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Abstract: In deregulated markets, electricity prices are typically characterized by four key features: season-
ality, mean-reversion, the possibility of large downward or upward unexpected spikes, and volatility clustering.
We propose a time-series price model with skewed and leptokurtic shocks, which displays all four features
above. Importantly, the model fundamentally relies on a continuous and monotone transformation of a one-
dimensional normal random variable, which is of considerable interest when the electricity price model is
only a part of a larger problem whose solution requires the use of numerical integration and/or simulation
techniques. Using a maximum likelihood approach, we compare the proposed model with other specifications
of the electricity price dynamics. The estimation is done with data from Nord Pool Spot, NYISO and the
United States EIA. The results reveal that the proposed model provides an adequate fit and summarizes well
peak period electricity price data.

Résumé : Les prix de l’électricité dans les marchés déréglementés possèdent quatre caractéristiques prin-
cipales : un caractère saisonnier, un retour à la moyenne, la possibilité de hausses et baisses soudaines et
inattendues, et des poches de volatilité élevée. Nous proposons un modèle de série chronologique dont les
innovations sont asymétriques et leptocurtiques, et qui présente les quatre caractéristiques recherchées. Ce
modèle repose à la base sur une transformation continue et monotone d’une variable gaussienne univariée, ce
qui présente un intérêt considérable lorsque le modèle de prix n’est qu’une partie d’un problème plus large
résolu par intégration numérique ou simulation. À l’aide d’un maximum de vraisemblance, nous comparons
notre modèle avec d’autres spécifications de prix de l’électricité tirées de la littérature. L’estimation repose
sur des données de Nord Pool Spot, du NYISO et de l’EIA américain. Les résultats indiquent que notre
modèle obtient une bonne adéquation aux données et qu’il les résume bien.
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1 Introduction

In the last two decades, many countries have opted to deregulate their electricity markets. For example, the
United States and Nordic European countries did so in the early nineties and, more recently, Great Britain,

Australia and parts of Canada. On these deregulated markets, electricity prices typically show important

variations and often spike up or down unexpectedly. Such characteristics are caused, in part, by the inelastic

short-run demand and by the limited ability to store power, precluding the use of inventory to smooth out

production and prices.

There is considerable interest in modelling electricity prices with stochastic processes: for purely

trading the various types of contracts (including derivatives), for risk management purposes, but also for

power plant managers, who adapt productions levels to the market prices. In most cases, the “best” price

model should be easy to estimate, adequate in fit, and simple to incorporate in a larger problem. The main

objective of this study is thus to propose and examine a time-series model which is rich enough to reproduce
the main characteristics of peak period electricity prices, but that can also be conveniently used in problems

requiring numerical integration and/or simulation.

In the literature, four distinctive features have been found important to characterize electricity prices.

See, for example, Knittel and Roberts (2005) and Liu and Shi (2013). A first feature is seasonality, which is

the portion of the power prices rising because of behavioral and natural (weather) regularities. For electricity
markets, seasonality is multiscale: daily variations associated to the day and night activities (peak vs off-peak

periods); week vs weekend variations associated to weekly working activities; and monthly variations induced

by increases or decreases in electricity demand due to seasonal temperatures. A second important feature

is a mean-reverting behavior, as demand shocks are absorbed on the longer run by variations in production
capacity. For example, high prices due to unanticipated cold weather eventually go back to lower levels

because of increases in supply by different producers with flexible production capacity. A third key feature of

electricity prices is the occurrence of large unpredictable upward or downward movements. Such changes in

power prices are associated with unexpected events like sudden unexpected variations in weather conditions

or production decreases due to equipment failure. Finally, a fourth characteristic is volatility clustering.
Periods of high (low) volatility tends to be followed by periods of high (low) volatility. Associated with this

clustering, Knittel and Roberts (2005) also find an inverse leverage effect, i.e. positive shocks tend to increase

price volatility more than negative shocks.

The power price literature comprises both continuous-time and discrete-time models. The main advan-

tages of continuous-time models is the possibility to obtain closed-form solutions for derivatives prices. See,
for example, Lucia and Schwartz (2002), Cartea et al. (2005), Barlow (2002) and Geman and Roncoroni

(2006). On the other hand, discrete-time processes are widely used both to model prices directly or as ap-

proximations of continuous-time models. A full array of numerical techniques apply readily to discrete time

models, and many problems are naturally discrete in nature, power generation decisions for example. Note
also that data is inevitably available at discrete intervals, and parameter estimation is usually easier for a

discrete time model. GARCH models have often been proposed in power price modelling (see Liu and Shi

(2013), or Fowowe (2013) for example) as well as in other energy prices modelling (see e.g. Hung et al. (2011),

Ji and Fan (2011), Nguyen and Nabney (2010)). Regime-switching models are also popular, see Janczura

and Weron (2010) for example.

We propose a discrete-time, continuous-state price model that captures the key characteristics mentioned

above, and that remains highly tractable. The model includes seasonality, mean-reversion and volatility

clustering specified as a non-linear asymmetric GARCH process (NGARCH) with skewed and leptokurtic

shocks. In the GARCH literature, Choi and Nam (2008) and Simonato (2012) propose the use of Johnson-Su

shocks to model exchange rates and stock returns. We adapt this specification to electricity prices. Using
a maximum likelihood approach, we show that this specification of shocks can accommodate the large price

swings observed in electricity markets and perform better than alternative models with jumps or Student

distributed shocks. Our specification is also theoretically appealing since models of electricity prices predict

asymmetric distributions in periods of high volatility (see for example Bessembinder and Lemmon (2002)).
Finally, the skewed and leptokurtic Johnson Su random variables used in this model are continuous and
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monotone transformation of standard normal random variables. This is an important advantage in contexts

where the price model is an ingredient of a larger problem: for example, energy portfolio optimization,

contract design, or power storage management. For such problems, reliable and efficient numerical tools
exist that are based on normal random variables; using these tools then requires little or no adjustment at

all. Our contribution can also be seen as an extension of Knittel and Roberts (2005) to the

non-gaussian shock framework. In their study, models with the key characteristics mentioned

earlier are examined for various U.S. electricity markets. However, their specifications use

Gaussian shocks, which have been found by many to be inaccurate descriptions of financial
and commodity price data.

The paper is organized as follows. Section 2 describes the electricity processes examined in this study.

Three specifications allowing for clustering, jumps and non-normal shocks are examined. Section 3 examines

the fit of the proposed model with peak electricity prices from several markets. Section 4 provides a brief
discussion on how the time series model can be used in the numerical work typically required in larger

problems. Section 5 concludes.

2 The electricity price model

We first assume that the power price over the next time interval is formed of two components: a known and

deterministic seasonal component and a stochastic mean-reverting component i.e.

St = ft + st

where ft is the seasonal component and st is the mean-reverting component. For the sake of simplicity, we use

daily averages of peak daytime period data, with weekends and holidays removed. Hence, seasonality

is essentially brought by monthly weather changes. To capture these regularities, various techniques have
been proposed, see for example Nowotarski et al (2013). For the sake of simplicity, we proceed as in Lucia

and Schwartz (2002) and use dummy variables to write the seasonal component as:

ft = π11{t∈Jan} + · · ·+ π121{t∈Dec} (1)

where 1{·} is an indicator function and π = [π1, ..., π12]
′
is a vector of fixed parameters.

For the stochastic mean-reverting component, three different specifications are examined. All include

mean-reversion and NGARCH variances, therefore capturing the volatility clustering phenomenon.1 With

respect to the yet unaccounted feature, the unexpected large changes in price, the first specification uses

jumps while the second and third ones use leptokurtic and/or non-normal shocks. It should be noticed that

all time series specifications examined have known transition densities and distributions. The transition
density allows us to define the likelihood function with which parameter estimates can be computed.

2.1 Model 1: NGARCH volatility with jumps

A first approach that can be used to capture the large unexpected changes in electricity prices is the addition

of jumps to the typical process used to model mean-reverting behavior. As in Das (2002), the mean-reverting

price with jumps is given by the following discrete-time process:

st+1 = (1− κ) st + zt+1

√

ht+1 + J ×Dt+1 (2)

with the variance model

ht+1 = β0 + β1ht + β2ht(et/ht − θ)2

where κ > 0 is a fixed parameter interpreted as the speed of mean-reversion, zt+1 is a N(0,1) noise, ht+1 is

the conditional variance of the seasonally-adjusted price and et+1 = st+1 −E (st+1 | st) . We specify a mean

of zero, since the seasonal component captures the average price for a given time point. The conditional

1We also tested a model with jumps but no GARCH shocks. We do not report results for this model, as its statistics were
uniformly worse than the three other.
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variance follows a non-linear asymmetric GARCH (NGARCH) process of Engle and Ng (1993) with the

typical GARCH parameter restrictions: β0 > 0, β1 ≥ 0, β2 ≥ 0. Parameter θ determines the “leverage effect”.

A positive θ combined with a negative shock increases the variance next period. In the stock price literature,
this behavior is referred to as the leverage effect.2 With a negative value of θ, a positive shock will increase

the variance. A negative θ is labeled “inverse leverage effect” by Knittel and Roberts (2005). Other GARCH

specifications allowing for the leverage effect could be used. For example, the GJR-GARCH of Glosten

et al (1993) or the EGARCH of Nelson (1991). However, the NGARCH is more parsimonious, with four

parameters compared to five with these other specifications, and provides equivalent performances.

It should be noticed that the process defined above can yield negative electricity prices. Unlike many

commodities, electricity prices can become negative, as explained in Sewalt and De Jong (2003). Negative

prices are possible because there must always be a balance between supply and demand on a power network.

During off peak periods, power supply can be higher than demand. Negative prices are acceptable to power

suppliers because the opportunity costs of a shutdown period can be very high.

The large changes in price are captured by the last term in (2). There, J , is a jump shock with a

N
(

αJ , σ2
J

)

distribution that is independent of zt+1, and Dt+1 is a discrete-time Poisson increment. This

Poisson process is approximated by a Bernoulli distribution with parameter γ = λdt+O (dt) where λ is the

annual jump intensity parameter and dt the length of a discrete time interval. As a result, the expected value

of the future price, conditional on the current price, is

E (st+1 | st) = γ [(1− κ) st + αJ ] + (1− γ) [(1− κ) st] .

Because the limit of the Bernoulli process is governed by a Poisson distribution, the density of the Poisson

model is well approximated with a Bernoulli mixture of normal. This approximation, examined in Ball and

Torous (1983), Das (2002), and Knittel and Roberts (2005), amounts to the assumption that in each time
interval, no more than one jump can occur. This is not constraining for problems with short frequencies such

as the one examined here. As found in Ball and Torous (1983) and Das (2002), this approximation has the

advantage of providing a tractable, stable and convergent estimation procedure with a maximum likelihood

approach. For this purpose, the transition density of the seasonally-adjusted price is a simple combination

of normal densities (with and without jump) and is given by:

φ (st+1 | st,Ψ) = γ
1

√

2π (ht+1 + σ2
J)

exp

(

−1

2

(st+1 − (1− κ) st − αJ)
2

ht+1 + σ2
J

)

+ (1− γ)
1

√

2πht+1

exp

(

−1

2

(st+1 − (1− κ) st)
2

ht+1

)

where Ψ = [κ, αJ , σJ , γ, β0, β1, β2, θ] . With a time series st for t = 1 to T , the parameters can be estimated
by finding the parameter values maximizing the log likelihood function of this model, which is obtained from

the above transition density.

2.2 Model 2: NGARCH volatility with standardized Students shocks

A second approach for capturing large unexpected jumps is to use shocks with leptokurtic distribution. In the

GARCH framework, Bollerslev (1987) has suggested the use of standardized Student shocks with GARCH
volatility processes. Such a distribution has fatter tails than the normal distribution and can thus capture

the large sudden shocks associated with the inelastic demand of the electricity market.

Here, st, the seasonally adjusted mean-reverting price is

st+1 = (1− κ) st + et+1

√

ht+1 (3)

2For stock prices, a negative shock decreases the overall equity value of the firm. This decrease in equity value increases the
proportion of debt in the firm i.e. increases the leverage. Higher leverage values produces more volatile cash flows. Hence, a
negative shock should have a greater impact on volatility than a positive shock.
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with

ht+1 = β0 + β1ht + β2ht(et − θ)2

where et is a standardized Student (δ) noise with δ > 2 degrees of liberty, and ht is the conditional variance

of the seasonally-adjusted price. As discussed in Bollerslev (1987), the transition density for this process is

given by :

φ (st+1 | st,Ψ) =
Γ ((δ + 1) /2)

Γ (δ/2)
√

π (δ − 2)ht+1

×
(

1 +

[

(st+1 − (1− κ) st) /
√

ht+1

]2

δ − 2

)

−(1+δ)
2

where Γ (·) is the gamma distribution and Ψ is the vector of parameters

Ψ = [κ, β0, β1, β2, θ, δ] .

For large values of δ, the distribution has an excess kurtosis of zero and converges to the standard normal

distribution as δ goes to infinity. The Student distribution is symmetric. This might be a disadvantage

since theoretical models of electricity prices predict asymmetric distributions in periods of high volatility (see
Bessembinder and Lemmon (2002)). Another disadvantage of the Student distribution is the possibility of

infinite higher moments. For example, δ must be higher than four for the kurtosis to be well defined. As

with the first model, the parameters can be estimated by maximizing the log likelihood function.

2.3 Model 3: NGARCH volatility with Johnson Su shocks

Finally, we consider a model with shocks based on a leptokurtic Johnson Su− normal distribution, as pro-

posed in Choi and Nam (2008) and Simonato (2012). Unlike the Student distribution examined above, this
distribution can accommodate a wide variety of skewness and kurtosis combinations for the error terms, all

with finite moments. This (potential) asymmetry is important because models of electricity prices predict

asymmetric distributions in periods of high volatility (see for example Bessembinder and Lemmon (2002)).

In addition, the distribution function associated to the Johnson Su−normal is computed with the standard

normal distribution function, and is therefore as easy to evaluate. We adapt the NGARCH model with
standardized Johnson Su−normal shocks proposed in Simonato (2012). In our context, the stochastic mean-

reverting price is:

st+1 = (1− κ) st + εt+1

√

ht+1 (4)

with

ht+1 = β0 + β1ht + β2ht(εt − θ)2. (5)

Here, the εt term,

εt =
yt −My
√

Vy

with yt = sinh

(

zt − a

b

)

, (6)

is a standardized Johnson Su-normal shock, which is a transformation of a standard normal error term zt
with parameters −∞ < a < +∞ and b > 0 which control the skewness and kurtosis of the distribution.

Quantities My, Vy and sinh are defined in Appendix A which describes in more length the standard Johnson

Su−normal random variable. Using such random variables, the transition density function for st+1 can be
written as

φ (st+1 | st,Ψ) =
1√
2π

e−
1
2 (a+b·sinh−1(My+εt+1

√
Vy))

2

×
√

Vyb
√

ht+1

√

(

My + εt+1

√

Vy

)2
+ 1

,
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with

εt+1 =
st+1 − (1− κ) st

√

ht+1

and a parameter vector Ψ = [κ, β0, β1, β2, θ, a, b] which can be estimated by maximum likelihood.

3 Case study

In this section, we present comparative results for the three price models, on three different datasets. After
a few words on the estimation procedure, we present the datasets in Section 3.1 and comment on the results

in Section 3.2.

In theory, the use of the maximum likelihood technique requires a maximization over all parameters

concurrently. In practice, when the number of parameters is large, the estimation is often done in two steps

to simplify the numerical optimization problems.

We thus use a two-step procedure and first estimate the twelve parameters of the seasonal dummy variables
with an ordinary least-square procedure on the electricity prices. As specified in our model, the residual

vector from this linear regression is the stochastic mean-reverting component. The second step thus uses

these residuals in conjunction with a maximum likelihood approach to estimate the parameters of the mean-

reverting component by nonlinear optimization. This explains why the likelihood functions of Section 2 were
provided for the seasonally-adjusted prices and not the original prices. The log-likelihood functions of the

models described earlier are given by
T
∑

t=2

lnφ (st | st−1,Ψ)

where φ (st | st−1,Ψ) is the transition density for mean-reverting portion and Ψ is a vector containing the

parameters described earlier.

3.1 Datasets

To provide broader support for our conclusions, the models were compared on three different datasets,
described below. The first two, Nord Pool Spot and NYISO, are market operators who are mandated to

organize power exchanges on their respective territories. The third, the EIA, is an agency that collects energy

data in the United States. In all cases, to simplify the seasonality treatment, weekend and holiday data were

removed from the time series.

3.1.1 Nord Pool Spot Dataset

Nord Pool Spot operates the day-ahead and intraday power exchanges in Nordic Europe. It is one of the

best established power markets in the world, in operation for close to twenty years. Details for our data are
as follows.

Price nature: Day-ahead system prices, determined as the intersection of the aggregate supply and demand

curves.

Time period: Peak time periods only (from 8 am to 8 pm). Our daily price is the simple average of the
peak hours prices for the day.

Time horizon: From 1 January 2009 to 14 June 2011 (two and a half years)

Data origin: Web site of Nord Pool Spot, www.nordpoolspot.com.

3.1.2 NYISO Dataset

NYISO is the Independent System Operator of the state of New York. As such, it operates a daily market

of wholesale electricity. Details on the data are as follows.
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Price nature: Day-ahead prices.

Time period: Peak time periods only (from 8 am to 8 pm). Our daily price is the simple average of the
peak hours prices for the day.

Time horizon: From 3 January 2006 to 31 December 2012 (seven years).

Locational prices: Four sub-markets (zonal prices) where examined, out of fourteen: Centrl, North, Nyc

and West.

Data origin: Web site of NYISO, www.nyiso.com.

3.1.3 EIA Dataset

The United States Energy Information Administration (EIA) is the statistical and analytical agency within

the U.S. Department of Energy. Details on the data are as follows.

Price nature: Day-ahead prices. Prices are power indices taking into account the volume of transactions.

The power indices definition is available from the EIA website.

Time period: Peak time periods only (from 8 am to 8 pm). Our daily price is the simple average of the

peak hours prices for the day.

Time horizon: From 5 January 2006 to 2 January 2013 (seven years).

Locational prices: Five hub prices where examined, out of eight: Indiana Hub (Midwest region); Mass

Hub (New England region); Mid-C (Mid-Columbia, Northwest region); Palo Verde (Southwest region);

SP-15 (Southern California). Only the hubs with times series of more than 230 data points each year

where selected.

Data origin: Web site of the EIA, www.eia.gov.

3.2 Estimation results

Because the estimates show great similarities within a dataset, we present detailed results and analyses for

three time series only (one from each data set): Nord Pool Spot, the “Centrl” price of NYISO and the

“Indiana Hub” price of EIA. Detailed results for the other locations in NYISO and EIA are available from
the authors.

Table 1 presents the seasonal parameter estimates for the three datasets mentioned above. All parameters
are significant at the five percent level. Standard errors are provided in parentheses. Substantial differences

are observed between the monthly dummy parameters. In Scandinavia, as expected, colder months are

Table 1: Seasonal parameters for three datasets

Nord Pool NYISO Centrl EIA Indiana Hub

πi std πi std πi std

January 55.1 (1.5) 63.3 (1.6) 48.0 (1.4)
February 61.8 (1.6) 55.9 (1.7) 47.1 (1.5)
March 48.6 (1.6) 50.8 (1.6) 43.7 (1.3)
April 45.1 (1.7) 52.1 (1.6) 46.8 (1.4)
May 44.8 (1.7) 52.8 (1.6) 47.2 (1.4)
June 43.2 (1.6) 58.7 (1.6) 55.3 (1.4)
July 36.3 (1.6) 67.8 (1.6) 59.1 (1.4)
August 38.3 (1.6) 59.5 (1.6) 55.7 (1.3)
September 37.3 (1.6) 50.2 (1.6) 39.8 (1.4)
October 39.7 (1.6) 51.2 (1.6) 40.9 (1.3)
November 45.0 (1.6) 54.2 (1.6) 41.7 (1.4)
December 58.2 (1.6) 55.9 (1.6) 43.4 (1.4)

The table reports the maximum loglikelihood parameters for the seasonal component of prices
(see equation (1)) for three datasets. Weekend and holiday prices are not considered, so that
only twelve parameters are required. Standard deviation provided in parentheses.
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associated with higher average prices, while in the U.S., air conditioning drives a peak in prices during the

summer months. Note that the two U.S. markets differ with respect to heating demand in January: the

NYISO Centrl has a clear peak, much subdued at the Indiana Hub.

Tables 2, 3 and 4 present detailed results on the maximum log-likelihood parameter estimates and several
statistics for the three datasets Nord Pool Spot, NYISO (Centrl) and EIA (Indiana Hub). For all three tables,

the columns present the results associated to the three models of Section 2: model 1 is the NGARCH with

normal shocks and jumps, model 2 is the NGARCH with Student shocks, and model 3 is the NGARCH with

Johnson-Su shocks. In all three tables, the parameter estimates are presented first, with standard errors in
parentheses, and are followed by several statistics:

Observations is the number of observation in the time series;

Log-likelihood is the log-likelihood value; Akaike is the Akaike information criterion;

JB is the Jarque-Bera normality test for the standard normal residuals with [p-values].

Q(20)Q(20)Q(20) is the Ljung-Box portmanteau test for up to 20th-order serial correlation in the standard normal

residuals with [p-values].

Q2(20)Q2(20)Q2(20) is the same test for the squared standardized residuals with [p-values];

Stavarc is the stationarity condition for the NGARCH variance process which is computed as β1+β2(1+θ2).

A value higher than one is an indication of non-stationary variance.

While the numbers themselves vary slightly, the analysis for the three datasets is similar, so that we do
not distinguish between datasets in what follows, with a few explicit exceptions. The plots are for the NYISO

“Centrl” dataset.

All reported parameter estimates are significant at the 5 % level. For all price models, there is a strong

evidence of mean-reversion with a positive speed of mean-reversion parameter estimate for κ. For the model

with jumps, the estimates of the average jump values αJ are positive as expected, with large standard
deviations σJ . The estimated probabilities of a jump over the next day γ are, in general, between 5% and

10%.

For all three models, the leverage parameter θ has a negative sign coherent with the “reverse leverage”

effect discussed in Section 2.1. The estimated number of degrees of freedom δ in the NGARCH-Student

model is smaller than four, implying that the fourth moment of the error term is not defined. This is worse
for the Nord Pool Spot dataset (δ = 2.2) and better of the IEA case (δ = 3.55). For Nord Pool, the third

moment is also undefined since the estimate of δ is smaller than three.

With respect to the likelihoods, the NGARCH-Student improves markedly on the NGARCH-Jump, and

the NGARCH-Johnson even more so, showing the importance of the added flexibility given by allowing for

skewness and kurtosis. Because these models are not nested, it is not possible to test for the best specification
using the likelihood values. A better comparison can be given by the Akaike information criterion, which

takes into account the number of parameters. With this criterion, the better model is the one with the

minimum value. Again the NGARCH-Johnson specification stands out with the lowest Akaike values in all

cases.

With respect to the distributional assumptions, Figure 1 presents the quantile to quantile plots (qqplots)
of the standardized residuals associated to the three models in the NYISO ”Centrl” case. Given that the

model with jumps is a combination of independent normals, the expected residual is used in the plots,

where the expectation is taken with the estimated jump probability. As shown in this graph, the normality

assumption is clearly violated in the tails of the distributions for this model. For the model with Student

errors, the qqplots shows a much better fit than the preceding model. Some deficiencies in both tails of the
distribution can however be noticed. Finally, for the Johnson case, the qqplot of the estimated zt’s, which

have a standard normal distribution, are shown to correspond adequately to the normality assumption of

the implied standard normal error term at the source of the Johnson Su random variable (Equation (9) in

the annex). For models 1 and 3, the Jarque-Bera test of normality confirms the qqplots and strongly rejects
normality for model 1, while the assumption cannot be rejected at any reasonable level for the Johnson.
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Figure 1: Quantile to quantile plot of standardized residuals for NYISO Centrl

The Ljung-Box statistics indicate that, for some of the time series, significant autocorrelations are still

present in the residuals. A detailed look at the residuals indicates that these are caused by small, but

significant, autocorrelation coefficients in the first few lags. Figure 2, which shows the sample autocorrelation
function with confidence bands (two standard deviations), illustrate this for NYISO “Centrl” and the three

models. For the squared residuals, a similar phenomena occurs (very small but significant auto-correlations)

for three out of ten time series, showing that the NGARCH specification captures most of the predictability

in the variance.

With respect to the stationarity of the variance process, notice first that the sum of β1 and β2 is close to
or larger than one for the NGARCH-Student model, slightly less so for NGARCH-Johnson, and much less so

for NGARCH-Jump. This is an indication of an integrated GARCH process (or close to integrated process).

In this case, the variance process is non-stationary and could explode for very long maturities. The stationary

variance condition (“Stavarc” in the tables) supports the same conclusions of a non-stationary variance, ,
with the most severe case for the NGARCH-Student model, the least severe for the NGARCH-jump model,

and the NGARCH-Johnson Su in between. For the NGARCH-Johnson model, the largest “Stavarc” value

was observed for the EIA (Mass Hub) dataset at 1.20, while the largest “Stavarc” value for the NGARCH-

Student model was 2.16, for the Nord Pool dataset. For the NGARCH-Johnson model, eight series out of



Les Cahiers du GERAD G–2015–08 9

0 5 10 15 20 25
-0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

 NGARCH-Jump

0 5 10 15 20 25
-0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

 NGARCH-Student

0 5 10 15 20 25
-0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

 NGARCH-Johnson

Figure 2: Sample autocorrelations with confidence bounds for NYISO Centrl

the ten that have been examined show a non-stationary variance. Note that a logarithmic transformation of
the price series is capable of tempering this problem with fewer cases of non-stationary variance. Tables 5

and 6 report the parameter estimates and statistics for this log-transformed model for all ten time series. As

shown in these tables, the model performs similarly on log prices about parameter estimates and statistics,

but with four out of ten cases with non-stationary variance. Such a specification is, however, not able to
generate negative prices. A visual examination of the qqplots and estimated autocorrelation coefficients of

the residuals show characteristics similar to those obtained without the logarithmic transformation (plots

and coefficients not shown)

Based on the above analysis, the preferred specification is the NGARCH with Johnson Su shocks. It

offers the best likelihood values and its residuals are coherent with the distributional hypothesis. It violates
the variance stationarity assumption, but never by a large margin, and a logarithmic transformation of the

price can temper the problem. Finally, on the theoretical side, it is appealing for its capacity to represent

asymmetric price distributions, which the other two models cannot do.
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Table 2: Parameters and statistics for the dataset “Nord Pool”

NGARCH-Jump NGARCH-Student NGARCH-Johnson

κ 0.0119 0.0091 0.0088
(0.0048) (0.0046) (0.0042)

αJ 10.7990 — —
(3.2153)

σJ 17.6237 — —
(1.0553)

γ 0.0678 — —
(0.0109)

β0 0.7677 4.2326 1.7265
(0.1003) (3.0714) (0.3820)

β1 0.4496 0.4975 0.5199
(0.0310) (0.0436) (0.0396)

β2 0.3014 1.6563 0.6482
(0.0345) (1.1967) (0.1397)

θ -0.5004 -0.0809 -0.1681
(0.1262) (0.0593) (0.0834)

δ — 2.2047 —
(0.1654)

a — — -0.2145
(0.0411)

b — — 0.9196
(0.0467)

Observations 1031 1031 1031

Log-likelihood -2584 -2536 -2518

Akaike 5184 5085 5050

JB 13005 — 1.57
[0.0000] [0.4436]

Q(20) 21 19 18
[0.4257] [0.5031] [0.5821]

Q2(20) 8 5 33
[0.9900] [0.9999] [0.0375]

Stavarc 0.83 2.16 1.19

This table reports the maximum likelihood parameters estimates for the deseasonalized time
series. Standard errors are reported in parenthesis. Also reported are several statistics.
Observations is the number of observation; Log-likelihood is the log-likelihood value; Akaike
is the Akaike information criterion; Stavarc is the stationarity condition for the NGARCH
variance process; JB is the Jarque-Bera statistic for the standard normal residuals; Q(20) is
the Ljung-Box portmanteau statistic for up to 20th-order serial correlation in the standard
normal residuals while Q2(20) is the same statistic for the squared standardized residuals.
The p-values for these statistics are reported in square brackets.

The next section discusses how this model can be used in numerical work associated to the analysis of

problems broader than simple price modelling.

4 Simulation and integration of Johnson Su random variables

As discussed in the introduction, an important feature of the NGARCH Johnson Su model that we propose

is the convenience associated with simulation and numerical integration, which are tools often required when
the price model is part of a larger problem. For example, computing risk measures or prices of derivative

securities on electricity often involves simulation and/or numerical integration. Power plant management

or optimal hydroelectric production are other examples of larger problems involving dynamic programming,

which requires the capacity to repeatedly solve for expected value with numerical integration. Because a

Johnson Su random variable is a continuous and monotone transformation of a standard normal variables,
most of the numerical tools and techniques that are widely available for the normal case can be used for the

Johnson Su case.
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Table 3: Parameters and statistics for the dataset “NYISO Centrl”

NGARCH-Jump NGARCH-Student NGARCH-Johhson

κ 0.0373 0.0369 0.0426
(0.0044) (0.0051) (0.0048)

αJ 7.4608 — —
(1.7096)

σJ 14.4643 — —
(0.8995)

γ 0.0832 — —
(0.0123)

β0 1.7628 2.8316 3.1224
(0.2203) (0.5724) (0.5183)

β1 0.4853 0.5892 0.5266
(0.0315) (0.0371) (0.0374)

β2 0.1443 0.2825 0.2669
(0.0147) (0.0493) (0.0381)

θ -1.5493 -0.8606 -0.9750
(0.1293) (0.1100) (0.1085)

δ — 3.0377 —
(0.2397)

a — — -0.3317
(0.0547)

b — — 1.1843
(0.0595)

Observations 1763 1763 1763

Log-likelihood -5589 -5583 -5559

Akaike 11194 11177 11132

JB 9908 — 0.95
[0.0000] [0.6250]

Q(20) 48 49 57
[0.0004] [0.0003] [0.0000]

Q2(20) 8 8 29
[0.9903] [0.9903] [0.0872]

Stavarc 0.98 1.08 1.05

This table reports the maximum likelihood parameters estimates for the deseasonalized time
series. Standard errors are reported in parenthesis. Also reported are several statistics.
Observations is the number of observation; Log-likelihood is the log-likelihood value; Akaike
is the Akaike information criterion; Stavarc is the stationarity condition for the NGARCH
variance process; JB is the Jarque-Bera statistic for the standard normal residuals; Q(20) is
the Ljung-Box portmanteau statistic for up to 20th-order serial correlation in the standard
normal residuals while Q2(20) is the same statistic for the squared standardized residuals.
The p-values for these statistics are reported in square brackets.

In problems involving dynamic programming, gaussian quadratures are widely used to perform numerical

integration of random variables. For example, Gauss-Hermite quadrature is specifically adapted to the

Gaussian density function, and performs numerical integrations very accurately and efficiently. Because
a Johnson Su is a monotone, continuous and invertible transformation of a normal random variable, one

can use the change of variable theorem and Gauss-Hermite quadrature to repeatedly perform the numerical

integrations required to solve a dynamic program. As shown in Appendix B , the expected value of a function

ϕ (ε) of a Johnson variable can can be written as

E [ϕ (ε)] =

∫ +∞

−∞

ϕ (g (z)) f(z) dz

where z is a standard normal random variable, f(z) is the density of the standard normal, and g (z) is a

generic expression for equation (6) (the Johnson random variable written in terms of the standard normal).
Using the change of variable described in Judd (1998), the integral can then be easily rewritten in a way that

makes it compatible with the use of the Gauss-Hermite quadrature approach.
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Table 4: Parameters and statistics for the dataset “EIA Indiana Hub”

NGARCH-Jump NGARCH-Student NGARCH-Johnson

κ 0.0398 0.0457 0.0574
(0.0054) (0.0063) (0.0059)

αJ 10.2645 — —
(3.3649)

σJ 9.1805 — —
(1.8593)

γ 0.0736 — —
(0.0222)

β0 1.2247 1.2914 1.7715
(0.1663) (0.2978) (0.3204)

β1 0.5879 0.7266 0.6683
(0.0283) (0.0285) (0.0285)

β2 0.1390 0.2210 0.2239
(0.0152) (0.0379) (0.0320)

θ -1.3963 -0.6602 -0.7815
(0.1267) (0.1041) (0.1020)

δ — 3.5550 —
(0.3521)

a — — -0.5490
(0.0858)

b — — 1.3508
(0.0883)

Observations 1729 1729 1729

Log-likelihood -5389 -5408 -5368

Akaike 10795 10829 10749

JB 6163 — 1.04
[0.0000] [0.5898]

Q(20) 112 109 98
[0.0000] [0.0000] [0.0000]

Q2(20) 10 11 10
[0.9718] [0.9416] [0.9688]

Stavarc 1.00 1.04 1.03

This table reports the maximum likelihood parameters estimates for the deseasonalized time
series. Standard errors are reported in parenthesis. Also reported are several statistics.
Observations is the number of observation; Log-likelihood is the log-likelihood value; Akaike
is the Akaike information criterion; Stavarc is the stationarity condition for the NGARCH
variance process; JB is the Jarque-Bera statistic for the standard normal residuals; Q(20) is
the Ljung-Box portmanteau statistic for up to 20th-order serial correlation in the standard
normal residuals while Q2(20) is the same statistic for the squared standardized residuals.
The p-values for these statistics are reported in square brackets.

Another approach which is used for solving dynamic programming problems in Gaussian context is the

Markov chain approximation (see Judd (1998)). For example, as shown in Duan and Simonato (1998) and

Denault et al. (2013), dynamic programming in a normal context (with constant or GARCH volatilities)

can be performed using a Markov chain approximation. One of the main requirement of such an approach
is the transition probability matrix of the Markov chain, whose elements can be computed with expressions

involving the distribution function of the random shocks associated with the process. For processes with

normal shocks, the distribution function (cumulative density function) of a standard normal random variable

is used. For such a function, fast and precise algorithms are available in most software environment. For

Johnson Su random variables, the distribution function can also be computed quickly since it only involves
the distribution function of a standard normal random variable. More specifically, in the present context,

the distribution function of the standard normal Johnson random variable is given by

Φ
(

a+ b · sinh−1
(

My + ε
√

Vy

))
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Table 5: Parameters estimates – NGARCH-Johnson on log prices

κ1 β0 β1 β2 θ a b

NYISO West 0.050 0.001 0.759 0.167 -0.420 -0.261 1.270
(0.007) (0.000) (0.035) (0.032) (0.134) (0.051) (0.066)

NYISO Centrl 0.039 0.001 0.667 0.220 -0.509 -0.183 1.306
(0.006) (0.000) (0.041) (0.038) (0.114) (0.055) (0.072)

NYISO North 0.038 0.001 0.689 0.280 -0.303 -0.062 1.146
(0.006) (0.000) (0.035) (0.048) (0.095) (0.042) (0.059)

NYISO NYC 0.023 0.002 0.484 0.281 -0.919 -0.182 1.278
(0.005) (0.000) (0.040) (0.047) (0.112) (0.062) (0.078)

Nord Pool 0.009 0.001 0.573 0.624 0.029 -0.173 0.939
(0.005) (0.000) (0.046) (0.142) (0.077) (0.042) (0.056)

IEA Mass Hub 0.021 0.001 0.539 0.349 -0.645 -0.430 1.377
(0.003) (0.000) (0.025) (0.037) (0.064) (0.060) (0.063)

IEA Indiana Hub 0.063 0.001 0.813 0.129 -0.415 -0.419 1.550
(0.008) (0.000) (0.028) (0.023) (0.131) (0.092) (0.122)

IEA Mid-C 0.019 0.001 0.564 0.473 0.167 0.053 1.274
(0.004) (0.000) (0.027) (0.051) (0.048) (0.042) (0.058)

IEA SP-15 0.075 0.001 0.822 0.105 -0.275 -0.295 1.358
(0.016) (0.000) (0.052) (0.038) (0.297) (0.096) (0.122)

IEA Palo Verde 0.017 0.001 0.733 0.180 -0.176 -0.281 1.662
(0.004) (0.000) (0.028) (0.025) (0.088) (0.076) (0.096)

This table reports the maximum likelihood parameters estimates of the NGARCH-Johnson model for the log trans-
formed prices. Standard errors are reported in parenthesis.

Table 6: Statistics – NGARCH-Johnson on log prices

Observations Log-likelihood Akaike JB Q(20) Q2(20) Stavarc

NYISO West 1762 1279 -2544 0.5219 58.9186 17.4998 0.9557
[0.7586] [0.0000] [0.6203]

NYISO Centrl 1762 1462 -2909 0.0265 69.5061 25.2470 0.9441
[0.9920] [0.0000] [0.1921]

NYISO North 1762 1350 -2686 0.5810 65.4958 30.1171 0.9939
[0.7484] [0.0000] [0.0680]

NYISO NYC 1762 1213 -2412 4.0397 74.5425 35.9678 1.0016
[0.1176] [0.0000] [0.0155]

Nord Pool 1030 1369 -2724 0.8982 16.3310 24.0083 1.1972
[0.6199] [0.6959] [0.2420]

IEA Mass Hub 2783 2584 -5153 2.1973 121.6754 29.2369 1.0323
[0.3240] [0.0000] [0.0832]

IEA Indiana Hub 1728 1248 -2482 0.3602 108.2609 9.0630 0.9640
[0.8243] [0.0000] [0.9822]

IEA Mid-C 2625 2217 -4421 0.3573 73.6925 24.6392 1.0493
[0.8237] [0.0000] [0.2156]

IEA SP-15 711 782 -1549 0.0598 61.9563 64.1338 0.9341
[0.9800] [0.0000] [0.0000]

IEA Palo Verde 2624 3074 -6133 1.0873 117.4490 28.7076 0.9188
[0.5962] [0.0000] [0.0937]

This table reports the statistics obtained for the NGARCH-Johnson model for the log transformed prices.
Observations is the number of observation; Log-likelihood is the log-likelihood value; Akaike is the Akaike in-
formation criterion; Stavarc is the stationarity condition for the NGARCH variance process; JB is the Jarque-Bera
statistic for the standard normal residuals; Q(20) is the Ljung-Box portmanteau statistic for up to 20th-order serial
correlation in the standard normal residuals while Q2(20) is the same statistic for the squared standardized residuals.
The p-values for these statistics are reported in square brackets.

where Φ (·) is the standard normal distribution function, and the expressions for sinh−1 (·) , My and Vy are

availlable in Appendix A.

Finally, in problems requiring simulated paths of electricity prices, standardized Johnson Su random vari-

ables are simply obtained by drawing a standard normal random variable and applying the transformations
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outlined in equation (6) i.e.

εt =
yt −My
√

Vy

with yt = sinh

(

zt − a

b

)

,

where zt is a standard normal, and where the other quantities are defined in Section 2.3 and Appendix A.

5 Conclusion

We introduce in this paper an electricity price model based on an NGARCH with Johnson-Su shocks (but

no jumps). The model has two main advantages. First, it offers a good fit to data, as a case study indicates.

The model is suited for seasonality behaviour, mean-reversion, large, unpredictable swings, and volatility
clustering. It also allows for asymmetric price distributions. The second main advantage is that the model

fundamentally relies on the standard normal distribution. This means that when the price model is integrated

in a broader problem, such as risk-management, dynamic optimization or dam operation, classical techniques

such as Markov chains, Gaussian quadratures and simulation, all apply easily.

A The standard Johnson Su random variable

The standard Johnson Su shock εt is defined as:

εt =
yt −My
√

Vy

with yt = sinh

(

zt − a

b

)

,

where sinh is the hyperbolic sine function (sinh(x) , (exp(x) − exp(−x)) /2) and zt is N(0,1). The parameters

My and Vy are the mean and variance of the Johnson random variable yt and can be computed with

My = −w
1
2 sinh (Ω) , (7)

Vy =
1

2
(w − 1) (w cosh (2Ω) + 1) , (8)

where w = e
1
b2 , Ω = a

b
and cosh (x) , (ex + e−x) /2. The standard normal error term can be recovered with

zt = a+ b · sinh−1
(

My + εt
√

Vy

)

(9)

and the inverse hyperbolic sine function given by sinh−1 (x) , ln
(

x+
√
x2 + 1

)

. As discussed in Simonato

(2012), the density function for εt can be written as

f(εt) = f(zt)×
∣

∣

∣

∣

∂zt
∂εt

∣

∣

∣

∣

where fzt is the density function of a standard normal random variable, which yields, after some manipula-
tions, the transition density shown in Section 2.3.

B Expected value of a function of a Johnson Su

Denote a Johnson Su random variable as a continuous, monotonically increasing and invertible function of a

standard normal random variable z :

ε = g (z) ↔ z = g−1 (ε) .

The expected value of a function ϕ (·) of a standard Johnson Su random variable can be written as

E [ϕ (ε)] =

∫ +∞

−∞

ϕ (ε) f(ε) dε
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where f(ε) is the density function of the standard Johnson Su-normal random variable. Using a change of

variable, the Johnson density can be written as

f (ε) = f (z)×
∣

∣

∣

∣

∂g−1 (ε)

∂ε

∣

∣

∣

∣

where f(z) is the density function of a standard normal random variable, which can be substituted in the

above expression to yield:

E [ϕ (ε)] =

∫ +∞

−∞

ϕ (ε)× f (z)×
∣

∣

∣

∣

∂g−1 (ε)

∂ε

∣

∣

∣

∣

dε.

Using the change of variable theorem with ε = g (z) obtains the following expression :

E [ϕ (ε)] =

∫ +∞

−∞

ϕ (g (z))× f (z)×
∣

∣

∣

∣

∂g−1 (ε)

∂ε

∣

∣

∣

∣

× ∂g (z)

∂z
dz.

Given that ∂g(z)
∂z

> 0 for all z because g (·) is a monotonically increasing function, we have that

∣

∣

∣

∣

∂g−1 (ε)

∂ε

∣

∣

∣

∣

× ∂g (z)

∂z
=

∣

∣

∣

∣

∂z

∂ε

∣

∣

∣

∣

× ∂ε

∂z
= 1

and

E [ϕ (ε)] =

∫ +∞

−∞

ϕ (g (z))× f (z) dz.
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