
Les Cahiers du GERAD ISSN: 0711–2440

An iterative algorithm based on evolutive

cuts for project scheduling with material

storage constraints

A. Piveteau, M. Gamache,

R. Pellerin

G–2015–106

October 2015

Les textes publiés dans la série des rapports de recherche Les

Cahiers du GERAD n’engagent que la responsabilité de leurs
auteurs.

La publication de ces rapports de recherche est rendue possible
grâce au soutien de HEC Montréal, Polytechnique Montréal,
Université McGill, Université du Québec à Montréal, ainsi que
du Fonds de recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec,
2015.

The authors are exclusively responsible for the content of their
research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possi-
ble thanks to the support of HEC Montréal, Polytechnique
Montréal, McGill University, Université du Québec à Montréal,
as well as the Fonds de recherche du Québec – Nature et tech-
nologies.

Legal deposit – Bibliothèque et Archives nationales du Québec,
2015.

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





An iterative algorithm based

on evolutive cuts for project

scheduling with material

storage constraints

Alban Piveteau a

Michel Gamache b

Robert Pellerin a

a Department of Mathematics and Industrial Engineer-
ing, Jarislowsky/SNC-Lavalin Research Chair, Poly-
technique Montréal, Montréal (Québec) Canada, H3C
3A7

b GERAD & Department of Mathematics and Industrial
Engineering, Jarislowsky/SNC-Lavalin Research Chair,
Polytechnique Montréal, Montréal (Québec) Canada,
H3C 3A7

alban.piveteau@polymtl.ca

michel.gamache@polymtl.ca

robert.pellerin@polymtl.ca

October 2015

Les Cahiers du GERAD

G–2015–106

Copyright c© 2015 GERAD



ii G–2015–106 Les Cahiers du GERAD

Abstract: This paper deals with the resource constrained project scheduling problem, which consists of
scheduling a set of activities with minimal duration that are subject to precedence constraints and the limited
availability of resources. In addition to these constraints, we also take into account work space limitations
and storage capacity, which are major challenges in construction projects. To solve this NP-Hard problem,
we proposed an algorithm based on an evolutive lower bound which permits the branching procedure to
be driven with more efficiency whilst minimizing the problem size by updating the time horizon all along
iterations. Tests on instances based on project examples generated from the PSPLib library are presented.

Key Words: Project scheduling, logistics constraints, RCPSP, branch & bound, optimization, integer pro-
gramming, lower bound.

Résumé : Cet article traite du problème de gestion de projet avec contraintes de ressources qui consiste à
ordonnancer des activités de façon à minimiser le temps de complétion tout en respectant des contraintes de
précédence et de ressources. En plus de ces contraintes, on doit tenir compte d’un espace de stockage limité,
ce qui est une contrainte fréquemment rencontrée dans les projets de construction. Pour résoudre ce problème
NP-difficle, nous proposons un algorithme basé sur la mise à jour fréquente d’une borne inférieure, ce qui
rend plus efficace la procédure de branchement en réduisant l’horizon de temps, ce qui réduit également la
taille du problème au fur et à mesure que les itérations progressent. Des tests sur des instances générées à
partir de la librairie PSPLib sont présentés.



Les Cahiers du GERAD G–2015–106 1

1 Introduction

The aim of the Resource Constrained Project Scheduling Problem (RCPSP) is to schedule a set of activities
with minimal duration subject to precedence constraints and the limited availability of resources. This

problem is NP-hard [2] because of the cumulative nature of resource consumption, which allows for the

execution of parallel activities.

The RCPSP has been widely studied in the literature. The proposed approaches differ mainly in their

objective function (minimize makespan, minimize costs, maximize solution robustness), and their resolution
strategy [3]. Much attention has been put forth to resolve resource conflicts occurring when the total amount

of required employees by activities that can be run in parallel exceeds the number of available employees.

However, the realization of projects can face other restrictions that may affect the project schedule. For

example, work space limitations and storage capacity are major challenges in construction projects. Conflicts

of space often occur when the necessary space for an activity interferes with that of other activities or with
previously-accomplished works. For example, Riley and Sanvido [14] studied a building site during a period of

two months and recorded 71 cases of space conflicts for only four labor types. Several studies also confirmed

that space limitation is one of the main reasons of productiveness loss in construction [13, 10, 9, 5]. The

difficulty of managing work space is mainly a result of the dynamic character of the space necessary to carry
out a task, since this space changes as plans advance.

In a similar manner, equipment and material storage capacity has a major impact on project scheduling

and procurement activities. The management of building materials is a crucial activity as the costs of the

equipment and material represent a major portion of total project costs [15]. According to several studies,

building materials generally account for 40 to 60 % of the complete project budget [1, 12, 16]. Furthermore,
bad planning of storage space utilization can draw away a lack of necessary equipment to carry out tasks and

or postpone construction works, or conversely, needlessly augment the inventory costs by accepting materials

at the building site too far in advance. Furthermore, the acquisition of material before their current needs

can cause serious problems such as congestion and deterioration of the quality of some materials.

Recognizing the difficulty of managing projects with material space constraints, this research explores
the use of an iterative algorithm based on evolutive cuts to determine optimal project plan under resource

and storage space constraints. The reminder of the paper is organized as follows. First, in Section 2 we

introduce the integer linear programming model that includes new logistics constraints for classic scheduling

problems. Then Section 3 demonstrates performances of this model on instances from PSPLib on which we

generate new attributes. The aim of those tests is to identify integer program (IP) limits (size, resolution
time). Finally, we present a heuristic approach based on the resolution of the IP at which we introduce a new

contraint acting as a lower bound for the Z value in Section 4. The lower bound value will evolve gradually

at each iteration until a stopping criterion detection.

2 The mathematical model

We introduce the integer linear programming model that includes new logistics constraints for classic schedul-
ing problems. Among those additional constraints, we consider a procurement time delay which requires the

reception of materials before the execution of the associated task. This procurement policy involves warehous-

ing constraints where materials have to be stored before and during the task process. Moreover, warehousing

constraints must respect space availability in stock areas or warehouses. We assume that warehousing space

occupied by materials run until the end of associated tasks. Consequently, warehousing space occupied by
materials required for a specific task stays constant over a time corresponding to the sum of task duration

and the warehousing duration required before the starting date of the task (see Figure 1).



2 G–2015–106 Les Cahiers du GERAD

TimeTask

ending date

Task

starting date

Material quantity

used by a task

Stock area

utilization
Material stocking duration required

before the task starting date

Figure 1: Stockage area utilization for a task

We will introduce notations used in our model described in the next section.

i an index representing task number such as i ∈ I = {0, 1, 2, . . . , n + 1} where
activities 0 et n+ 1 represent the project start and end, respectively

Γi the set of immediate successors of the task i

pi the processing time of task i where p0 = pn+1 = 0
di the material stocking duration required before task i starting date where d0 =

dn+1 = 0
t an index representing the treatment period such as t ∈ T = {0, . . . , T } where

T represents project maximal duration estimated by T =
∑

i∈I

pi

ESi the earliest starting date of task i (found with preprocessing by resolving the
IP considering precedence constraints only)

LSi the latest starting date of task i ((found with preprocessing by resolving the
IP considering precedence constraints and the horizon only)

h an index representing a kind human resource such as h ∈ H
Rh the number of human resources h available per period
ri,h the number of human resources h required for task i per period where r0,h =

rn+1,h = 0 ∀h ∈ H

m the index representing a kind material resource such as m ∈ M
a an index representing a stockage area such as a ∈ A
Sa the number of materials able to be stored on stocking area a

si,m the number of material m required for task i per period where s0,m = sn+1,m =
0 ∀m ∈ M

γm,a an integer parameter equals to 1 if material m can be stored on stocking area
a and 0 otherwise.

In the model, to determine if a task i is active in period t, we must check if it began during the period

[t− pi + 1, t]. In order to avoid periods verification where t− pi +1 < 0, we use ωi = max{0, t− pi + 1}. By

analogy, we introduce δi = min{t+ di, T } in order to avoid periods verification where t+ di > T .

The decision variables for this model are the following:

xi,t =

{

1, if task i starts on period t

0, otherwise

The linear program is defined by:

min Z =

LSn+1
∑

t=ESn+1

txn+1,t (1)



Les Cahiers du GERAD G–2015–106 3

sous les contraintes :

LSj
∑

τ=ESj

txj,τ −

LSi
∑

τ=ESi

txi,τ ≥ pi ∀i ∈ I, ∀j ∈ Γi (2)

∑

i∈I

t
∑

τ=ωi

ri,hxi,τ ≤ Rh ∀h ∈ H, ∀t ∈ T (3)

∑

i∈I

∑

m∈M

δi
∑

τ=ωi

si,mγm,axi,τ ≤ Sa ∀a ∈ A, ∀t ∈ T (4)

ESi−1
∑

τ=0

xi,τ = 0 ∀i ∈ I (5)

T
∑

τ=LSi+1

xi,τ = 0 ∀i ∈ I (6)

∑

t∈T

xi,t = 1 ∀i ∈ I (7)

xi,t ∈ {0; 1} ∀i ∈ I, ∀t ∈ T (8)

The objective-function (1) minimizes the starting date of the last task of the project ((i.e. i = n + 1).

The set of constraints (2) forces the start date of all immediate successors of task i (i.e. tasks j) after the
end date of task i. Human resource constraints are defined by the set of constraints (3). On each period t

and for each resource h, the human resources needed for all activities i in treatment have to be inferior to

the human resources availability Rh. The new logistics constraints are defined by the set of constraints (4).

In each period t and for each storage area a, the space needs for all activities i in treatment and the ones
for which materials are already delivered because of the procurement policy must be inferior to the stockage

area space availability Sa. To ease the resolution process, the set of constraints (5) and (6) set to zero the

value of variables xi,t when the period t is less than the earliest starting date of task i and when period t is

greater than the latest starting date of task i. The set of constraints (7) imposes that each activity occurs

only once. Finally, the set (8) declares all variables as binary.

3 Tests and results

In this section, we first describe the instances that were generated in order to test our model. Results of

these tests are then presented and analyzed.

3.1 Description of instances

Our instances are based on project examples generated from the PSPLib library. A tool has been developed
to add materials needs, restrictions and space availability on each of the storage areas. It permits to simulate

the material management context in our examples. The model has been tested on four different project sizes:

30, 60, 90 and 120 tasks.

For each task, the duration, the immediate successors as well as the human resource requirements are

derived from PSPLib and correspond to the following examples:

Number of Project
tasks

30 J3022 5
60 J6022 4
90 J9022 9
120 J12030 3



4 G–2015–106 Les Cahiers du GERAD

For each project, five difficulty levels, with respect to material constraints (4), were created (the first level

being the most difficult). In all, we tested the model on twenty instances.

The three parameters qualifying projects in PSPLib (i.e., network complexity nc, resource factor RF and
resource strength RS) are fixed to their medium value: nc = 1.8, RF = RS = 0.5. The storing constraints

are defined by two parameters: RFN (material force) and RSN (material strength). The RFN parameter

represents the average number of material types needed for a task. This parameter is standardized between

0 and 1. For instance, if RFN = 0.5 and if our tool generated 4 types of material, then the medium number
of material type required by task will be equal to 2. The RSN parameter is used to generate the maximum

storing area space. The parameter is also standardized between 0 and 1 (the larger this value is, the less

warehousing space restrictions there are).

Considering RSN as the most influent parameter (cf, similarity between material force/strength and
resource force/strength and Kolisch [6] works), RFN is fixed to the medium value (RFN = 0.5). Thereby,

five instances are generated for each project (30, 60, 90 and 120 tasks) by varying the RSN parameter from

0.1 to 0.9 with an increment of 0.2.

Mathematical model scripts were elaborated with AMPL and solved using CPLEX solver (12.2.0.0 ver-
sion). In our tests, we limited the solution time to 5000 seconds. All our computations were made using a

computer with an AMD Athlon 64 X2 Dual Core Processor 4200+, 2.22 GHz and 3 Go RAM.

3.2 Results

Tables 1 and 2 show the results obtained for the 20 instances. Times are indicated in seconds. An X indicates
that no integer solution was found, ZLP is the value of the optimal solution of the linear program relaxation

whereas ZILP is the value of best integer solution found within the time delay. Finally, a star indicates that

the optimal solution was found.

Table 1: Results for projects with 30 and 60 tasks

30 tasks 60 tasks

Level LP ILP LP ILP

ZPL Time ZILP Time ZLP Time ZILP Time

1 52.14 2.03 76 5000 92.09 19.12 X 5000
2 47.23 0.98 56* 69.81 19.09 254 5000
3 58.53 1.91 87 5000 65.18 9.09 111 5000
4 46.65 0.74 52* 67 65.18 5.48 359 ROM
5 46.65 0.76 52* 16 65.18 7.44 83 5000

ROM: Run Out of Memory

Table 2: Results for projects having 90 and 120 tasks

90 tasks 120 tasks

Level LP ILP LP ILP

ZPL Time ZILP Time ZLP Time ZILP Time

1 136,60 29.81 X 5000 141.03 100.89 X 5000
2 99,03 43,92 X 5000 108 51.56 X 5000
3 97 25,34 X 5000 108 10.08 659 ROM
4 97 16,66 X 5000 108 10.19 X 5000
5 97 7.80 234 5000 108 10.70 659 ROM

ROM: Run Out of Memory

Tables 3 and 4 show the details of the solution process; more precisely, they indicate for each instance
the number of nodes visited in the branching tree and the number of simplex iterations required to find the

LP solution.



Les Cahiers du GERAD G–2015–106 5

Table 3: Number of branching nodes and simplex iterations

30 tasks 60 tasks

Level Nodes Simplex iterations Nodes Simplex iterations

1 243538 19276212 5049 1871946
2 241705 17768261 4486 2722956
3 125347 18962814 36181 9899318
4 10469 77793 ROM ROM
5 530 4503 212815 23831283

ROM: Run Out of Memory

Table 4: Number of branching nodes and simplex iterations

90 tasks 120 tasks

Level Nodes Simplex iterations Nodes Simplex iterations

1 1 516045 63 399034
2 917 771265 134 452039
3 5704 756471 ROM ROM
4 8107 794698 240 803888
5 4471 1390234 ROM ROM

ROM: Run Out of Memory

The results illustrated in these four tables demonstrate that the current approach cannot quickly converge

towards optimal solutions, especially for large scale projects. A detailed analysis of solutions at each node of
the branching tree shows the presence of a very large integrality gap (more than 15%). Moreover, the value

of the LP solution at each node remains very close to the one obtained at the root node. Thereby, a huge

amount of nodes are generated. When a feasible integer solution is found, the value of this solution doesn’t

give an efficient upper bound and thus, the number of nodes in the branching tree remains quite large. Based
on these observations, we propose a new approach that will alleviate these difficulties. This new approach is

described in the following section.

4 A new solution strategy based on an evolutive cut

Considering the large integrality gap observed, we propose a two-phase approach. The first one consists of

finding a feasible solution for the IP, whereas the second phase attempts to improve this solution to converge
towards the optimal solution. This iterative approach involves the addition of a new constraint (denoted the

evolutive cut) which forces the solution to be higher or equal to a defined value called the temporary lower

bound, denoted by LBk
temp, where k represents the iteration number. The LBk

temp value is modified at each

iteration: LBk+1
temp = α1 ∗ LBk

temp, where 0 < α1 < 1 is a coefficient used to reduce the temporary lower

bound value. Thereby, at the beginning, the lower bound on the value of ZLP is very high, which eases the

search for an feasible integer solution, even though the gap between the value of this solution and the one of
the optimal solution is large.

4.1 The new constraint

Let P be the IP described by the objective-function (1) and constraints (2) to (8). As explained previously,

a cut is introduced into problem P in order to force the value of the objective function at iteration k to be

greater or equal to LBk
temp. The new constraint at iteration k can be written as follows:

∑

t∈T

txn+1,t ≥ LBk
temp (9)



6 G–2015–106 Les Cahiers du GERAD

There is another way to implement this constraint:

ρ
∑

t=1

xn+1,t = 0 (10)

where ρ = LBk
temp − 1.

This last constraint is more restrictive than the previous one during the solution of the LP. Moreover,
this constraint is equivalent to set ESn+1 = Zk

PLNE. This latter formulation is of greater interest given it

simply requires modifying constraint (5). In fact, giving the objective-function (1), changing the upper limit

of the summation in the constraint (5) has the same effect as adding the lower bound on the value of the

solution. This formulation is the one that has been implemented.

4.2 Two theorems

Before giving details on the solution approach, we introduce two theorems that enable us to prove that a

solution at iteration k is optimal under certain conditions.

Theorem 1 Let P be the problem described in the previous subsection. If a feasible solution, called S1, exists

for P such as x1
n+1,t1

= 1, then another feasible solution, called S2, also exists for P such as x2
n+1,t2

=
1 ∀t2 > t1.

Proof. Let S1 be a feasible solution for problem P and such as x1
n+1,t1

= 1. Let S2 be a solution such as:

x1
i,t = x2

i,t ∀i 6= n+ 1; ∀t
x1
n+1,t1

= 1
and x2

n+1,t2
= 1 where t2 > t1

Since S1 is feasible, t2 > t1, and task n+ 1 does not consume any resources, does not have successor and

its processing time is null, then all constraints of P will remain satisfied with solution S2, which proves that

S2 is also a feasible solution.

This theorem indicates that it is always possible to find a feasible solution from another one simply by

delaying the starting date of task n+ 1.

Theorem 2 If S2 is an optimal solution of problem Pk such as x2
n+1,t2

= 1 and t2 > LBk, then S2 is the

optimal solution of problem P.

Proof. Let S1 be an optimal solution of problem P such as x1
n+1,t1

= 1 for t1 < LBk. Let S2 be an optimal

solution of problem Pk such as x2
n+1,t2

= 1 where t2 > LBk. From theorem 1, we know that it is possible to

create a solution S3 from S1 such as:

x1
i,t = x3

i,t ∀i 6= n+ 1; ∀t

and x3
n+1,t3

= 1 where t3 = LBk

Since S3 is a feasible solution and Z3 < Z2 then S3 is an optimal solution for problem Pk, which

contradicts the first assertion.

4.3 An iterative solution approach using a decreasing lower bound

To understand the notation used in the proposed algorithm, we introduce the following definitions.



Les Cahiers du GERAD G–2015–106 7

LBk
temp A lower bound value fixed at iteration k.

UBk An upper bound value equals to Zk, the current best admissible
solution (optimal or not) for problem Pk.

β The global stopping criteria that limits the total solution time (in
seconds).

βℓ A stopping criteria that limits the solution time (in seconds) re-
quired for finding a feasible solution during operation ℓ (where
ℓ = 0 or 1) of the algorithm. When this period is exceeded, then
it is better to tighten the bounds by increasing the value of the
lower bound than to continue the resolution. Those delays are
included within β but are not additive to it.

α0 and α1 Two parameters used to reduce the value of the lower bound dur-
ing the first (α0) phase and the second phase (α1) of the algorithm.

Zk The best integer solution found at iteration k.

Other parameters used in the algorithm were defined in previous sections. Figure 2 presents a pseudo-code
for the algorithm.

1 k := 0
2 UB0 := T

3 LB0
temp := ⌊α0T ⌋

4 Solve P0 for a time limit β0

5 If no admissible solution for problem P0 is found during the time period β0 then
6 LB0

temp := ⌊0.5(LB0
temp + T )⌋+ 1 and go back to step 4

7 Else (an admissible solution is found)
8 k := k + 1
9 UBk := Zk−1

10 LBk
temp := ⌊α1UBk⌋

11 If UBk − LBk
temp = 1

12 Solve Pk with a limited resolution time β1 = β1.1

13 Else
14 Solve Pk with a limited time β1 = β1.2

15 If Zk = LBk
temp

16 Go back to step 8 (we have to decrease LBk
temp)

17 Else (then we have Zk > LBk
temp)

18 If resolution time is inferior to β1

19 Stop: the optimal solution is found
20 Else (limited resolution time is reached)
21 LBk

temp := ⌊0.5(LBk
temp + UBk)⌋ and go back to step 8

Figure 2: Research algorithm with a decreasing lower bound

The algorithm is processed in two phases. Phase 1, described by steps 1 to 6, consists of finding a feasible
solution to problem P . A maximal delay of β0 seconds is devoted to the resolution of this problem. If delay

β0 is reached and no integer solution is found, then it is better to increase the temporary lower bound by

choosing the midpoint between LBk
temp and T in order to reduce the research domain rather than pursue

the resolution (steps 5 and 6). The value of β0 is also accounted for in the global resolution time which is

compared to β, i.e the stopping criteria when no feasible or optimal solution is found for the entire problem.
Choosing the values of parameters α0 and β0 is not trivial and it depends on the problem difficulty. For

an easy problem to solve, it is adequate to fix α0 at a lower level in order to converge faster towards the

optimal solution; while a more difficult problem requires an higher initial lower bound. For our tests, we

fixed α0 = 0, 8 and β0 = 600 seconds.

When a feasible integer solution is found, we proceed to phase 2, described in steps 7 to 21. This phase

consists of finding the optimal solution or the best integer solution before exceeding overall time limit β



8 G–2015–106 Les Cahiers du GERAD

(set a priori) to which we subtract the time used in Phase 1. At each iteration of this phase, we start

with an adjustment of the research domain by updating the two bounds LBk
temp and UBk (steps 9 and 10).

We set BSk = Zk−1 and we decrease the lower bound value by a factor α1 which acts similar to α0. A
preprocessing phase is undertaken to set the value of some variables according to the new bounds. First, we

set ESn+1 = Bk
temp, which involves xn+1,t = 0 ∀t ≤ LBk

temp − 1. Secondly, knowing that the last planning

period, T , can be substituted by UBk, we can recompute for all tasks i, the LSi values which will set several

decision variables to zero. Finally, we underline the fact that a feasible solution found at iteration k − 1 can

be used as a feasible solution for solving the problem Pk.

Thereafter, at each iteration k, four cases may occur.

Case 1: An optimal solution is found for the problem Pk within the time limit β1.2 such as Zk = BIktemp.

This case tallies with steps 13 to 16. We have to proceed to another iteration and adjust bounds, i.e,

set LBk+1
temp = α1 ∗ LB

k
temp and update the upper bound to Zk (see steps 8 to 10).

Case 2: An optimal solution is found for the problem Pk within the time limit β1.2 such as Zk > BIktemp.

This case tallies with steps 17 to 19. The solution found is also the optimal solution for problem P (see

theorem 2).

Case 3: The time limit is exceeded and we get a feasible solution for problem Pk such as Zk > BIk+1
temp.

This case tallies with steps 13, 14, 17, 20 and 21. Another iteration is needed and the lower bound

value BIk+1
temp must be increased in order to expedite the resolution. The idea consists of allowing β1.2

seconds to find the optimal solution for problem Pk regarding the defined lower bound. If within β1.2

seconds, it is impossible to confirm that the solution found is optimal, we prefer to increase the lower
bound value because we presume that it will be quicker to confirm the optimality in this manner.

Case 4: The limited resolution time B1.2 is reached and we get a feasible solution for problem Pk such as

Zk = BIk+1
temp + 1. This case tallies with steps 11 and 12. This case transpires to be similar to case 3.

However, here we can’t increase the lower bound. We need to allocate more time (here β1 = β1.1 ≫ β1.2)
to the algorithm to confirm whether or not the optimality of the solution can be found.

Finally, if an optimal solution of problem P is not found before exceeding β seconds, we stop the algorithm.

The best solution that was found is then printed.

Figure 3 illustrates cases 1 (Figure 3.b), 3 (Figure 3.c), and 4 (Figure 3.d). In this figure, LB is the lower

bound of problem P ; i.e. the value of the linear relaxation of problem P .

An interesting aspect of this iterative algorithm is that the feasible solution (optimal or not) found at

iteration k is a also a feasible solution at iteration k + 1. So, the time devoted to finding a feasible solution

at iteration k + 1 is reduced to zero.

4.4 Results with the new algorithm

Presented results were acquired with the following parameter values:

α0 = 0, 8
α1 = 0, 9
β0 = 600

β1.1 = 90
β1.2 = 3600

β = 5000

The following tables sum up acquired results using the old and the new algorithms. We first notice that

the new algorithm permits a better solution to be obtained, but optimality remains difficult to prove. Even

though optimality is not always proven, it is noteworthy to observe the convergency speed growth towards
good solutions when using the new algorithm. Indeed, with this method, solutions that would be found in

5000 seconds using the old approach (i.e. without the evolutive lower bound) can be found much quicker.



Les Cahiers du GERAD G–2015–106 9

(a)

iteration k:

0 LB LBk
temp UBk T

Z

(b)

iteration k + 1: Case 1

0 LB LBk
temp UBk T

Z

(c)

Iteration k + 1: Case 3

0 LB LBk
temp UBk T

Z

(d)

Iteration k + 1: Case 4

0 LB UBk − LBk
temp = 1 T

Z

Legend:
Subset of feasible
solutions that are

ignored at iteration k

Subset of feasible
solutions that are

considered at iteration k

Subset of feasible
solutions that are
always ignored

Figure 3: Research areas at iteration k



10 G–2015–106 Les Cahiers du GERAD

Table 5: Results for a 30 tasks project

Level Old algorithm New algorithm

Solution Time Solution Time

1 76 5000 72 5000
2 56* 1453 56* 375
3 87 5000 81 5000
4 52* 67 52* 20
5 52* 16 52* 20

Table 6: Results for a 60 tasks project

Level Old algorithm New algorithm

Solution Time Solution Time

1 X 5000 142 5000
2 254 5000 87 5000
3 111 5000 74 5000
4 359 ROM 73 5000
5 83 5000 73 5000

Table 7: Results for a 90 tasks project

Level Old algorithm New algorithm

Solution Time Solution Time

1 X 5000 373 5000
2 X 5000 198 5000
3 X 5000 375 5000
4 X 5000 104 5000
5 234 5000 349 5000

Table 8: Results for a 120 tasks project

Level Old algorithm New algorithm

Solution Time Solution Time

1 X 5000 659 5000
2 X 5000 381 5000
3 659 ROM 427 5000
4 X 5000 108* 2811
5 659 ROM 322 5000

Figure 4 shows advantages of this evolutive cut algorithm for the problem with 30 tasks at level 1 of
difficulty (similar results were observed with other examples). We notice on Figure 4 that the new approach

using fictive lower bound allows a better solution to be found in 1 minute (Z = 72) than a solution found

using the traditional approach (Z = 76) in 1 hour.

Table 9 presents detailed results for the new approach. Among the other, we indicate the time (in seconds)

required to find the best integer solution. For the 9 out of 16 problems in which we did not find optimal
solution, we notice that the difference between the upper bound and the fictive lower bound is inferior or

equals to 1. Without being able to prove it, we believe that the best solution found is actually the optimal

one for those cases. Indeed, the set up we made forces the branch & bound algorithm to search for an

integer solution which value is equal to the lower bound. We believe that the domain of feasible solutions

respecting integrity constraints is empty while this is not the case for the domain of feasible solutions where



Les Cahiers du GERAD G–2015–106 11

Resolution time (sec)

Z

Traditional method

b

b

b
b

b b

New approach

b

b

b

b

b

b b

155

120

85
80

76 76

124

112

100

90

81
72

72

20

40

60

80

100

120

140

160

10 15 20 25 40 60 400 620 1300 3600 5000

Figure 4: Example of both resolution approaches for the defined problem: 30 tasks, level 1

integrity constraints are relaxed. Therefore, the branch & bound algorithm uses the remaining time trying
to prove that no integer solution exists for the lower bound value; it explores a huge branching tree since

it has to explore each branch in deep in order to record that branching decision does not lead to a feasible

solution. The time limit of 5000 seconds is exceeded before all the leaves in the branch & bound tree have

been explored.

Table 9: Detailed results for the new approach

Tasks Leve ZLP Best fictive Time
number integer solution lower bound (sec)

30 1 53 72 71 63
30 2 48 56∗ — 375
30 3 59 81 80 375
30 4 47 52∗ — 20
30 5 47 52∗ — 20

60 1 93 142 141 2003
60 2 70 87 86 2353
60 3 66 74 43 2830
60 4 66 73 72 2838
60 5 66 73 73 5000

90 1 137 373 354 4873
90 2 100 198 178 4913
90 3 97 375 356 4838
90 4 97 104 103 3861
90 5 97 349 314 4925

120 1 142 659 658 852
120 2 108 381 361 4900
120 3 108 427 427 5000
120 4 108 108∗ — 2811
120 5 108 322 319 4600



12 G–2015–106 Les Cahiers du GERAD

5 Conclusions and perspectives

Through this work, we have defined a new scheduling problem that allows projects which are subject to
material space constraints to be scheduled. To solve these NP-Hard problems, we have proposed an algorithm

based on a evolutive lower bound which allows the branching procedure to be driven with more efficiency

whilst minimizing the problem size by updating the time horizon and LSi parameters all along the iterations.

New research perspectives may be considered in future works. First of all, we want to work on the problem

modeling by setting up an event-base modeling [7] allowing the number of variables to be minimized. A
specific work has also to be done on the branching decisions method. Particularly, Demeulemeester et al. [4]

works show a branching method based on priority rules allowing for optimal solutions to be reached quickly

on small-size problems. Coupled with our algorithm, those two ideas may be exploited to reach an optimal

solution on larger size projects.

Finally, new constraints representing the material management context of modern projects may be studied.
For example, delivery activities may be looked at by defining constraints which group deliveries on fixed date.

Indeed, it is common to receive and stock material on a fixed date as defined by contractual agreement between

suppliers and transporters in order to minimize total procurement and transportation costs.

References

[1] Agapiou, A., Clausen, L.E., Flanagan, R., Norman, G., and Notman, D. The role of logistics in the materials
flow control process. Construction Management and Economics, 16, 131–137, 1998.

[2] Blazewicz, J., Lenstra, J.K., and Rinnooy Kan, A.H.G. Scheduling subject to resource constraints: classification
and complexity. Discrete Applied Mathematics, 5(1), 11–24, 1983.

[3] Demeulemeester, E.L. and Herroelen, W.S. Project Scheduling: A Research Handbook. (49), International Series
in Operations research and Management Science, Kluwer Academic Publishers, 2002.

[4] Demeulemeester, E. and De Reyck, B. The discrete time/resource trade-off problem in project networks: a
branch-and-bound approach. Open Access publications from Katholieke Universiteit Leuven, Katholieke Univer-
siteit Leuven, 1997.

[5] Guevremont, M. Ordonnancement de projet sous contraintes de ressources, matériels et d’entreposage. Master
report, Polytechnique Montréal, April, 2009.

[6] Kolisch, R., Sprecher, A., and Drexl, A. Characterization and generation of a general class of resource-constrained
project scheduling problems. Management Science, 41(10), 1693–1703, October 1995.

[7] Kone, O., Artigues, C., Lopez, P. and Mongeau, M. Event-based MILP models for resource-constrained project
scheduling problems. Computers and Operations Research, 38(1), Project Management and Scheduling, January
2011.

[8] Lientz, B.P., and Rea, K.P. International Project Management, Academic Press, San Diego, USA, 2003.

[9] Muehlhausen, F. Construction Site Utilization: Impact of Material Movement and Storage on Productivity and
Cost. AACE Transactions, 35, L.2.1–L.2.9, 1991.

[10] Oglesby, C.H., Parker, H.W., and Howell, G.A. Productivity improvement in building. New York: Mcgraw-Hill,
1989.

[11] Pellerin, R., Sadr, J., Guevremont, M. and Rousseau, L.M. Planning of international projects with material
constraints. Proceedings of the International Conference on Industrial Engineering and Systems Management,
Montréal, Canada, 2009.

[12] Polat, G., and Arditi, D. The JIT materials management system in developing countries. Construction Manage-
ment and Economics, 23, 697–712, 2005.

[13] Rad, P. Analysis of working space congestion from scheduling dated. American Association of Cost Engineer
Transactions, F4.1–F4.5, 1980.

[14] Riley, D.R., and Sanvido, V.E. Space planning method for multistory building construction. Journal of Con-
struction Engineering and Management, ASCE 123(2), 171–180, 1997.

[15] Tserng, H.P., Yin, S.Y., and Li, S. Developing has planning resource supply chain system for building projects.
Newspaper of Building Engineering and Management, 132(4), 393–407, 2006.

[16] Wong, E.T.T., and Norman, G. Economic evaluation of materials planning systems for building. Construction
Management and Economics, 15, 39–47, 1997.


	Introduction
	The mathematical model
	Tests and results
	Description of instances
	Results

	A new solution strategy based on an evolutive cut
	The new constraint
	Two theorems
	An iterative solution approach using a decreasing lower bound
	Results with the new algorithm

	Conclusions and perspectives

