networks and these copulas may not be always appropriate to model the dependence in real-life networks.
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In this paper, we consider a different way of modeling the dependence, via the exponential Marshall-Olkin

(MO) copula (Marshall and Olkin, 1967; Nelsen, 2006). In our context, this is equivalent to assuming that

components (links) can fail simultaneously in groups. This is very natural, as it may represent a situation

where a subset of components fail together due to a common cause or by a cascading effect (Iyer et al.,

2009; Kalyoncu and Sankur, 1992; Nelsen, 2006). In fact, this interpretation is already at the basis of the

definition of the MO copula. This being said, our goal is not to study the relevance of the MO copula for

static reliability networks but to develop effective rare-event simulation methods for this model.

With the MO model, a direct adaptation of PMC, turnip, and GS by using the vector of link repair times

as latent variables becomes too complicated and ineffective, because it involves complicated conditional

distributions. Our main contribution is to show how these methods can be adapted by using different sets of

latent variables Y. We develop corresponding algorithms and compare them numerically. These adaptations

can handle very small unreliabilities and large networks.

By definition, the exponential MO model is specified in terms of a vector Y of latent variables that

represent independent exponential shock times (Marshall and Olkin, 1967). Each shock takes down simul-

taneously a given subset s of components (those in s that are already down remain so) and occurs at an

exponentially-distributed random time with rate λs. In one of their variants, the PMC, turnip, and GS

algorithms use this Y as a vector of latent variables in a similar way as for the independent case, except that

link failure times are replaced by shock times. In the dual version, link repairs cannot be replaced by repairs

of groups of components; but we show how they can be replaced by anti-shocks (shock removals) which also

occur at exponential times with appropriate rates. Initially, we assume that all the shocks have occurred,

and we remove them one by one when their corresponding anti-shocks occur. Removing a shock does not

necessarily repair (some of) the affected links, because other shocks may have also taken down these links.

To find the repair time of each link, we initialize a counter to the total number of shocks that affect this link,

and decrease the counter by one each time one of these shocks is removed. The link is repaired when the

counter reaches 0. These constructions provide elegant and efficient algorithms.

Although the problem and the algorithms are defined in this paper in terms of the connectivity of a subset

of nodes in a network, everything generalizes easily to a multicomponent system where each component has

a binary state (operating or failed), and the binary system state is a monotone increasing function of the

component states, called the structure function (Barlow and Proschan, 1975). In the algorithms, “network”

is replaced by “system” and the links are replaced by the system components. A key requirement for the

implementation is to be able to quickly find if there is a change in the value of the structure function when

one or more binary states are changed (when a shock is added or removed).

For the network connectivity problem studied in this paper, we maintain graph data structures to represent

the state of the network and anticipate efficiently what happens to the structure function value when a link

is added or removed. As an example of a generalization that could be handled, one may consider that the

links in the network have a length and that each pair of selected nodes must be connected by a path of length

no larger than a given number. Another example is if the links have a capacity, and the structure function

indicates if the maximum flow that we can send from a source to a destination (two given nodes) reaches

a given threshold. A further generalization would be to consider systems with multistate (instead of just

binary) components (Natvig, 2011).

The rest of the paper is organized as follows. In Section 2, we define the model and problem, and explain

how the MO copula introduces dependence via latent variables that represent shock times. We state a

relationship between the failure rates in the MO model and the reliabilities of subsets of components. In

Section 3, we adapt the PMC algorithm to our setting. We consider different variants, one where we generate

and sort all shock times, one where we only generate the (partial) permutation directly, one where we scan

the shocks in reverse order to reconstruct the network, and one where we generate anti-shocks instead of

shocks. We examine numerical issues that occur when computing the conditional expectation for PMC, and

we provide a very effective formula for the special case where the shock rates are all equal. In Section 4,

we show how to adapt the turnip method to our case. Again, we give different variants, with shocks and

with anti-shocks, and we summarize the different PMC and turnip variants and their combinations. In

Section 5, we give sufficient conditions under which the PMC and turnip estimators can be proved to have
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BRE, and also necessary conditions, both in the context where u → 0 for a fixed network. Interestingly,

the conditions are weaker with anti-shocks than with shocks. In Section 6, we adapt the GS method to our

setting, both with shocks and with anti-shocks. In Section 7, we discuss some data structures used for an

efficient implementation of these algorithms. Such techniques are required when the graph gets large. In

Section 8, we summarize our numerical experiments with various examples. This is followed by a conclusion

in Section 9. The two conference papers of Botev et al. (2012) and Botev et al. (2014) gave a preliminary

sketch of some of the ideas developed here.

2 Problem formulation and MO copula model

We consider a graph with set of nodes V and a set of m links that connect m distinct pairs of nodes.

Associated with each link i is a Bernoulli random variable Xi denoting whether the link is operational

(Xi = 1) or failed (Xi = 0), with P(Xi = 0) = ui, the unreliability of link i, for i = 1, . . . ,m. The random

vector X = (X1, . . . , Xm) represents the configuration (or state) of the network. Typically, the coordinates of

X are assumed to be independent, but here we relax this assumption. A subset of nodes V0 ⊂ V is selected a

priori and the network is said to be operational if all nodes in V0 are connected to each other by at least one

tree of operational links. We define the structure function Φ of the graph by Φ(x) = 1 when the network is

operational in configuration x, and Φ(x) = 0 otherwise. The unreliability u of the network is the probability

that it is not operational:

u = P(Φ(X) = 0).

The static network reliability problem consists in estimating u.

The most general way of modeling the distribution of X for a static network is to assign a probability

p(x) ≥ 0 to each of the 2m configurations x ∈ {0, 1}m of the system, so that these probabilities sum to 1. In

this paper, the multivariate Bernoulli distribution of X is defined by an MO copula model which can be almost

as general, as we shall see below (it can also have 2m degrees of freedom). The MO copula is defined in terms

of a vector Y of independent exponential latent variables that represent shock times. For any subset s of

components (or links), a shock that provokes the joint failure of all components of s occurs at an exponential

time with rate λs. Let L = {s : λs > 0} and κ = |L|. We will index the elements of L by j and number them

from 1 to κ. For practical implementations, we shall assume that κ is not too large, so that we can easily

store and visit all elements of L. We denote the jth subset by s(j), its corresponding shock rate by λj = λs(j),

and the random exponential shock time by Yj . The vector Y = (Y1, . . . , Yκ) is the latent state of the system.

Component i fails at time Ỹi = min{Yj : i ∈ s(j)}, which is an exponential with rate λ̃i =
∑
{j:i∈s(j)} λj . We

denote its state at any time γ ≥ 0 by Xi(γ) = I[Ỹi > γ], and let X(γ) = (X1(γ), . . . , Xm(γ)). The time at

which the network fails is

S̃(Y) = inf{γ ≥ 0 : Φ(X(γ)) = 0}.

By definition, the MO copula is the multivariate distribution of U = (U1, . . . , Um), where Ui = 1−exp[−λ̃iỸi]
is uniform over (0, 1) for each i.

We put Xi = Xi(1) and X = X(1), so that the operational links in the static network are those that

are still alive at time 1, and the static network is operational if and only if S̃(Y) > 1. In this model,

P[Xi(γ) = 1] = P[Ỹi > γ] = P[Ui > 1− exp[−λ̃iγ]] = exp[−λ̃iγ], and if we want the reliability of component

i to be P[Xi = 1] = ri, we must have λ̃i = − ln ri. But these ri or λ̃i are not sufficient to specify the model,

because they do not specify the dependence.

We can write a system of linear relationships between the survival probabilities of subsets r of components

and the nonzero rates λs. For each subset r, let qr be the probability that all components in r are up in the

network (i.e., survive up to time 1). Then we have

gr
def
= − ln qr =

∑
s

δs,rλs for all r,

where δs,r = I[s ∩ r 6= ∅]. If we know (or decide to specify) the qr’s (or equivalently the gr’s), in principle we

can compute the corresponding rates λs by solving this system of 2m equations in 2m unknown. An explicit
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formula for the solution is given in Lemma 4.1 of Sun et al. (2011):

λs =
∑
r⊆s

(−1)|s|−|r|+1gr̄, (1)

where r̄ is the complement of r. If all the rates λs given by this formula are non-negative, then they provide

an MO representation that corresponds to the given probabilities qr. Conversely, if such a representation

exists, then the λs must satisfy (1) and be non-negative.

Of course, when m is large, solving the full linear system (1) is impractical, because its size increases

exponentially in m. One must then restrict a priori the set of nonzero λs, and estimate them in some way

(e.g., via least squares). Another approach could be to let many λs’s be nonzero, but to parameterize them

with a small number of parameters, and estimate the parameters. Our algorithms in this paper are designed

for the former case, where the number of nonzero λs’s is limited.

For any given pair of links (i, k), let λ̃i,k =
∑
{j:i,k∈s(j)} λj , the total rate of shocks that affect both i

and k simultaneously. We have Cov[Xi, Xk] = P[Xi = Xk = 1] − P[Xi = 1]P[Xk = 1] = P[Ỹi > 1, Ỹk >

1] − P[Ỹi > 1]P[Ỹk > 1] = exp[−λ̃i − λ̃k + λ̃i,k] − exp[−λ̃i − λ̃k] ≥ 0. That is, the MO copula cannot give

negative covariances between the Xi’s. For example, a two-component system where each component is

down with positive probability, but the two cannot be down at the same time cannot be modeled by the MO

copula, because the covariance is negative. This type of constraint applies more generally. For any subset s

of components, and any partition of s, the probability that all components in s are down must be at least

as large as the product of the failure probabilities over the subsets that form the partition. Most real-life

systems should satisfy this condition. Negative dependence between failures is rarely realistic. In this sense,

the MO copula permits one to specify a very general and flexible class of distributions for X.

One good feature of the MO model is that it can cover cascading failures. For example, suppose that the

subset s1 of components fail together at rate λ1 and that such a failure also triggers immediate failure of

subset s2 with probability p. We can model this simply by assigning failure rate (1− p)λ1 to subset s1 and

pλ1 to subset s1 ∪ s2. This generalizes easily to more general cascading.

The crude Monte Carlo method estimates the unreliability u = P[S̃(Y) ≤ 1] as follows. Generate Y,

sort its coordinates by increasing order, and remove in this order the components (links) affected by these

shocks until the network fails. The time of the last considered shock, at which the network fails, is S̃(Y).

Repeat this n times, independently, and estimate u by the average of the n replicates of I[S̃(Y) < 1]. It is

well-known that when u is very small, this performs very poorly because the indicator is nonzero extremely
rarely (Asmussen and Glynn, 2007; Rubino and Tuffin, 2009). In what follows, we propose viable alternative

methods that perform much better for small u.

3 Adapting PMC to the MO model

3.1 PMC with shocks

To apply the PMC method with the MO model, we can generate the vector Y of shock times Yj , sort them by

increasing order to get the order statistics Y(1), . . . , Y(κ), and retain only the order in which the shocks occur,

i.e., the permutation π = (π(1), . . . , π(κ)) such that Y(j) = Yπ(j) for each j. Conditional on this permutation

π, we then compute numerically the probability that the graph is failed at time 1. This is the PMC estimator.

To compute this probability, we can add the shocks j one by one in their order of occurrence and remove

the links i ∈ s(j) affected by these shocks, until the network fails. The number of shocks required to put the

system down is a random variable Cs called the critical shock number.

At step k of this procedure, before adding the kth shock π(k), we know that the time Ak = Yπ(k)−Yπ(k−1)

until this next shock occurs is an exponential with rate Λk equal to the sum of rates of all the shocks that

did not occur yet. These Λk obey Λ1 = λ1 + · · · + λκ, and Λj+1 = Λj − λπ(j) for j ≥ 1. Conditional on π

and on Cs = c, the failure time is A1 + · · ·+ Ac, a sum of c independent exponential random variables with

rates Λ1, . . . ,Λc. This sum has an hypoexponential distribution, whose cumulative distribution function (cdf)
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P [A1 + · · ·+Ac ≤ γ | π], which is the PMC estimator of u based on one simulation run, can be written as a

matrix exponential and can be computed as we explain below (see also Botev et al. (2013)).

This PMC procedure is stated in Algorithm 1. In this algorithm (and all others stated in this paper),

indentation delimits the scope of the if, else, and for statements. This algorithm computes an unbiased

estimator U of the unreliability u and returns its value. It will be invoked n times, independently, to obtain

n realizations U1, . . . , Un of U , and one can estimate u by the average Ūn = (U1 + · · · + Un)/n and the

variance σ2 = Var[U ] by the empirical variance S2
n =

∑n
i=1(Ui − Ūn)2/(n− 1). This can be used to compute

a confidence interval on u.

ALGORITHM 1: A PMC algorithm with shocks

Λ1 ← λ1 + · · ·+ λκ
x = (x1, . . . , xm)← (1, . . . , 1) // all links are operational
k ← 1
draw the κ shock times and sort them in increasing order
this gives the ordered list π = (π(1), . . . , π(κ))
while the nodes in V0 are all connected do

j ← π(k)
for all i ∈ s(j) do

if xi = 1 then
xi ← 0, remove link i from graph

k ← k + 1
Λk ← Λk−1 − λj

Cs ← k − 1 // shock number at which V0 is disconnected
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .

3.2 Computing the hypoexponential cdf

The hypoexponential complementary cdf can be written explicitly as

P [A1 + · · ·+Ac > γ] =

c∑
j=1

e−Λjγpj (2)

where

pj =

c∏
k=1, k 6=j

Λk
Λk − Λj

,

and (2) can be computed in O(c2) time; see Ross (2007, page 299) and Gertsbakh and Shpungin (2010,

Appendix B). However, this formula is numerically unstable when c is large or if the shock rates λj ’s are

too small. What goes wrong is that the products pj in (2) are very large and of comparable sizes, and have

alternating signs (−1)j−1. When the λj are small, the Λj and the exponential factors that multiply those

products are close to each other and near 1, so we have a sum of very large alternating terms while the sum

itself is between 0 and 1; a situation that leads to a loss of precision and numerical errors. Note that the sizes

of the products pj themselves do not depend on the sizes of the λj ’s. For example, if we multiply all λj ’s by

the same constant, this multiplies the Λj ’s by the same constant and changes nothing in the products pj .

The hypoexponential complementary cdf (2) can in fact be written as a matrix exponential (see Botev

et al. (2013)) and a more stable and accurate algorithm to compute this matrix exponential is given in

Higham (2009). However, that algorithm involves multiplication of c × c matrices, which has O(c3) time

complexity in our implementation, so it is much slower and becomes impractical when c is too large. As an

illustration, with our implementation, in one example, the matrix exponential algorithm was about 15 times

slower than using (2) for c = 10 and about 825,000 times slower for c = 1000.

Another numerical problem comes from the fact that (2) actually gives 1 − U in Algorithm 1. When U

is very small (which is typical), the representation error on 1−U in double precision arithmetic (with 52-bit
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mantissa) is around 10−15, which means that we have limited accuracy on U . In fact, we have (roughly) no

accuracy at all on the returned U when U < 10−15. To derive a more direct formula for U , note that

c∑
j=1

pj = P [A1 + · · ·+Ac > 0] = 1,

so we can rewrite

P [A1 + · · ·+Ac ≤ γ] = 1−
c∑
j=1

e−Λjγpj =

c∑
j=1

(1− e−Λjγ)pj (3)

which permits one to compute U directly, by using predefined functions that can compute 1−e−Λjγ accurately.

For example, when Λjγ is very small, e−Λjγ is very close to 1, so if we do the subtraction from 1 explicitly

we may lose all accuracy, but one can write 1− e−Λjγ ≈ Λjγ− (Λjγ)2/2 + · · · , and this series converges very

fast (so it permits one a very accurate evaluation) when Λjγ is very small. When c gets too large, however,

(3) also becomes unstable in the same way as (2). Our GS method does not have this type of limitation.

3.3 Generating the permutation directly

The permutation π can also be generated directly, without generating and sorting the shock times Yj , and

only for the first Cs shocks, as follows. At step k, the kth shock is selected among the shocks still in

consideration, with probability λj/Λk for shock j, where Λk is the sum of occurrence rates of the shocks still

under consideration, for k ≥ 1. This avoids the sorting, which takes O(κ log κ) time.

However, unless the λj ’s are all equal (we will come back to this special case in Section 3.6), updating

the probabilities λj/Λk and selecting the next shock according to those probabilities at each step involves

overhead when these probabilities are different. In fact, computing and updating all these probabilities in

general would take O(κ) time at each step, and therefore O(Csκ) time overall, which could be much slower

than generating and sorting the shock times. To avoid recomputing the probabilities at each step, a different

approach to generate the permutations is to compute a table of the probabilities λj/Λk and the corresponding

cdf before doing the n simulation runs, and re-use this same table at all steps and for all runs to generate

the sequence of shocks. When a shock occurs, we mark it in the table as already selected, and if it is selected

again later we just skip it and generate another one, as in an acceptance-rejection method. After each run,

we remove all the marks to reset the table for the next run. This works fine and is typically more efficient

that generating and sorting all shock times when Cs/κ � 1. But it can become very slow when κ is large

and Cs/κ is near 1, because of the high rejection probabilities when k gets large. The PMC procedure with

direct generation of π is stated in Algorithm 2. In our experiments, Algorithm 2 was typically around 10 to

30% faster than Algorithm 1. Nevertheless, for the empirical results reported here with the other PMC and

turnip methods that follow, we simply generated and sorted the shocks.

ALGORITHM 2: PMC algorithm without generating the shock times

Λ1 ← λ1 + · · ·+ λκ
L1 ← {1, . . . , κ} // shocks still under consideration
x = (x1, . . . , xm)← (1, . . . , 1) // all links are operational
k ← 1
while the nodes in V0 are all connected do

draw J from L1, with P[J = j] = λj/Λk
π(k)← J
for all i ∈ s(j) do

if xi = 1 then
xi ← 0, remove link i from graph

k ← k + 1
Λk ← Λk−1 − λJ and remove J from L1

Cs ← k − 1
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .
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3.4 Scanning the shocks in reverse order

To compute Cs given the (full) permutation π, instead of adding shocks until the system fails, one can

assume that all the shocks have already occurred, and we remove them one by one in their reverse order of

occurrence, until the system is repaired. If there are ci shocks with positive rates that can affect component i,

then component i will be repaired when those ci shocks have been removed. We assume that ci > 0 for each

i. In the implementation, for each component i, we maintain a counter di that starts at ci and decreases by 1

each time a shock that affects component i is removed. That is, when a shock j is removed, for all components

i ∈ s(j), we subtract 1 from di. Whenever di becomes 0, link i gets repaired, so we add it to the current

configuration and if it connects two different connected components of the network (that are not already

connected), we merge those two connected components, exactly as in Botev et al. (2013). As soon as the

system becomes operational, we know the critical shock number Cs defined in Section 3, and we can compute

the same unreliability estimator as in Algorithm 1, based on the first Cs shocks. This Cs is the number of

the last shock that had been removed before the system became operational. This gives Algorithm 3. Note

that to implement this, we need to generate all the shocks. The difference between Algorithms 1 and 3 is

that the latter reconstructs the network by removing the shocks one by one, whereas the former destroys the

networks by adding the shocks one by one. Both work on the same ordered list of shocks and yield exactly

the same estimator. Only the computing time differs. Generally speaking, adding the shocks in their order

of occurrence is faster when Cs is much smaller than Ca, otherwise starting with all the shocks and removing

them one by one (adding anti-shocks) is usually faster, because updating the data structures that represent

the graph is faster when adding links than when removing links.

ALGORITHM 3: A reverse PMC algorithm

draw the κ shock times and sort them in increasing order
L1 ← {π(1), . . . , π(κ)}

// list of shocks, by increasing order of occurrence
for i = 1 to m do

di ← ci and xi ← 0 // configuration of links
k ← κ
while the nodes in V0 are not all connected do

j ← π(k)
for all i ∈ s(j) do

di ← di − 1
if di = 0 then

xi ← 1, and if link i joints two connected components, merge them
k ← k − 1

Cs ← k + 1 // shock number at which V0 is disconnected
Λ1 ← λ1 + · · ·+ λκ
for k = 1 to Cs − 1 do

Λk+1 ← Λk − λπ(k)
return U ← P [A1 + · · ·+ACs ≤ 1 | π], estimator of u.

3.5 PMC with anti-shocks generated directly

It is also possible to define exponential anti-shock times, and use them to define a different PMC estimator,

based on a sum of anti-shock times. We start in a state where all the shocks have occurred. Each anti-shock

removes the corresponding shock. If anti-shock j occurs at time Rj which is an exponential of rate µj , we

must have 1− e−µj = P[Rj ≤ 1] = P[Yj > 1] = e−λj , and therefore

µj = − ln(1− e−λj ).

This gives the correct probability for the shock to have occurred after time 1. Thus, we can generate the

anti-shocks times Rj as exponential with those rates µj and sort them in increasing order. This sorting
corresponds to a permutation π′ = (π′(1), . . . , π′(κ)) as for the shocks. This π′ has actually the same

distribution as the reverse of the permutation π for the shocks. Now, we add the anti-shocks in this order
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until all nodes in V0 are connected, say when the Cath anti-shock occurs. Before adding the kth anti-shock

π′(k), the time A′k = Rπ′(k) − Rπ′(k−1) until this anti-shock occurs is exponential with rate Λ′k defined

recursively via Λ′1 = µ1 + · · · + µκ and Λ′j+1 = Λ′j − µπ′(j) for j ≥ 1. Conditional on π′ and on Ca = c, the

failure time is A′1 + · · · + A′c, a sum of c independent exponential random variables with rates Λ′1, . . . ,Λ
′
c.

Finally, we have the unbiased unreliability estimator U ′ = P[A′1 + · · ·+A′Ca
> 1 | π′], which can be computed

as explained earlier, but with the Λj replaced by Λ′j in the formulas and in the definition of pj .

If the permutation π for the shocks has critical shock number Cs, π
′ is the reverse permutation and it

has critical anti-shock number Ca, then Cs + Ca = κ + 1. This means that we can generate either π or

π′ and compute at the same time either Cs or Ca from one of these permutations, by adding shocks or by

adding anti-shocks, and then use either U = P[A1 + · · · + ACs ≤ 1 | π] or U ′ = P[A′1 + · · · + A′Ca
> 1 | π′]

as an estimator. One advantage of the latter when u is small is that it is expressed directly in terms of the

tail probability given in (2), which is often much more stable than (3), used in Algorithm 1, when u is very

small. Algorithm 4 gives one version of this, with generation and sorting of anti-shock times, and U ′ as an

estimator.

ALGORITHM 4: A PMC algorithm with exponential anti-shocks

Λ′1 ← µ1 + · · ·+ µκ
for i = 1 to m do

di ← ci and xi ← 0 // configuration of links
draw the κ anti-shock times Rj and sort them in increasing order to obtain the permutation
π′ = (π′(1), . . . , π′(κ))
k ← 1
while the nodes in V0 are not all connected do

j ← π′(k)
for all i ∈ s(j) do

di ← di − 1
if di = 0 then

xi ← 1, and if link i joints two connected components, merge them
Λ′k+1 ← Λ′k − µπ′(k)
k ← k + 1

Ca ← k − 1 // anti-shock at which V0 is connected
return U ′ ← P

[
A′1 + · · ·+A′Ca

> 1 | π′
]
.

3.6 When the λj’s are all equal

In the special case where all the shock rates λj are equal, faster PMC implementations are available. When

generating the permutation π directly, at each step the next shock must be drawn uniformly among the shocks

that did not occur yet. Thus, generating the sequence of shocks up to the critical one amounts to generating

the first Cs elements of a random permutation of {1, . . . , κ} objects. This can be done very efficiently (Knuth,

1998, Section 3.4.2): Put the numbers 1, . . . , κ in a table of size κ, then at each step k, draw J in {k, . . . , κ}
at random, and exchange the table entries in positions J and k. The number at position k is the shock

selected at step k. There is no need to update probabilities or to use rejection.

Moreover, when all λj are equal, say to λ, in the case of PMC with shocks, we have Λj = λ× (κ+ 1− j).
In this case, one can rewrite (3) as

P [A1 + · · ·+Ac ≤ γ] =

c∑
j=1

(1− e−(κ+1−j)λγ)

c∏
k=1,k 6=j

κ+ 1− k
j − k

= κ

(
κ− 1

c− 1

)∫ 1

e−λγ
tκ−c(1− t)c−1dt (4)

= 1− Ie−λγ (κ− c+ 1, c), (5)

where the equality in (4) is a direct consequence of Formula (6.6.4) in Abramowitz and Stegun (1970) and

the last expression contains the cdf of the beta distribution (or regularized incomplete beta function), defined
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by

Ix(α, β) =
1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt

for α, β > 0 and x ∈ [0, 1], where B(α, β) is the beta function. The equality (4) can also be verified directly

by expanding the (1− t)c−1 in the integrand using the Binomial Theorem to get a polynomial in powers of

t, and integrating those powers of t from e−λ to 1 to obtain the expression on the previous line. To evaluate

(5) accurately when e−λγ is close to 1, one can use the identity

1− Ie−λγ (κ− c+ 1, c) = I1−e−λγ (c, κ− c+ 1).

For PMC with anti-shocks, still with all shock rates equal to λ, we can use a similar reformulation of (2)

with λ replaced by µ = − ln(1− e−λ). This gives

P [A′1 + · · ·+A′c > γ] =

c∑
j=1

e−(κ+1−j)µγ
c∏

k=1,k 6=j

κ+ 1− k
j − k

= Ie−µγ (κ− c+ 1, c). (6)

Formulas (5) and (6) do not apply for the turnip method defined in the next section, but only for PMC. Aside

from being faster to compute, they have two additional advantages: (i) for PMC, where the direct formula (2)

suffers from numerical instabilities, (5) can be used directly instead of the slow matrix exponential, and (ii)

these formulas can compute cdf values much smaller than 10−16, because they do not rely on the subtraction

F (x) = 1− F̄ (x). They only require an accurate computation of the beta cdf.

Because of this important speedup, it could be worthwhile to construct the model in the first place under

the constraint that all shock rates must be equal. To make some of the shocks much more probable than

others, one can simply duplicate them. That is, we may have ns ≥ 0 different shocks that affect the same

subset s, all with rate λ. This is equivalent to having λs = nsλ. This puts restrictions on the shock rates, as

they must now be all integer multiple of the same constant λ, but on the other hand, this may allow a much

faster estimation of u.

4 Adapting the turnip method

The idea of the turnip method (Gertsbakh and Shpungin, 2010), adapted to our setting, is as follows: While

we add the shocks [or anti-shocks] one by one in increasing order of their occurrence, we remove from

consideration at each step all the shocks [or anti-shocks] that did not yet occur and can no longer contribute

to system failure [or repair].

4.1 Turnip with shocks

When shocks are added, any shock that takes down only links that are already failed can be removed

from consideration. Also, if a shock takes down some links that are not yet failed, but none of these links

belongs to a path that connects two nodes of V0 in the current configuration of the network, then this shock

can be removed from consideration. Removing these useless shocks may speed up things considerably in

some situations, as was observed in Gertsbakh and Shpungin (2010) and Botev et al. (2013) for the case of

independent links, but it also entails additional overhead for the maintenance of data structures and for the

computations to identify the shocks that can be removed from further consideration. This overhead can be

more important in the MO model with shocks than with independent links.

Note that when we add the shocks until the system fails, all nodes in V0 are connected, and therefore

belong to the same connected component of the graph. Then, any link that connects two nodes that are

not in this connected component can be removed from consideration, because it can no longer connect nodes

in V0. We can actually put those links to the failed state right away, and keep only the links that connect

nodes that are in the same connected component as V0. In this way, there will always be a single connected

component under consideration, until the network fails. Whenever a shock takes down only links that are

already failed, we remove it from consideration. This is our adaptation of the turnip using shocks, for this
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ALGORITHM 5: An adapted turnip algorithm

Λ1 ← λ1 + · · ·+ λκ
L1 ← {1, . . . , κ} // shocks still under consideration
x = (x1, . . . , xm)← (1, . . . , 1) // all links are operational
k ← 1
while the nodes in V0 are all connected do

draw J from L1, with P[J = j] = λj/Λk
π(k)← J
for all i ∈ s(j) do

xi ← 0, remove link i, update the connected components if needed, and if the two nodes that were
connected by i are no longer in the same connected component, remove all the links in the component
which is no longer connected with V0

k ← k + 1
Λk ← Λk−1 − λJ and remove J from L1

for all shock j ∈ L1 that affects only failed links do
Λk ← Λk − λj and remove j from L1

// shock j is discarded and k is unchanged
// this step distinguishes turnip and PMC

Cs ← k − 1
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .

MO case. It is given in Algorithm 5, in a version where the permutation is generated directly. One can also

generate the shock times and sort them to generate the permutation.

Removing the useless shocks here can improve things in two ways: it can reduce the work if we save

more by handling fewer shocks than the additional overhead, and it can reduce the variance of the estimator.

Indeed, when shocks are removed from consideration at the last step of the while loop, k is not increased,

so these discarded shocks are not considered when computing the estimator U . Therefore, the Cs returned

by Algorithm 5 can be much smaller than the one returned by PMC, and the resulting estimator is not the

same and can have much smaller variance. In our experiments, we often observed a variance reduction but

an increase in work (because of the important overhead).

4.2 Turnip with anti-shocks

In the case where we assume that all the shocks have occurred and we add anti-shocks until the system is

repaired, we can also remove the anti-shocks that can no longer contribute. This is done in Algorithm 6,

which returns an estimator U ′ based on the Ca non-discarded anti-shocks. In this version, all the anti-shock

times are first generated and sorted in increasing order. The ordered list of anti-shocks L1 can be maintained

in an array and the removed entries just marked instead of physically removed. When scanning this ordered

list at the end of the algorithm, we scan the unmarked entries in the array. Links are eliminated from the

network when we find that they can no longer connect anything new, and future anti-shocks that can only

take down failed links are discarded. The counter k counts the number of non-discarded anti-shocks that

have occurred, while k′ also includes those that were discarded. The estimator U ′ is based on the times Rj
between the non-discarded anti-shocks.

4.3 Summary of PMC and turnip versions

We summarize the different versions of PMC and turnip that we have introduced. They distinguish themselves

by four main binary decisions in the definition of the algorithm.

(a) We can generate all shock or anti-shock times, then sort them in increasing order to determine the

permutation, or we can generate the permutation directly without generating the shock times.

(b) To determine the critical shock or anti-shock number Cs or Ca, we can use a destruction process that

adds the shocks one by one, or use a construction process that removes the shocks one by one (reverse

process).
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(c) We can compute the critical numbers by considering all shocks or anti-shocks (this is PMC) or eliminate

along the way the shocks or anti-shocks that are found to be useless (this is the turnip).

(d) We can define the estimator as a conditional probability for a sum of Cs exponential times between

shocks, or a sum of Ca exponential times between anti-shocks (we denote the latter by “anti”).

Note that when using the reverse process in (b), we need to generate the entire permutation. Overall, there

are 16 possible combinations. This gives 16 different variants of the algorithm. Algorithms 1 to 6 are only

six examples out of those 16. Which combination is best is problem-dependent. For (a), in our experiments,

generating the permutation directly was always a bit faster, but this may not always be true, in particular

when the critical number is close to κ. For (b), the destruction process (adding shocks) is usually faster when

Cs � Ca, and removing shocks is faster when Cs � Ca. For (c), we generally expect turnip to be faster,

but it depends on the overhead required to maintain the appropriate data structures to identify the useless

shocks or anti-shocks. What is best in (d) is similar to (b): roughly, adding the shocks is generally better

(smaller variance) when Cs < Ca, and vice-versa. However, when u is very small, the formula based on the

Ca anti-shocks times is sometimes the only one that is numerically stable and usable as an estimator. Our

numerical examples will illustrate all of this.

ALGORITHM 6: A turnip algorithm with anti-shocks generated at exponential times

Λ′1 ← µ1 + · · ·+ µκ
draw the κ anti-shock times, with rates µj , and sort them in increasing order
L1 ← {π(1), . . . , π(κ)} // list of anti-shocks in increasing order of occurrence, all unmarked
F ← {1, . . . ,m} // set of failed links
for i = 1 to m do

di ← ci and xi ← 0 // current configuration of links
k ← 1 and k′ ← 1
F0 ← ∅ // a list of links that can be discarded
while the nodes in V0 are not all connected do

for each i′ ∈ F0 do
for each unmarked j′ ∈ L1 that contain i′ do

if shock j′ affects no link in F then
// shock j′ can be discarded

mark j′ in L1

Λ′k ← Λ′k − µj′
while π(k′) is marked do

k′ ← k′ + 1
j ← π(k′) and mark j

// in what follows, we remove shock j
Λ′k+1 ← Λ′k − µj
F0 ← ∅ // a local list of links that become operational or can be discarded after anti-shock j
for all i ∈ s(j) do

di ← di − 1
if di = 0 then

xi ← 1, remove i from F , and add i to F0 // link i gets repaired
if link i joints two connected components, merge them, remove from F all the links i′ ∈ F that
connect these two previous components, and add them to F0

k ← k + 1 and k′ ← k′ + 1
Ca ← k − 1 // critical anti-shock number
return U ′ ← P

[
A′1 + · · ·+A′Ca

> 1 | π
]
.

5 Bounded relative error for PMC and turnip

We now derive conditions under which the PMC and turnip methods provide estimators having BRE when

u → 0. For this, we parameterize all the rates λj by a single rarity parameter ε > 0, so that λj = λj(ε) is

non-increasing in ε and the corresponding u = u(ε)→ 0 when ε→ 0, and we study the behavior when ε→ 0.

Recall that for two non-negative functions f and g, we say that f(ε) = O(g(ε)) if there is a constant K such

that f(ε) ≤ Kg(ε) for all ε > 0, and f(ε) = Θ(g(ε)) when both f(ε) = O(g(ε)) and g(ε) = O(f(ε)).
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We start with the PCM method with shocks. The estimator

U = Z(π) = P[A1 + · · ·+ACs ≤ 1 | π] (7)

(for a single realization) is a function of the (random) permutation π. If p(π) denotes the probability of π,

then

u = u(ε) = E[Z(π)] =
∑
π

Z(π)p(π) (8)

and

RE2[Z(π)] =
E[Z2(π)]− u2

u2
=

1

u2

∑
π

Z2(π)p(π)− 1. (9)

Here, both Z(π) and p(π) are functions of ε, although we omit to write it explicitly to simplify the notation.

Also, we only need to consider the partial permutations π̃ = (π(1), . . . , π(Cs)) rather than the full permuta-

tions π = (π(1), . . . , π(κ)), in the sense that all the full permutations that yield the same π̃ can be considered

as the same π in the sums (7), (9), and elsewhere, and these sums can be defined over π̃ instead of π. This

means that in our development below, π could be replaced by π̃, and similarly with π′ for the anti-shocks.

We have BRE if and only if RE2[Z(π)] = O(1), which occurs if and only if Z2(π)p(π)/u2 = O(1) for all

π, because the total number of permutations π is finite. This holds for both PMC and turnip.

Theorem 5.1 If p(π) = Θ(1) for all π, i.e., if each p(π) remains bounded away from 0 when ε→ 0, then the

PMC and turnip estimators with shocks have BRE.

Proof. For all π, we know that Z(π)p(π) ≤ u, so if p(π) = Θ(1), then Z2(π)p(π)/u2 = O(Z2(π)p2(π)/u2) ≤
1.

Corollary 5.2 If λj/λk = Θ(1) for all j 6= k, then PMC and turnip with shocks give BRE.

Proof. Under the given assumption, we have λj/Λk = Θ(1) for all j and k in Algorithm 2, which implies

that p(π) = Θ(1) for all π.

The conditions in Theorem 5.1 are only sufficient. We now give necessary and sufficient conditions in

the setting where the λj ’s are polynomial functions of ε, say λj = Θ(εaj ) for some aj > 0, for each link j.

In that case, it is easily seen that for any given π, p(π) and Z(π) are also polynomial in ε, which means
that for each π, there exist real numbers m1(π) ≥ 0 and m2(π) ≥ 0 such that p(π) = Θ(εm1(π)) and

Z(π) = Θ(εm2(π)). There is also an r ≥ 0 such that u = Θ(εr) and r = minπ(m1(π)+m2(π)). In this setting,

Z2(π)p(π)/u2 = εm1(π)+2m2(π)−2r = O(1) if and only if m1(π) + 2m2(π) ≥ 2r. We have proved:

Theorem 5.3 If for each π we have p(π) = Θ(εm1(π)) and Z(π) = Θ(εm2(π)), then the PMC and turnip

estimators with shocks have BRE if and only if m1(π) + 2m2(π) ≥ 2r for all π.

Note that m1(π) + m2(π) ≥ r always hold, so if m1(π) = 0 then m2(π) ≥ r and the condition of the

theorem is satisfied. When this holds for all π, this is the situation of Theorem 5.1. If m1(π) + m2(π) = r,

so the contribution of π to u does not vanish asymptotically when ε→ 0, then m1(π) = 0 (i.e., p(π) = Θ(1))

is necessary for BRE to hold. The interpretation of what happens otherwise is that p(π)→ 0 and Z(π)/u =

Θ(1/p(π))→∞ when ε→ 0, so when ε is very small, Z(π) has an enormous value but π is practically never

sampled. We can have m1(π) > 0 only when m1(π) + m2(π) > r. Note that the conditions in this theorem

depend not only on the rates λj , but also on the topology of the network, via the Z(π)’s.

The conditions of Corollary 5.2 are equivalent to the BRE conditions established in Gertsbakh and

Shpungin (2010) and Lomonosov and Shpungin (1999) for the case of independent links (exactly one shock

per link). Note that these are only sufficient conditions. Below, we will give an example where the conditions

are not satisfied and BRE does not hold. It corresponds to a situation where there is a permutation π that
has a significant (Θ(u)) contribution to u in (8), but this permutation becomes too rare in the sense that
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p(π) → 0 when ε → 0, so the contribution from this permutation is lost with very large probability when ε

is too small.

For PMC or turnip with anti-shocks, we also have (8) and (9) with π′ in place of π, and Theorem 5.1

becomes

Theorem 5.4 If p(π′) = Θ(1) for all π′, then the PMC and turnip estimators with anti-shocks have BRE.

We also have:

Corollary 5.5 If − lnλj/(− lnλk) = Θ(1) for all j 6= k, then PMC and turnip with anti-shocks give BRE.

Proof. Recall that µj = − ln(1−e−λj ) = − ln(λj−O(λ2
j )). Then, the given assumption implies that µj/Λ

′
k =

Θ(1) for all j and k in Section 3.5. As a result, for each permutation π′, p(π′) =
∏κ
k=1 µπ′(k)/Λ

′
k = Θ(1) and

Theorem 5.4 applies.

The sufficient BRE condition in Corollary 5.5 is weaker than that in Corollary 5.2. Note that these

conditions are not necessary, so we may have BRE even when the conditions fail. We now provide an

example where BRE holds with the anti-shocks but not with the shocks, showing that BRE indeed holds

more generally with the anti-shocks.

Example 5.6 We consider a graph with 4 nodes and 4 links, as shown in Figure 1, with shocks only on the

links, one shock per link, and V0 = {1, 4}. We have λj = ε2 for j = 1, 2 and λj = ε for j = 3, 4, for some

small ε > 0. Recall that when λj is small, the probability that shock j occurs before time 1 is 1− e−λj ≈ λj .
Thus, the probability that the graph is disconnected because only shock 1 occurs is approximately ε2, the

probability that it is disconnected because only shocks 3 and 4 occurs is also approximately ε2, and all other

possibilities have probability O(ε3). Therefore, u ≈ 2ε2, and u/(2ε2)→ 1 when ε→ 0.

1 2

3

4
λ1 = ε2

λ2 = ε2 λ3 = ε

λ4 = ε

Figure 1: A small graph with 4 nodes and 4 links.

Here, λ3/λ1 = 1/ε → ∞ when ε → 0, so the conditions of Corollary 5.2 do not hold. However,

− lnλ3/(− lnλ1) = − ln ε/(−2 ln ε) = 1/2 and this quantity is either 1/2 or 1 or 2 for the other pairs

(i, j). Therefore, Corollary 5.5 applies.

Table 1: Simulation results with n = 106 for the small graph

PMC with shocks PMC with anti-shocks

ε W̄n RE2[W̄n] W̄n RE2[W̄n]

10−1 1.998e-2 3.87 1.978e-2 1.112
10−2 2.007e-4 48.75 1.997e-4 1.640
10−4 1.960e-8 4996.67 1.999e-8 1.708
10−6 1.000e-12 1.000e-6 2.001e-12 1.706
10−8 1.000e-16 0.000 1.998e-16 1.709
10−10 1.000e-20 0.000 2.003e-20 1.705

Table 1 shows the estimated unreliability W̄n and its estimated relative variance RE2[W̄n] = S2
n/(nW̄

2
n),

based on n = 106 independent replications, for PMC with shocks and PMC with anti-shocks, with some

small values of ε. For PMC with anti-shocks, W̄n is always close to u ≈ 2ε2 and the RE remains stable
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when ε→ 0, as expected. For PMC with shocks, when ε is small, the estimator W̄n is erratic and eventually

becomes close to ε2 ≈ u/2 instead of u, while the estimated RE is 0 most of the time. What happens is the

probability that shocks 3 and 4 are the first two shocks (in any order) in the permutation π converges to 1,

and the probability that shock 1 comes before these two converges to 0. When shocks 3 and 4 come first,

the probability of failure is Z(π) ≈ ε2. And if this occurs in all realizations, then U = ε2 in all cases and the

empirical variance is S2
n = 0. In other words, a graph failure coming from shock 1 is never observed, and this

causes an apparent bias, because this part of the contribution to u is missing. In reality, there is no bias and

the true RE is very large. In the rare cases where failure comes from shock 1 for one or more realizations,

the empirical RE would be very large. We can see this for ε = 10−2 and 10−4.

6 Adapting GS to the MO model

6.1 GS with shocks

We now adapt the GS algorithm proposed in Botev and Kroese (2012) and Botev et al. (2013) for independent

links to the MO copula setting. This algorithm provides an unbiased estimator with low relative error for the

unreliability u. It addresses the rare-event issue by forcing the sampling of more realizations of the vector

Y of shock times in the region where the system is failed at time 1. To make our formulation compatible

with the GS algorithm given in (Botev et al., 2013), where we want to select trajectories so that they

go above given thresholds, we take S(Y) = 1/S̃(Y) as the importance function in the splitting method.

When network failure is a rare event, most realizations of S(Y) will be small (much closer to 0 than to

1) under the original sampling distribution, and we want to apply GS to get more realizations for which

S(Y) > 1. For this, we choose an integer s ≥ 2 called the splitting factor, an integer τ > 0, and thresholds

0 = γ0 < γ1 < · · · < γτ = 1, such that

ρt = P[S(Y) > γt | S(Y) > γt−1] ≈ 1/s

for t = 1, . . . , τ (except for ρτ , which can be larger than 1/s), just like in Botev et al. (2013), and we apply

GS in the same way. Botev et al. (2013) recommend s = 2 and give an adaptive pilot algorithm to estimate

good values of the splitting levels γt.

For each level γt, we construct a Markov chain {Yt,`, ` ≥ 0} with a stationary density equal to the density

of Y conditional on S(Y) > γt, given by

ft(y)
def
= f(y)

I[S(y) > γt]

P[S(Y) > γt]
, (10)

where f ≡ f0 is the unconditional density of Y. The transition kernel density of this Markov chain, which is

the density of the next state Yt,` conditional on the current state Yt,`−1, is denoted by κt(· | Yt,`−1). One

possibility for the construction of κt is via Gibbs sampling, as explained later.

At the t-th stage, if a Markov chain starts from a state having density ft−1 and evolves according to the

kernel κt−1(· | Yt−1,j−1), then each visited state also has density ft−1, which is a stationary density for the

Markov chain with kernel κt−1. In particular, the chain will never again go below the level γt−1 that we have

already reached.

Algorithm 7 states this procedure with a single starting chain. It returns an unbiased estimator U of u.

In the algorithm, Xt denotes a set of latent states Y that have reached the level γt. This algorithm will be

invoked n times, independently, and the empirical mean Ūn and variance S2
n of the n realizations U1, . . . , Un

of U can be used to estimate the unreliability u and the variance of U . Proposition 1 of Botev et al. (2013)

states that these are both unbiased estimators. They can be used to compute a confidence interval on u.

To sample Y` from the density κt−1(· | Y`−1) in Algorithm 7, we use Gibbs sampling as follows. We first

select a permutation of the κ coordinate indexes {1, . . . , κ} (it can be just the identity permutation). Then

we visit the κ coordinates in the order specified by the permutation. When we visit coordinate Yj of the

current Y, for some j, we erase the current value of Yj and we resample it from its distribution conditional
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ALGORITHM 7: A GS algorithm based on shocks; returns U , an unbiased estimate of u

Require: s, τ, γ1, . . . , γτ
Generate a vector Y of shock times from its unconditional density f .
if S(Y) > γ1 then

X1 ← {Y}
else

return U ← 0
for t = 2 to τ do

Xt ← ∅ // states that have reached level γt
for all Y0 ∈ Xt−1 do

for ` = 1 to s do
sample Y` from the density κt−1(· | Y`−1)
if S(Y`) > γt [≡ {S̃(Y`) < 1/γt}] then

add Y` to Xt
return U ← |Xτ |/sτ−1, an unbiased estimate of u.

on S(Y) > γt−1, given the other coordinates of Y. Then the chain will never again go below the level γt−1

that we have already reached. If Y has density ft−1 and we resample any of its coordinates as just described,

the modified Y still has density ft−1.

In fact, there are just two possibilities for the conditional distribution of Yj when we resample it. Sup-

pose we currently have Yj < 1/γt−1. If by changing Yj to a value larger than 1/γt−1 we would have

S(Y) ≤ γt−1 (that is, removing the shock j would make the system operational at time 1/γj−1), then

we must resample Yj from its distribution conditional on Yi < 1/γt−1. Otherwise, we resample it from

its original distribution, because shock j alone has no influence on the failure time of the system, given

the occurence times of the other shocks. This Gibbs sampler is stated in Algorithm 8. In this algorithm,

(Y1, . . . , Yj−1,∞, Yj+1, . . . , Yκ) represents the current vector Y but where shock j never occurs. Thus, the

condition S(Y1, . . . , Yi−1,∞, Yi+1, . . . , Yκ) ≤ γt−1 means that the graph becomes operational at level γt−1 (or

time 1/γt−1) when shock j is removed.

ALGORITHM 8: Gibbs sampling for the transition density κt−1

Require: Y = (Y1, . . . , Yκ) for which S(Y) > γt−1 and a permutation π of {1, . . . , κ}.
for k = 1 to κ do

j ← π(k)
if S(Y1, . . . , Yj−1,∞, Yj+1, . . . , Yκ) ≤ γt−1 then

resample Yj from its density truncated to (0, 1/γt−1)
else

resample Yj from its original density
return Y as the resampled vector.

If Yj is exponential with rate λj , its distribution conditional on Yj < 1/γ can be generated by inversion by

generating U uniformly over (0, 1−exp[−λj/γ]) and returning Yj = − ln(1−U)/λj (a truncated exponential).

To see this, note that we want − ln(1− U)/λj < 1/γ, i.e., U < 1− exp[−λj/γ].

Checking the condition that S(Y1, . . . , Yj−1,∞, Yj+1, . . . , Yκ) ≤ γt−1 in the Gibbs sampling algorithm

could be a bit tricky when a single component can be affected by more than one type of shock. To do that,

one must first identify the set G of all components i ∈ s(j) that did not already fail due to another shock

before time 1/γt−1, and then check if the system is still failed at time 1/γt−1 if all components in G are put

in the operational state. To facilitate the identification of G, we maintain a table that gives the number di
of shocks that affect component i and that have already occurred, for each i. When that number exceeds 1

for component i, we know that component i is still failed even if we remove a shock that affects it.



16 G–2015–12 Les Cahiers du GERAD

6.2 GS with anti-shocks

In the dual approach, we generate and maintain a vector of anti-shock times R = (R1, . . . , Rκ) instead of a

vector Y of shock times. The resulting algorithm is very similar to the GS algorithm in Botev et al. (2013)

and in Algorithm 7. In this algorithm, R is the vector of anti-shock times and S(R) is the time at which

the system gets repaired. To resample from the conditional density κt−1(· | R`−1), we use Gibbs sampling

as follows. At each step, we resample one coordinate Rj , as in Algorithm 8. If the anti-shock j would

repair the network in the current configuration, we resample Rj from its exponential density truncated to

(γt−1,∞), otherwise we resample it from its original exponential density. Thus, when resampling the time of

an anti-shock j, we must first check what links this anti-shock would immediately repair, and see if adding

those links would make V0 connected. The corresponding Gibbs sampler is stated in Algorithm 10 and the

splitting procedure is in Algorithm 9, for a single starting chain. In our experiments, we did not find much

difference in performance between these two versions of GS (shocks vs anti-shocks).

ALGORITHM 9: A GS algorithm based on anti-shocks; returns U , an unbiased estimate of u

Require: s, τ, γ1, . . . , γτ
Generate a vector R of anti-shock times from its unconditional density.
if S(R) > γ1 then

X1 ← {R}
else

return U ← 0
for t = 2 to τ do

Xt ← ∅ // states that have reached level γt
for all R0 ∈ Xt−1 do

for ` = 1 to s do
sample R` from the density κt−1(· | R`−1)
if S(R`) > γt then

add R` to Xt
return U ← |Xτ |/sτ−1, an unbiased estimate of u.

ALGORITHM 10: Gibbs sampling for anti-shocks density κt−1(· | R)

Require: R = (R1, . . . , Rκ) for which S(R) > γt−1 and a permutation π of {1, . . . , κ}.
for k = 1 to κ do

j ← π(k)
if S(R1, . . . , Rj−1, 0, Rj+1, . . . , Rκ) ≤ γt−1 then

resample Rj from its density truncated to (γt−1,∞)
else

resample Rj from its original density
return R as the resampled vector.

7 Data structures for an efficient implementation

For an efficient implementation of the PMC, turnip, and GS algorithms, we need a representation of the

graph that permit us to identify rapidly which conditional distribution should be used to resample a shock

or an anti-shock. The representation must also be quick and easy to update after a shock or anti-shock has

been resampled. We have used a slight modification of the representation in Botev et al. (2013), which we

summarize here (this description is largely borrowed from Botev et al. (2013)).

The graph is represented by a data structure that contains the set of nodes and the set of links, each one

in an array. Each node has a list of adjacent links and corresponding neighbors. Each link i = (k, `) connects

a pair of nodes k and `. The fixed (permanent) parameters of the links are memorized in this structure. We

also need a table of size κ that lists the subsets s(j) for j = 1, . . . , κ and the means 1/λj for the exponential

distributions for the associated failure rates. These structures are stored in single objects that do not change

during the execution of the algorithm.
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Some of the graph characteristics change during execution and differ across the different instances of

the Markov chain. For those, we must keep one copy for each instance of the chain. This is the case for

Y = (Y1, . . . , Yκ). From this Y, we easily obtain X(γ) and we can compute Φ(X(γ)) for any level γ. We also

want a data structure that permits us to see immediately from what conditional distribution each Yj should

be resampled in the conditional Gibbs sampling at the current level γ, that tells us immediately the value of

X(γ), and that can be updated quickly after Yj is changed. The information in this data structure represents

the state of the Markov chain in the splitting algorithm. It changes at each step of the chain and must be

cloned each time we make a new copy of the chain. Therefore, it must be kept small. In our implementation,

we maintain a set of connected components at each level γt−1 as described in Botev et al. (2013). We also

maintain a table that gives the number di of shocks j that have already occurred in the current configuration

Y and that affect link i, for each i.

When a given Yj is modified, if 1/Yj was larger than the current level γt−1 and it becomes smaller, then

for each i ∈ s(j), the counter di is decreased by 1, and if di = 0, link i is added to the configuration (becomes

operational). In the latter case, if this link connects two nodes k and ` that are not in the same connected

component, these two components are merged into a single one. This is straightforward. If 1/Yj was smaller

than the current level γt−1 and it becomes larger, then for each i ∈ s(j), the counter di is increased by 1,

and if di = 1 (the link was operational before adding this shock), link i is removed from the configuration

(becomes failed). In the latter case, if i = (k, `), then we must check if there is still a path between k and

` after removing link i; if not, then the component (or tree) that contains these nodes must be split in two.

This verification is on average the most time-consuming task. It is done as explained in Botev et al. (2013).

When the level is increased from γt−1 to γt, we take all the shocks j for which γt−1 < 1/Yj ≤ γt, and for

each of them, for each i ∈ s(j), we decrease di by 1, and if di = 0, we add link i to the configuration and if

this link connects two nodes that are not in the same connected component, we merge these two components

into a single one.

In the GS algorithm, when simulating at level γt−1, after each step of the Markov chain we must check if

Φ(X(γt)) = 0, i.e., if we have reached the next level γt. If we did, we make a copy of the chain and insert it

in Xt, to be used as one of the starting points at the next stage. To compute Φ(X(γt)), we temporarily add

the links i that become operational when we remove the shocks j for which γt−1 < 1/Yj ≤ γt, and check if

this connects the nodes in V0.

8 Numerical experiments

In this section, we compare the performance of the various algorithms introduced earlier, on some examples.

In our examples, we consider one shock for each link and one shock for each node, with the exception of the

source and target nodes on which there are no shocks. A shock on a node takes down all the links connected

to that node. We assume that all these shocks have the same rate λj = λ. Then, all anti-shocks also have

the same µj = µ = − ln(1− e−λ). Since λ will be small, µ will be large. For each example, we tried various

values of λ.

For the PMC and turnip, unless indicated otherwise, we generated all the shock times and sorted them

to find the permutation. For the basic PMC and turnip, we also report results when we generate π directly,

and compare. We find very little difference in computing time. In the tables, we append π to the algorithm

name when π is generated directly without generating the times, we append “rev” (for “reverse”) when the

critical number is computed by removing the shocks, and we append “anti” when the estimator U ′ based on

anti-shocks is used. The estimator was always computed using the faster O(c2) formula (2) or (3) when it

was reasonably accurate; otherwise we switched to the slower but more accurate method of Higham (2009)

mentioned in Section 3.2. For PMC, we also used the formula based on the beta cdf, that holds for equal

λj ’s, for comparison.

For GS, the splitting factor is always s = 2, and the levels and their number τ are estimated by the

adaptive Algorithm 3 of Botev et al. (2013), with n0 = 104.
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The sample size n varies from n = 104 to n = 106, depending on the example. In the tables, we report the

unreliability estimate W̄n, the empirical relative variance of W , S2
n/(W̄n)2, the relative error of W̄n, defined

as RE[W̄n] = Sn/(
√
nW̄n), the average critical shock or anti-shock number C̄, the CPU time T (in seconds)

required by the n runs of the algorithm, and the work-normalized relative variance (WNRV) of W̄n, defined

as WNRV[W̄n] = T ×RE2[W̄n]. This WNRV is approximately independent of n when n is large. It compares

unbiased estimators by taking into account both the variance and the computing time. One should keep

in mind that T (and therefore the WNRV) may depend significantly on the computing platform and on

the implementation. For PMC and turnip, it also depends very much on the formula used to compute the

conditional probability. We put a • next to the CPU time when it is computed using the matrix exponential

(this is slow), a ◦ when one of the formulas (2) or (3) was used (this is faster), and nothing when using one

of the formulas (5) or (6) for the beta distribution available for PMC when the λj are all equal (the fastest

method).

Example 8.1 We start our numerical illustrations with a dodecahedron graph with 20 nodes and 30 links,

often used as a benchmark in network reliability estimation (Botev et al., 2013; Cancela and El Khadiri,

1995; Cancela et al., 2009; Cancela et al., 2009; Tuffin et al., 2014), and shown in Figure 2 (taken from Botev

et al. (2013)). We have 48 different shocks in total. The network is operational when nodes 1 and 20 are

connected.

Figure 2: A dodecahedron graph with 20 nodes and 30 links.

Table 2 reports simulation results with n = 106, for λ = 10−3 and 10−7. We see that for the PMC and

turnip methods, the RE is about the same for all variants and all values of λ, except for the turnip with

anti-shocks, for which the RE is approximately halved. This agrees with the BRE property. In fact, the RE

and WNRV would remain approximately the same for any smaller λ. For GS, the RE increases slightly when

λ decreases, and the WNRV increases even more, because the computing time T increases significantly and is

approximately proportional to the number of levels. (The number of levels for GS is around − log2(u) ≈ 67

for λ = 10−20). In terms of WNRV, turnip with anti-shocks wins (followed closely by PMC-rev and PMC-

anti) in all cases, even though it has a larger average critical number. Its advantage over GS increases as λ

decreases. GS has a smaller RE than PMC-turnip, but is much slower, and its WNRV is larger as a result.

For λ = 10−7, the turnip estimators can be computed only for the anti-shock versions, because of subtractive

cancellation when computing estimators smaller than 10−16 from F (t) = 1 − F̄ (t). The matrix exponential

method of Higham (2009) computes F̄ (t) and is not designed to compute F (t) directly when it is very small.
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Table 2: Dodecahedron with n = 106

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−3

PMC 1.62e-8 993 0.032 12.7 35 0.035
PMC 1.62e-8 993 0.032 12.7 • 62 0.062
PMC-π 1.59e-8 1009 0.032 12.7 21 0.022
PMC-rev 1.62e-8 993 0.032 12.7 17 0.017
PMC-rev 1.62e-8 993 0.032 12.7 • 42 0.042
PMC-anti 1.60e-8 1004 0.032 36.3 17 0.018
PMC-anti 1.60e-8 1004 0.032 36.3 ◦ 29 0.029
turnip 1.63e-8 894 0.030 10.7 • 72 0.064
turnip-π 1.59e-8 920 0.030 10.7 • 64 0.059
turnip-anti 1.58e-8 296 0.017 35.8 ◦ 45 0.013
GS 1.59e-8 53 0.007 437 0.023
GS-anti 1.60e-8 56 0.007 425 0.024

λ = 10−7

PMC 1.65e-20 1047 0.032 12.7 32 0.034
PMC-π 1.59e-20 1090 0.033 12.7 21 0.023
PMC-rev 1.65e-20 1047 0.032 12.7 17 0.018
PMC-anti 1.66e-20 1044 0.032 36.3 18 0.019
PMC-anti 1.66e-20 1044 0.032 36.3 ◦ 29 0.030
turnip-anti 1.58e-20 311 0.018 35.8 ◦ 44 0.014
GS 1.59e-20 143 0.012 982 0.140
GS-anti 1.58e-20 124 0.011 1106 0.137

We performed further experiments in which the shocks on nodes had rates 10 times larger, or 10 times

smaller, than those on links, and the results were qualitatively very similar. We observed that the RE

increases when the shocks on links have larger rates.

We also experimented with the case where each node has a shock, including those of V0. In that case,

when λ is very small, a single shock on one of the two nodes of V0 is sufficient to take the graph down. The

probability that any given shock occurs before time 1 is 1 − e−λ ≈ λ, while the probability that two given

shocks both occur is approximately λ2, which is negligible with respect to λ. Therefore, in this case, failure

of the graph is almost always caused by one of these two shocks on the nodes of V0, and the unreliability is

u ≈ 2λ. Apart from these two shocks, the other shocks have practically no impact. We observed this very

clearly in our experiments (for all examples given in this paper) and this is the reason why we removed the

shocks on the nodes of V0.

Example 8.2 Following L’Ecuyer et al. (2011), we construct a larger graph by putting three copies of the

dodecahedron in parallel, merging the three copies of node 1 as a single node, and the three copies of node

20 as a single node. The resulting graph has 56 nodes and 90 links. Again, we take V0 = {1, 20}. We have

a shock on each link and on each node not in V0, for a total of 144 shocks, all with rate λ. Table 3 gives

simulation results for n = 106, for λ = 0.1 and λ = 0.001. GS performs well in both cases. The variance

of the PMC and turnip estimators is about 100 times larger than that of GS for λ = 0.1, For λ = 0.001,

the ratio is much larger, although the empirical values given in the table are very far from the exact ones:

W̄n underestimates u by several orders of magnitude, and S2
n certainly underestimates the true variance

in the same way, so the estimated RE and WNRV reported in the table are meaningless. This may seem

to contradict the BRE property that we have proved! The explanation is that in the case of this larger

graph, when λ is small, only a tiny fraction of the 144! permutations π have a significant contribution in

the sum (8), and the PMC and turnip rarely generate these important permutations. This is a rare-event

situation. Moreover, this phenomenon is amplified when λ decreases, because the relative weight of the very

rare most important permutations increases. Recall that we have proved BRE for an asymptotic regime

where λ→ 0 while the graph topology is fixed. When λ is fixed, the BRE might actually increase very fast

as a function of the size of the graph, or the number of shocks. This is what happens here.
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Table 3: Three dodecahedrons in parallel, n = 106

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 0.1

pmc 1.79e-5 3157 0.056 50 207 0.66
pmc-π 1.73e-5 2912 0.054 50 167 0.49
pmc-rev 1.79e-5 3157 0.056 50 53 0.17
pmc-anti 1.72e-5 2410 0.049 95 52 0.13
turn 1.77e-5 2572 0.051 38 • 771 1.98
turn-π 1.77e-5 2320 0.048 38 • 734 1.70
turn-anti 1.73e-5 1473 0.038 94 ◦ 215 0.32
GS 1.79e-5 31 0.0056 1094 0.034
GS-anti 1.78e-5 30 0.0055 1141 0.034

λ = 0.001

pmc 1.84e-35 2.5e5 0.50 50 210 51
pmc-π 1.38e-35 3.3e5 0.57 50 175 57
pmc-rev 1.84e-35 2.5e5 0.50 50 51 13
pmc-anti 6.10e-34 9.8e5 0.99 95 52 52
turn-anti 1.20e-29 5.7e5 0.75 94 ◦ 216 12
GS 4.13e-24 158 0.013 4366 0.70
GS-anti 4.06e-24 197 0.014 3552 0.70

Example 8.3 Our next set of examples is with a square lattice graph, as shown in Figure 3. Each node is

connected to its neighbors on the left, right, up and down, when they exist. The set V0 contains two opposite

corners. We report experiments with 20 × 20 and 40 × 40 lattices. The first has 400 nodes, 760 links, and

1158 different shocks. The second has 1600 nodes, 3120 links, and 4718 different shocks. With these large

numbers of shocks, the number of permutation π is astronomical, so the PMC and turnip methods might not

be able to generate permutations π that contribute significantly to u in (8). This would translate into gross

under-estimations of u. The results, in Tables 4 and 5, confirm this.

For the 20×20 graph, GS works nicely and is clearly the most efficient method. The shock and anti-shock

versions are equally good. It still works well for the 40× 40 graph, except that for λ = 10−10, the estimates

returned by GS and GS-anti differ by more than two (empirical) standard deviations. We re-ran this case

independently with n = 105 and obtained W̄n ≈ 7.7× 10−20 and RE[W̄n] ≈ 0.036 for both GS and GS-anti.

The PMC and turnip methods are much more noisy than GS. In the PMC case, where we can use the beta

cdf to compute the conditional expectation because the λj ’s are all equal, the two versions that use the

construction process (removes the shocks) are much faster than all other methods. However, their variance

is much larger than that of GS. Their RE is up to 100% for the 20 × 20 graph. For the 40 × 40 graph, the

RE is certainly much larger, but the PMC and turnip methods are so noisy that the results (including the

RE estimators) are meaningless. These methods underestimate u by huge factors. They miss the important

permutations among the 4718! different permutations of the shocks. For the PMC and turnip methods that

do not use the beta cdf, most of the CPU time is to compute the conditional expectation.

s

t

Figure 3: A 5× 5 lattice graph.
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Table 4: 20× 20 lattice graph, n = 105

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.67e-10 9.9e4 1.0 202 1062 1050
PMC-π 1.34e-9 4.9e4 0.70 202 928 457
PMC-rev 6.67e-10 9.9e4 1.0 202 60 60
PMC-anti 6.73e-10 9.8e4 0.99 957 60 58
turnip 6.67e-10 9.9e4 1.0 176 • 4380 4350
turnip-π 1.34e-9 4.9e4 0.70 176 • 3868 1900
turnip-anti 9.61e-10 9.3e3 0.30 905 ◦ 1928 179
GS 8.46e-10 62 0.025 3655 2.3
GS-anti 7.97e-10 61 0.025 3730 2.3

λ = 10−10

PMC 1.34e-19 5.0e4 0.71 202 1018 509
PMC-π 2.68e-19 2.5e4 0.50 202 977 244
PMC-rev 1.34e-19 5.0e4 0.71 202 60 29
PMC-anti 2.98e-34 2.5e4 0.50 957 60 15
turnip-anti 3.01e-20 3.0e4 0.55 905 ◦ 1694 514
GS 8.24e-20 121 0.035 4899 5.9
GS-anti 8.00e-20 114 0.034 4974 5.7

Table 5: 40× 40 lattice graph, n = 104

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.1e-27 1.0e4 1 818 2234 2230
PMC-rev 6.1e-27 1.0e4 1 818 42 42
PMC-anti 3.4e-74 1.0e4 1 3907 43 43
turnip-anti 5.2e-35 9988 1 3680 ◦ 3946 3946
GS 7.98e-10 57 0.076 6183 35
GS-anti 7.88e-10 69 0.083 5980 41

λ = 10−10

PMC 2.0e-134 1.0e4 1 812 2199 2200
PMC-rev 2.0e-134 1.0e4 1 812 48 48
PMC-anti 3.1e-104 1.0e4 1 3906 55 55
turnip-anti 1.9e-33 1.0e4 1 3679 ◦ 3531 3531
GS 5.0e-20 151 0.12 6034 91
GS-anti 8.9e-20 124 0.11 6688 83

Example 8.4 We now consider a complete graph with n0 nodes, with one link for each pair of nodes, and

V0 = {1, n0}. We take n0 = 30, which gives 435 links and 463 shocks, and n0 = 100, which gives 4950 links

and 5048 shocks. The results for n0 = 30, n = 105, λ = 0.5 and 0.1, are given in Table 6. We see that GS is

much more efficient than all PMC and turnip methods, which have much larger RE and give estimates that

vary by up to a factor of 3 for λ = 0.5, and are off by huge factors for λ = 0.1, with n = 105. We redid some

experiments with n = 107: the variance S2
n was similar, the REs were still quite large, and the estimates were

still completely wild. The PMC methods with anti-shocks are much faster than all other methods because

they use the beta cdf to compute the conditional expectation. The results for n0 = 100, with n = 104 and

λ = 0.5, are in Table 7. Only GS gives meaningful estimates in that case.

Example 8.5 Here we consider a case where the critical shock number Cs is much smaller than the critical

anti-shock number Ca, to illustrate a situation where using the destruction process with shocks is much more

efficient than using anti-shocks. We take a graph with 202 nodes and 202 links, with V0 = {1, 202}. There

are two separate strings of 100 nodes and 101 links each that connect these two nodes (two series system in

parallel). There is one shock per link (only), at rate λ = 10−4. The averages of Cs and Ca are approximately
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Table 6: Complete graph with 30 nodes, n = 105

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 0.5

PMC 6.30e-6 8.0e4 0.897 371 140 113
PMC-π 6.77e-7 5.8e4 0.759 371 127 73
PMC-rev 6.30e-6 8.0e4 0.897 371 15 12
PMC-anti 8.17e-7 8.0e4 0.896 93 15 12
turnip 1.78e-6 2.0e4 0.45 175 • 3417 691
turnip-π 3.07e-6 1.7e4 0.408 175 • 3404 568
turnip-anti 7.38e-7 8.1e4 0.898 93 • 710 572
GS 2.09e-6 36 0.0189 460 0.16
GS-anti 2.04e-6 36 0.0191 427 0.16

λ = 0.1

PMC 6.62e-88 1.0e5 1 371 142 142
PMC-rev 6.62e-88 1.0e5 1 371 15 15
PMC-anti 4.90e-87 1.0e5 1 94 16 16
turnip-anti 2.82e-83 9.5e4 0.975 93 ◦ 40 38
GS 3.33e-22 132 0.036 2058 2.7
GS-anti 3.16e-22 152 0.039 1580 2.4

Table 7: Complete graph with 100 nodes, n = 104

algorithm W̄n S2
n/W̄

2
n RE[W̄n] T (sec) WNRV

λ = 0.5

GS 2.45e-20 109 0.11 3859 42
GS-anti 2.49e-20 128 0.11 4004 51

3 and 200. Here all the PMC and turnip variants give approximately the same RE, which is about 10−3 for

n = 106, but the anti-shock versions are much slower. The turnip with anti-shock is 20 times slower than

the turnip with shocks, even though the former uses the fast formula to compute the conditional probability

whereas the shock versions use the matrix method of Higham (2009) (because the faster formula is unstable):

computing the exponential of a 3 × 3 matrix is sufficiently fast and (much more importantly) Cs � Ca.

Another interesting observation here is that the PMC-π is three times faster than the PMC for which we

generate and sort the shock times. Since the average critical shock is 3, generating and sorting 202 shock

times wastes a lot of CPU time.

9 Summary and conclusion

We introduced a static network reliability model with dependent link failures, based on a Marshall-Olkin

copula, and proposed several adapted versions of the PMC, turnip, and GS methods to estimate accurately

the unreliability u under this model when u is very small. Some of those algorithms add shocks, others remove

them by adding anti-shocks, one by one. We proved that the PMC and turnip give estimators with BRE,

under certain conditions on the shock rates, and these conditions are weaker with the anti-shocks than with

the shocks. We showed that when all shocks have the same rates, the PMC estimators can be computed very

quickly and accurately using the beta cdf. This suggests and motivates the construction of models in which

all rates are equal, with the possibility of having more than one shock on certain subsets of components. In a

numerical example of moderate size (a dodecahedron graph with different 48 shocks), the BRE property was

observed very clearly with both shocks and anti-shocks. One can then easily estimate an arbitrarily small

unreliability. In examples with larger graphs, with thousands of links and thousands of different shocks, the

PMC and turnip eventually fail to provide meaningful estimates, because the relevant permutations become

too rare. GS, on the other hand, remains viable for these large graphs, even when u is extremely small.

The two versions of GS (with shocks and anti-shocks) perform equally well in the examples we tried. Our
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development generalizes easily to arbitrary multicomponent systems with binary states for the components

and monotone increasing structure function. However, certain details in the implementation would have to

be adapted to the problem at hand, in particular the data structures and methods to store and update the

state of the system, to determine the time at which the system fails or gets repaired, and the range in which

the new shock times should be resampled in GS. This is matter for further research.
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