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Les textes publiés dans la série des rapports de recherche Les

Cahiers du GERAD n’engagent que la responsabilité de leurs
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Abstract: We consider an n-player game in coalitional form. We use the so-called δ characteristic function
to determine the strength of all possible coalitions. The value of a coalition is obtained under the behavioral
assumption that left-out players do not react strategically to the formation of that coalition, but stick to
their Nash equilibrium actions in the n-player noncooperative game. This assumption has huge computational
merit, especially in games where each player is described by a large-scale mathematical program. For the class
of games with multilateral externalities discussed in Chander and Tulkens, we show that the δ characteristic
function is superadditive and has a nonempty core, and that the δ-core is a subset of the γ-core.

Key Words: Coalitional games, characteristic function, multilateral externalities.

Résumé : On considère un jeu coopératif à n joueurs et on utilise la fonction caractéristique δ pour évaluer
la force stratégique de chacune des coalitions possibles. La valeur pour chaque coalition est obtenue en
maximisant la somme des gains de ses membres sous l’hypothèse que les joueurs non membres utilisent leurs
actions d’équilibre dans le jeu non coopératif à n joueurs. Cette hypothèse sur le comportement des non
membres simplifie énormément les calculs à effectuer pour déterminer la valeur de chacune des coalitions
possibles. On montre que pour la classe de jeux avec externalités multilatérales à la Chander et Tulkens que
la fonction caractéristique δ est superadditive, que le noyau est non vide et qu’il est inclut dans le noyau γ.

Mots clés : Jeux coopératifs, fonction caractéristique, externalités multilatérales.
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1 Introduction

The implementation of any classical solution of an n-player cooperative game with transferable utilities, e.g.,
Shapley value, core or nucleolus, requires the computation of the characteristic function (CF) values of the

2n − 1 possible nonempty coalitions. This task is very challenging, if at all feasible, when (i) n is large; (ii)

each player is described by a large-scale mathematical programming model; and (iii) each of these values

is the result of an equilibrium problem, as is the case for the γ characteristic function (see Chander and
Tulkens (1997)). To illustrate the difficulty, suppose that we have to allocate among all countries the total

emissions reductions needed to avoid a serious climate change. To start, we have to adopt a model that

describes the economics and climate interactions for each of the countries (players). A well-accepted model

in this area is the Integrated Assessment Model (TIAM-WORLD), which is a multi-regional model of the

energy/emissions of 16 world regions (see, for instance, Loulou and Labriet (2008)). If we adopt this model
and the γ characteristic function to define the imputations in the core or the Shapley value of the 16-player

cooperative game, then we would need to compute the characteristic function values for 65, 535 coalitions.

Knowing that TIAM-WORLD has more than one million variables, the task of computing 65, 534 equilibrium

values is near impossible, even if we have access to the most sophisticated computers and algorithms available.

Petrosjan and Zaccour (2003) dealt with this “curse of dimensionality” in cooperative games by defining a

characteristic function that requires considerably less computational effort than the γ characteristic function

(γ-CF). Indeed, whereas in the γ-CF approach we must solve one optimization problem (the grand coalition’s

problem) and 2n − 2 equilibrium problems, in the Petrosjan-Zaccour CF it is the other way around, that

is, we need to solve one equilibrium problem (the n-player noncooperative game) and 2n − 2 optimization
problems. As solving an optimization problem is significantly simpler than solving an equilibrium one, the

computational savings are huge. We shall refer from now on to the Petrosjan-Zaccour CF as the δ-CF.1

This computational benefit comes, however, at the cost of making a strong assumption on players’ behavior,

which will be specified in the sequel.

Petrosjan and Zaccour (2003) did not discuss the properties that the δ-CF may exhibit, but simply used

it to design a time-consistent Shapley value for the differential game they considered. Zaccour (2003) showed

that the γ and δ characteristic function values coincide for the particular class of linear-state differential

games.2 In this paper, we establish some properties of the δ-CF and discuss its relationships with the γ-CF

for the class of games studied in Chander and Tulkens (1997), namely, games with multilateral externalities.
Our main results are: (i) the δ-core is nonempty; and (ii) the δ-core is a subset of the γ-core. Thus, we can

interpret the δ-core as a “selector” of some imputations from the γ-core.

The rest of the paper is organized as follows: In Section 2, we recall some preliminaries. In Section 3,

we introduce the class of games with negative externalities, and in Section 4, our main results. Section 5
presents an illustrative example, and Section 6 briefly concludes.

2 Preliminaries

Denote by N = {1, . . . , n} the set of players. Let v (·) be the characteristic function defined by

v : P (N) → R, v (∅) = 0,

where P (N) is the power set of N , and denote by I the set of imputations given by

I =

{

(y1, . . . , yn) | yi ≥ v ({i}) , ∀i and
n
∑

i=1

yi = v (N)

}

.

A coalition K is a subset of players, i.e., K ⊆ N . Von Neumann and Morgenstern (1944) interpreted the
value v (K) as the sum of gains that a coalition can guarantee its members. In cooperative games without

externalities, i.e., when the payoff of a coalition K is independent of the actions of the left-out players (LOP),

1 This choice is to continue the series of characteristic functions designated by the greek letters α, β and γ.
2 In this class of games, the payoff functions can be non-linear in the control (decision) variables.
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i.e., players in N\K, the value v (K) is simply obtained by optimizing the (possibly weighted) sum of the

coalition members’ payoffs. In this context, we need to solve as many optimization problems as there are

nonempty coalitions, that is, 2n− 1 problems. In games with externalities, the outcome of K depends on the
behavior of players in N\K, which leads to the definition of the α, β and γ characteristic functions. Briefly,

vα (K) is the maximum value of the minimum taken over LOP strategies. The α-CF is, for most purposes,

seen as too conservative as it amounts to assuming an antagonistic zero-sum game between K and N\K
(see Ordeshook (1986)). The β characteristic function assumes that the payoff vβ (K) that coalition K can

strategically guarantee its members corresponds to the minimum value of the maximum taken over LOP
strategies. For games with transferable utilities, which are our focus here, the α- and β-CFs are equivalent.

The common assumption is that the left-out players in N\K form a coalition whose purpose is to hurt

coalition K as far as feasible, without any concern for their own payoffs. The construction of α- and β-CFs

from a normal-form game ignores possible strategic interactions that could take place between the coalition
and the left-out players. To account for this, Chander and Tulkens (1997) proposed the γ-CF for a class of

games with multilateral externalities (see also Chander (2007) for a discussion of coalition formation in this

context, and Germain et al. (2003), for an application in environmental economics). In the γ-CF, vγ (K)

is defined as the partial equilibrium outcome of the noncooperative game between coalition K and LOP

acting individually. This means that each left-out player is taking note of the formation of coalition K and
best-replying to the other players’ strategies. If we denote by k the number of players in coalition K, then

the determination of vγ(K) requires finding an equilibrium for a noncooperative game with n−k+1 players.

Here, we have to solve one optimization problem (the grand coalition’s problem) and 2n − 2 equilibrium

problems. The pending difficulties are the selection of one equilibrium outcome when there are multiple
equilibria, and what to do when there is no equilibrium in pure strategies.3 Further, it was shown under

some convexity assumptions that the γ-core is nonempty for a quite general class of games with multilateral

externalities (see Chander and Tulkens (1997) and Helm (2001)).

The δ-CF involves a two-step procedure. First, we compute an n-player noncooperative equilibrium.
Second, for each coalition K, we solve an optimization problem consisting of maximizing the joint payoff,

assuming that LOP stick to their Nash equilibrium actions in the n-player noncooperative game. As stated

before, the main advantage of the δ-CF with respect to the γ-CF is computational. Its main drawback is

the assumption that the left-out players do not best-reply to the formation of the coalition, but stick to their

Nash equilibrium actions in the n-player noncooperative game. In the next section, we consider the class of
games with multilateral externalities in Chander and Tulkens (1997), and show that the δ-core is nonempty.

Further, we prove that the δ-core is included in the γ-core, and hence, is a selector of γ-core imputations.

3 Games with negative externalities

Chander and Tulkens (1997) consider a model with multilateral externalities and two kinds of commodities: a

standard private good, whose quantities are denoted by x1, x2, . . . , xn, and an environmental good (pollution

emissions), whose quantities are denoted by e1, e2, . . . , en. Technology is described by a production function

fi(ei), which is assumed to be increasing, differentiable and concave in ei. Each agent’s preferences are
represented by a quasi-linear utility function ui(xi, e) = xi − di(e), where di(e) is agent i’s disutility, which

is assumed to be a positive, increasing, differentiable and convex function of the level of the externality

e =
∑

i∈N ei. The agents outside of a coalition K ⊂ N choose their individual best reply to the coalition

members’ actions, which results in the γ-characteristic function defined as follows:

vγ(K) = max
{(xi,ei)i∈K}

∑

i∈K

ui(xi, e),

subject to
∑

i∈K

xi ≤
∑

i∈K

fi(ei) and e =
∑

i∈K

ei +
∑

j∈N\K
ej ,

where for all i ∈ N\K, (xi, ei) maximizes ui(xi, ei),

subject to xi ≤ fi(ei) and e = ei +
∑

j∈N\i
ej .

3 These difficulties vanish for the class of games considered by Chander and Tulkens (1997).
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Denote by ẽi player i’s Nash-equilibrium action in the n-player noncooperative game, and denote by

ẽ =
∑

i∈N ẽi. In the δ characteristic function, players outside of a coalition K ⊂ N freeze their actions at

their Nash-equilibrium levels ẽj , j ∈ N\K. The δ-CF value of coalition K is then given by

vδ(K) = max
{(xi,ei)i∈K}

∑

i∈K

ui(xi, e),

subject to
∑

i∈K

xi ≤
∑

i∈K

fi(ei) and e =
∑

i∈K

ei +
∑

j∈N\K
ẽj .

In the rest of the paper, we shall use the following notations:

e
δ,K
i : Player i’s optimal action under δ-CF when coalition K forms and i ∈ K, and

eδ,K =
∑

i∈K

e
δ,K
i +

∑

j∈N\K
ẽj .

e
γ,K
i : Player i’s Nash-equilibrium action under γ-CF when coalition K forms, and

eγ,K =
∑

i∈N

e
γ,K
i .

e∗i : Player i’s Pareto-optimal emissions. We know that when a grand coalition forms, both γ and δ

concepts coincide.

The necessary and sufficient conditions for the above optimization problem are

f ′
i(e

δ,K
i ) =

∑

i∈K

d′i(e
δ,K), ∀i ∈ K, (1)

eδ,K =
∑

i∈K

e
δ,K
i +

∑

j∈N\K
ẽj . (2)

For our purposes, the main results in Chander and Tulkens (1997) are: (i) given any coalition K, there exists

a unique Nash equilibrium in pure strategies of the (n− k + 1)-player noncooperative game; (ii) the core is

nonempty; (iii) the total emissions of the players when a coalition K forms satisfy eγ,K ≤ ẽ; and finally (iv)

the left-out players free-ride on the coalition players, i.e., eγ,Kj ≥ ẽj for j ∈ N\K.

4 Results

We start by the following lemma about the total players’ emissions when coalition K forms.

Lemma 1 For any coalition K ⊆ N , the total emissions under the δ-CF are less or equal to the total emissions

in the fully noncooperative game, that is, eδ,K ≤ ẽ.

Proof. Suppose that eδ,K > ẽ. The convexity of di (·), which implies d′i(e
δ,K) ≥ d′i(ẽ), and the first-order

conditions (1)–(2) yield

f ′
i(e

δ,K
i ) =

∑

i∈K

d′i(e
δ,K) ≥ d′i(e

δ,K) ≥ d′i(ẽ) = f ′
i(ẽi), ∀i ∈ K,

e
δ,K
j = ẽj , ∀j ∈ N\K.

From the concavity of the production functions we have that eδ,Ki ≤ ẽi, ∀i ∈ K. This implies

eδ,K =
∑

i∈K

e
δ,K
i +

∑

j∈N\K
ẽj ≤

∑

i∈K

ẽi +
∑

j∈N\K
ẽj = ẽ,

which contradicts our assumption.
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The formation of any coalition leads to lower emissions than under a fully noncooperative Nash equilib-

rium. In the next lemma, we show that the combined emissions of the players in coalition K are greater

when the left-out players freeze their strategies at their individual Nash-equilibrium strategies (δ concept)
than when they use their best-reply strategies (γ concept).

Lemma 2 For any coalition K ⊆ N , we have

∑

i∈K

e
δ,K
i ≥

∑

i∈K

e
γ,K
i .

Proof. From Chander and Tulkens (1997) and Helm (2001), we know that

eγ,K ≤ ẽ and e
γ,K
j ≥ ẽj, for all j ∈ N\K.

Suppose that
∑

i∈K e
δ,K
i <

∑

i∈K e
γ,K
i . Consequently, we have

eδ,K =
∑

i∈K

e
δ,K
i +

∑

j∈N\K
ẽj <

∑

i∈K

e
γ,K
i +

∑

j∈N\K
ẽj

≤
∑

i∈K

e
γ,K
i +

∑

j∈N\K
e
γ,K
j = eγ,K .

The convexity of d (·), implies d′i(e
δ,K) ≤ d′i(e

γ,K), which, along with the first-order optimality conditions of

Lemma (1) leads to

f ′
i(e

δ,K
i ) =

∑

i∈K

d′i(e
δ,K) ≤

∑

i∈K

d′i(e
γ,K) = f ′

i(e
γ,K
i ), ∀i ∈ K.

By the concavity of the production functions, we have e
δ,K
i ≥ e

γ,K
i , ∀i ∈ K. Consequently,

∑

i∈K e
δ,K
i ≥

∑

i∈K e
γ,K
i , which contradicts our assumption.

Chander and Tulkens (1997) showed that e
γ,K
j ≥ ẽj , j ∈ N\K and eγ,K ≤ ẽ for any K ⊂ N , i.e., the

left-out players free-ride on the coalition by emitting more than under their Nash-equilibrium strategies. In

the δ approach however, the left-out players freeze their strategies at the Nash-equilibrium levels instead of

best-replying to coalition K. Hence, the combined emissions of coalition players in K are greater. Next, we
show that the δ-CF gives any coalition K a higher value than the γ-CF.

Theorem 1 For any K ⊆ N , vδ(K) ≥ vγ(K).

Proof. By definition, we have vδ(K) = vγ(K), for |K| = 1 or K = N . For 1 < |K| < |N |, we have

vδ(K)− vγ(K) =
(

∑

i∈K

fi(e
δ,K
i )− di

(

∑

j∈K

e
δ,K
j +

∑

j∈N\K
e
δ,K
j

)

)

−
(

∑

i∈K

fi(e
γ,K
i )− di

(

∑

j∈K

e
γ,K
j +

∑

j∈N\K
e
γ,K
j

)

)

=
∑

i∈K

(

fi(e
δ,K
i )− fi(e

γ,K
i )

)

−
∑

i∈K

(

di(e
δ,K)− di(e

γ,K)
)

≥
∑

i∈K

f ′
i(e

δ,K
i )(eδ,Ki − e

γ,K
i ) +

∑

i∈K

d′i(e
δ,K)(eγ,K − eδ,K)

=
∑

i∈K

f ′
i(e

δ,K
i )(eδ,Ki − e

γ,K
i ) + (eγ,K − eδ,K)

∑

i∈K

d′i(e
δ,K).

The inequality follows from the concavity of fi and convexity of di. Next, using the first-order conditions

(1)–(2) we have
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vδ(K)− vγ(K) ≥
(

(eγ,K − eδ,K) +
∑

i∈K

(eδ,Ki − e
γ,K
i )

)

∑

i∈K

d′i(e
δ,K)

=
∑

i∈N\K
(eγ,Ki − e

δ,K
i )

∑

i∈K

d′i(e
δ,K)

=
∑

i∈N\K
(eγ,Ki − ẽi)

∑

i∈K

d′i(e
δ,K) ≥ 0.

The last inequality follows from the monotonicity of the damage functions and the e
γ,K
j ≥ ẽj = e

δ,K
j , j ∈

N\K.

Using Lemma 1, the following theorem shows that vδ(.) is superadditive.

Theorem 2 The δ-characteristic function is superadditive.

Proof. Let S and T be subsets of N with S ∩ T = ∅. To show superadditivity, compute

vδ(S ∪ T )− vδ(S)− vδ(T )

=
∑

i∈S∪T

fi(e
δ,S∪T
i )− di(e

δ,S∪T )−
(

∑

i∈S

fi(e
δ,S
i )− di(e

δ,S)

)

−
(

∑

i∈T

fi(e
δ,T
i )− di(e

δ,T )

)

≥
∑

i∈S

f ′
i(e

δ,S∪T
i )

(

e
δ,S∪T
i − e

δ,S
i

)

+ (eδ,S − eδ,S∪T )d′i(e
δ,S∪T )

+
∑

i∈T

f ′
i(e

δ,S∪T
i )

(

e
δ,S∪T
i − e

δ,T
i

)

+ (eδ,T − eδ,S∪T )d′i(e
δ,S∪T )

=
∑

i∈S∪T

d′i(e
δ,S∪T )

(

∑

i∈S

(eδ,S∪T
i − e

δ,S
i ) +

∑

i∈T

(eδ,S∪T
i − e

δ,T
i )

)

+ (eδ,S − eδ,S∪T )
∑

i∈S

d′i(e
δ,S∪T ) + (eδ,T − eδ,S∪T )

∑

i∈T

d′i(e
δ,S∪T )

The inequality follows from the concavity of fi(.), the convexity of di(.) and the assumption that S ∩ T = ∅.
Then, the last equality follows from the first-order conditions (1)–(2). Rearranging the terms in the last

expression, we obtain

vδ(S ∪ T )− vδ(S)− vδ(T )

≥
(

∑

i∈S

d′i(e
δ,S∪T ) +

∑

i∈T

d′i(e
δ,S∪T )

)(

eδ,S∪T −
∑

i∈N\{S∪T}
ẽi +

∑

i∈N\S
ẽi +

∑

i∈N\T
ẽi − eδ,S − eδ,T

)

+ (eδ,S − eδ,S∪T )
∑

i∈S

d′i(e
δ,S∪T ) + (eδ,T − eδ,S∪T )

∑

i∈T

d′i(e
δ,S∪T )

=

(

∑

i∈S

d′i(e
δ,S∪T ) +

∑

i∈T

d′i(e
δ,S∪T )

)(

eδ,S∪T − eδ,S − eδ,T +
∑

i∈N

ẽi

)

+ (eδ,S − eδ,S∪T )
∑

i∈S

d′i(e
δ,S∪T ) + (eδ,T − eδ,S∪T )

∑

i∈T

d′i(e
δ,S∪T )

=
(

ẽ− eδ,T
)

∑

i∈S

d′i(e
δ,S∪T ) +

(

ẽ− eδ,S
)

∑

i∈T

d′i(e
δ,S∪T ) ≥ 0,

where the last inequality follows from Lemma 1.

It is well known that the superadditivity of vδ(.) cannot guarantee that the cooperative game has a

nonempty core. Chander and Tulkens (1997) show the nonemptiness of the γ-core under a few assumptions,4

4 Under the assumption that for all S ⊂ N , |S| ≥ 2:
∑

j∈S d′j(e
∗) ≥ d′i(ẽ), i ∈ S.
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by proving that a specific imputation, that is, a particular version of the ratio equilibrium (see Kaneko

(1977)), belongs to the γ-core. Using the convexity assumptions of the production and damage functions

and the Bondereva-Shapley theorem, Helm (2001) shows the nonemptiness of the γ-core. We follow a similar
approach towards showing the nonemptiness of the δ-core.

Let C be the set of possible coalitions. Let Ci = {K ∈ C : i ∈ K} be the subset of those coalitions that

have player i as a member. A vector (µK)K∈C : µK ∈ [0, 1] for all K ∈ C is called a balanced collection of

weights if for all i ∈ N we have
∑

K∈Ci
µK = 1.

Proposition 1 (Bondareva-Shapley Theorem) A coalitional game with transferable payoff (N, v) has a

nonempty core if, and only if, for every balanced collection of weights
∑

K∈C µKv(K) ≤ v(N).

Theorem 3 The coalitional game (N, vδ(.)) is balanced, and therefore, has a nonempty core.

Proof. From Lemma 1, we have eδ,K ≤ ẽ, which implies
∑

i∈K e
δ,K
i ≤ ∑

i∈K ẽi, since
∑

i∈N\K e
δ,K
i =

∑

i∈N\K ẽi. Now,

∑

K∈C\Ci

µK

∑

j∈K

e
δ,K
j ≤

∑

K∈C\Ci

µK

∑

j∈K

ẽj

=
∑

K∈C
µK

∑

j∈K

ẽj −
∑

K∈Ci

µK

∑

j∈K

ẽj

=
∑

j∈N

ẽj −
∑

K∈Ci

µK

∑

j∈K

ẽj

=
∑

K∈Ci

µK

∑

j∈N

ẽj −
∑

K∈Ci

µK

∑

j∈K

ẽj

=
∑

K∈Ci

µK

∑

j∈N\K
ẽj =

∑

K∈Ci

µK

∑

j∈N\K
e
δ,K
j . (3)

For each i ∈ N, let eCi =
∑

K∈Ci
µKe

δ,K
i , that is, the sum of weighted optimal emissions of player i in all

coalitions to which he may belong. By concavity of the production function, we have

fi(e
C
i ) = fi

(

∑

K∈Ci

µKe
δ,K
i

)

≥
∑

K∈Ci

µKfi(e
δ,K
i ).

Next, compute

di

(

∑

i∈N

eCi

)

= di

(

∑

i∈N

∑

K∈Ci

µKe
δ,K
i

)

= di

(

∑

K∈C
µK

∑

j∈K

e
δ,K
j

)

= di

(

∑

K∈Ci

µK

∑

j∈K

e
δ,K
j +

∑

K∈C\Ci

µK

∑

j∈K

e
δ,K
j

)

≤ di

(

∑

K∈Ci

µK

∑

j∈K

e
δ,K
j +

∑

K∈Ci

µK

∑

j∈N\K
e
δ,K
j

)

= di

(

∑

K∈Ci

µK

(

∑

j∈K

e
δ,K
j +

∑

j∈N\K
e
δ,K
j

)

)

≤
∑

K∈Ci

µKdi

(

∑

j∈K

e
δ,K
j +

∑

j∈N\K
e
δ,K
j

)

.

In the above, the first inequality follows from (3) and the last inequality follows from the convexity of the

damage functions. Then, from the cohesiveness of the coalitional game, that is, since the value of the grand
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coalition is at least as large as the sum of the values of the members of any partition of N , we have

vδ(N) ≥
∑

i∈N

fi(e
C
i )−

∑

i∈N

di

(

∑

j∈N

eCj

)

≥
∑

i∈N

∑

K∈Ci

µKfi(e
δ,K
i )−

∑

i∈N

∑

K∈Ci

µKdi

(

∑

j∈K

e
δ,K
j +

∑

j∈N\K
e
δ,K
j

)

=
∑

K∈Ci

µK

∑

i∈K

(

fi(e
δ,K
i )− di

(

∑

j∈K

e
δ,K
j +

∑

j∈N\K
e
δ,K
j

)

)

=
∑

K∈C
µKvδ (K).

Consequently, the δ-core is nonempty.

Using Theorem 1 and Theorem 3 we have the following result.

Theorem 4 For the game with multilateral externalities, δ-core ⊆ γ-core.

Proof. Given that the δ- and the γ-core are nonempty, the result is a direct consequence of Theorem 1, i.e.,
vδ(K) ≥ vγ(K) for every K ⊆ N , and of the definition of the core of a cooperative game.

Chander and Tulkens (1997) show that by emitting more than under their Nash equilibrium strategies,

that is, eγ,Kj ≥ ẽj , j ∈ N\K, the left-out players free-ride on the members of coalition K. In the δ case, such

behavior cannot occur, as by definition, left-out players freeze their emissions at the fully noncooperative
Nash-equilibrium levels. Lemma 1 only says that when coalition K forms, the total emissions are lower than

the total Nash-equilibrium emissions, i.e., eδ,K ≤ ẽ. Now, superadditivity of vδ(.) implies that it is in the best

interest of a coalition to enlarge, but how does this translate in terms of emissions? The following proposition

gives a hint.

Proposition 2 Let S ⊂ T ⊆ N . If eδ,S ≤ eδ,T , then e
δ,T
i ≤ e

δ,S
i , ∀i ∈ S, S ⊂ T and

∑

i∈T\S e
δ,T
i ≥∑i∈T\S ẽi.

Proof. The first-order conditions (1)–(2) imply f ′
i(e

δ,S
i ) =

∑

i∈S d′i(e
δ,S), for all i ∈ S. The monotonicity

of d′i (·) yields

f ′
i(e

δ,S
i ) =

∑

i∈S

d′i(e
δ,S) ≤

∑

i∈S

d′i(e
δ,T ) = fi(e

δ,T
i )−

∑

i∈T\S
d′i(e

δ,T ), for all i ∈ S,

and the positivity of d′i (·)

f ′
i(e

δ,T
i )− f ′

i(e
δ,S
i ) ≥

∑

i∈T\S
d′i(e

δ,T ) ≥ 0, for all i ∈ S.

From the concavity of fi we have e
δ,T
i ≤ e

δ,S
i for all i ∈ S and S ⊂ T . Then,

∑

i∈S

e
δ,S
i +

∑

i∈T\S
ẽi +

∑

i∈N\T
ẽi = eδ,S ≤ eδ,T =

∑

i∈S

e
δ,T
i +

∑

i∈T\S
e
δ,T
i +

∑

i∈N\T
ẽi

0 ≤
∑

i∈S

(

e
δ,S
i − e

δ,T
i

)

≤
∑

i∈T\S

(

e
δ,T
i − ẽi

)

The last inequality clearly implies
∑

i∈T\S e
δ,T
i ≥∑i∈T\S ẽi.
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The interpretation of the above proposition is as follows: when a coalition S enlarges to T , the new

entrants, i.e., players in T \S, jointly free-ride on the players in coalition S. Further, players in T ∩ S reduce

their emissions individually in the newly formed bigger coalition, that is, eδ,Ti ≤ e
δ,S
i , for all i ∈ S, S ⊂ T .

Note that this holds true only if the total emissions under T are larger than under S, i.e., eδ,S ≤ eδ,T .

In the next subsection, we provide some sharper results for when the players are identical.

4.1 Symmetric game

To save on notation in this symmetric case, we denote by eS = e
δ,S
i , f (·) = fi(·) and d (·) = di(·), ∀i ∈ N ,

S ⊂ N , and by s the number of players in S. The first-order conditions (1)–(2) can be rewritten as

f ′(eS) = sd′
(

seS + (n− s) ẽ
)

, S ⊂ N. (4)

The Nash-equilibrium and Pareto-optimal emissions satisfy, respectively, the following two conditions:

f ′(ẽ) = d′(nẽ), (5)

f ′(e∗) = nd′(ne∗). (6)

The following proposition shows that increasing the size of a coalition benefits each of its member, that

is, the per-capita payoff of a coalition is non-decreasing with its size.

Proposition 3 For S ⊂ T ⊆ N we have
vδ(T )

t
≥ vδ(S)

s
.

Proof. Compute

vδ(T )

t
− vδ(S)

s
= f(eT )− f(eS)−

(

d(teT + (n− t)ẽ)− d(sS + (n− s)ẽ)
)

≥ f ′(eT )
(

eT − eS
)

+ d′(teT + (n− t)ẽ)
(

(seS + (n− s)ẽ)− (teT + (n− t)ẽ)
)

= td′(teT + (n− t)ẽ)
(

1− s

t

)

(ẽ− eS).

The inequality follows from the concavity of f(.) and convexity of d(.). The last equality follows directly

from the first-order condition (4). From Lemma 1, we have eδ,S = seS + (n− s) ẽ ≤ ẽ = nẽ, which implies

eS ≤ ẽ. Consequently, we have vδ(T )
t

≥ vδ(S)
s

.

The impact on the per capita emissions of enlarging a coalition is characterized in the following proposition.
The result is a sharper version of the one obtained in Proposition 2 for the asymmetric case.

Proposition 4 For S ⊂ T ⊆ N we have

teT ≤ seS + (t− s) ẽ,

and consequently

eT ≤ eS + (1 − s

t
)(ẽ − eS).

Proof. Suppose that teT > seS + (t− s)ẽ, then

teT + (n− t) ẽ > seS + (n− s) ẽ. (7)

Then, from monotonicity of d′(·) we have
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d′(teT + (n− t) ẽ) ≥ d′(seS + (n− s) ẽ)

td′(teT + (n− t) ẽ) ≥ td′(seS + (n− s) ẽ)

= sd′(sS + (n− s) ẽ) + (t− s) d′(seS + (n− s) ẽ)

≥ sd′(seS + (n− s) ẽ).

The first-order condition (4) yields

f ′(eT ) = td′(teT + (n− t) ẽ) ≥ sd′(seS + (n− s) ẽ) = f ′(eS).

Since f ′(·) is a decreasing function, we have eT ≤ eS , which leads to

teT + (n− t) ẽ ≤ teS + (n− t) ẽ = seS + (n− s) ẽ+ (t− s) (eS − ẽ)

tT + (n− t) ẽ− (seS + (n− s) ẽ) ≤ (t− s) (eS − ẽ).

Using (7), we obtain

0 < teT + (n− t) ẽ− (seS + (n− s) ẽ) ≤ (t− s) (eS − ẽ)

0 < (t− s) (eS − ẽ).

The last inequality results in eS > ẽ, which contradicts Lemma 1. Therefore, eT ≤ eS +(1− s
t
)(ẽ− eS) holds

true.

Finally, we make the observation that for any n-player symmetric game with transferable utility, the γ-

and δ-CF yield the same Shapley value φi, ∀i ∈ N , that is,

φi(v
γ) =

1

n
vγ (N) =

1

n
vδ (N) = φi(v

δ).

5 An example

To illustrate our results, and more specifically, the inclusion of the δ-core in the γ-core, we consider a simple
3-player game with the utility function of player i given by

ui = αiei −
1

2
βie

2
i −

1

2
σie

2, i = 1, 2, 3.

To ensure that the differences are due, and only due, to the choice of the characteristic function, we make

the further assumption that the game is symmetric, that is,

αi = α; βi = β; σi = σ, i = 1, 2, 3.

Table 1 reports the results for all feasible coalitions. As expected, the emissions and payoff values only

differ for two-player coalitions.

Table 1: Individual and total emissions and individual payoffs

δ-CF γ-CF

K ei, i ∈ K e ui, i ∈ K ei, i ∈ K e ui, i ∈ K

{1}, {2}, {3} α
3σ+β

3α
3σ+β

α2(β−3σ)

2(β+3σ)2
α

3σ+β
3α

3σ+β

α2(β−3σ)

2(β+3σ)2

{i, j} , {k} α(σ+β)
(β+4σ)(3σ+β)

3α(2σ+β)
(β+4σ)(3σ+β)

(β2+βσ−3σ2)α2

2(β+4σ)(β+3σ)2
α(β−σ)

5σβ+β2

3α
5σ+β

(β2+βσ−11σ2)α2

2β(β+5σ)2

{i, j, k} α
9σ+β

3α
9σ+β

α2

2(β+9σ)
α

9σ+β
3α

9σ+β
α2

2(β+9σ)
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For an imputation y = (y1, y2, y3) to be in the core, the following conditions must be satisfied for i = 1, 2, 3:

δ-core : A ≤ yδi ≤ A+B,

γ-core : A ≤ y
γ
i ≤ A+B + C,

where

A =
α2(β − 3σ)

2(β + 3σ)2
, B =

45α2σ2

(β + 3σ)(β + 4σ)(β + 9σ)
,

C =
36σ3α2(β2 + 7βσ + 11σ2)

β(β + 4σ)(β + 3σ)2(β + 5σ)2
.

This clearly shows that the γ-CF yields a larger interval on player i’s imputation to be in the core than does
the δ-CF, with the difference given by C.

To give a more visual picture of the result, let us transform the game at hand into a strategically equivalent

game in (0-1), that is,
v̂ ({i}) = 0, i = 1, 2, 3,

v̂ (N) = 1.

It is easy to verify that we obtain the following δ- and γ-CF values for i, j = 1, 2, 3, i 6= j :

v̂ ({i} , δ) = 0; v̂ ({i, j} , δ) = 1

6

9σ + β

4σ + β
; v̂ (N, δ) = 1,

v̂ ({i} , γ) = 0; v̂ ({i, j} , γ) = 1

6

(9σ + β)
(

β2 + 2σβ − 11σ2
)

β (5σ + β)
2 ; v̂ (N, γ) = 1

The δ- and γ-core are then defined by the following inequalities:

0 ≤ yδi ≤ 5

6

3σ + β

4σ + β

0 ≤ y
γ
i ≤ 5

6

3σ + β

4σ + β
+

2

3

σ (9σ + β)
(

11σ2 + β2 + 7σβ
)

β (4σ + β) (5σ + β)2
.

Note that the above inequalities are independent of α. Letting ξ = σ
β
, we can then express the characteristic

function values for two-player coalitions as functions of only one parameter, that is,

v̂({i, j}, δ) = gδ(ξ) =
(1 + 9ξ)

6(1 + 4ξ)
,

v̂({i, j}, γ) = gγ(ξ) =
(1 + 9ξ)

6(1 + 4ξ)

(1 + 4ξ)(1 + 2ξ − 11ξ2)

(1 + 5ξ)2
.

To ensure that gγ(ξ) ∈ [0, 1], we impose the following restriction on ξ:

0 ≤ ξ ≤ ξ̄ =
1 + 2

√
3

11
≈ 0.4058.

Interestingly, increasing the externality as measured by ξ has a different effect on gδ(ξ) and than on gγ(ξ).

Whereas gδ(ξ) is monotonically increasing in ξ, gγ(ξ) is concave, first increasing and next decreasing. Indeed,
the derivatives are given by

g′δ(ξ) =
5

6(1 + 4ξ)2
> 0

g′γ(ξ) = −
√
3

(

(9ξ + 1)
2 (−11ξ2 + 2ξ + 1

)2

24 (5ξ + 1)4
− 1

2

)

is

{ ≥ 0, for ξ ∈ [0 ξ]
≤ 0, for ξ ∈ [ξ ξ̄]

.

where ξ =
√
649−22
165 ≈ 0.0211, and gγ(ξ̄) = 0.
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Figure 1 exhibits the set of imputations and the δ- and γ-core. As expected, the δ-core is a subset of the

γ-core. Denote by ∆δ and ∆γ the area of the δ-core and the γ-core, respectively, with their ratio given by

∆γ

∆δ

=

√
3
2 (1− 3(gγ)

2)
√
3
2 (1− 3(gδ)2)

= 1 +
8ξ(9ξ + 1)2(11ξ2 + 7ξ + 1)(−22ξ3 + 11ξ2 + 8ξ + 1)

(5ξ + 1)
4
(111ξ2 + 78ξ + 11)

.

y1

y2

y3

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(gγ , 0, 1− gγ)

(0, gγ , 1− gγ)

(0, gδ, 1− gδ)

(gδ, 0, 1− gδ)

(1− gδ, 0, gδ)

(0, 1− gδ, gδ)

(0, 1− gγ , gγ)

(gγ , 1− gγ , 0)

(1− gγ , gγ , 0)

(1− gδ, gδ, 0)

(gδ, 1− gδ, 0)

γ-core

δ-core

(1− gγ , 0, gγ)

Figure 1: Outer triangle represents the imputation set. The gray hexagon represents the γ-core and the dark
hexagon represents the δ-core

Figure 2 shows that the above ratio is an increasing function of ξ and reaches its maximum of 1.35 at ξ̄.

Notice, that this ratio is always greater than unity, implying that the δ-core is included in the γ-core, and

increases with increasing externality. A relevant question is how far this ratio could go if we did not have the
restriction 0 ≤ ξ ≤ ξ̄ ≈ 0.4058. To answer this question, we first observe that the γ-core can (maximally)

be the whole imputation set of area ∆ =
√
3
2 , while the smallest area of the δ-core is obtained when gδ is

maximal, that is,

lim
ξ→∞

gδ(ξ) = lim
ξ→∞

(1 + 9ξ)

6(1 + 4ξ)
=

3

8
.

Therefore, the maximal ratio is given by

∆γ

∆δ

=

√
3
2√

3
2 (1− 3(38 )

2)
≈ 1. 73

Finally, we observe that the δ-core is a hexagon, which excludes the case of having the δ-core be the whole
imputation set. To see this, note that 0 < gδ(ξ) < 1

2 , which implies that the δ-core cannot be a triangle,

and is indeed necessarily a hexagon.
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1.3
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1.4

1.45

1.5

ξ

∆γ(ξ)
∆δ(ξ)

ξ̄

Figure 2: The ratio of areas of γ-core to δ-core with increasing externality

6 Conclusion

In this paper, we provided some properties of the δ-characteristic function and discussed its relationship with

the γ-CF. More specifically, we proved that for the class of games with multilateral externalities, the δ-CF is

superadditive and its core is nonempty and is included in the γ-core. The simple 3-player symmetric example

gave an additional hint about the difference in size between the δ-core and the γ-core.

Two extensions of this paper are worth considering: first, to characterize the conditions under which the

δ-core is nonempty for other classes of games than the one considered here; second, to extend the comparative

analysis of the δ- and γ-CF to value solutions such as the Shapley value and the nucleolus. One can start by
considering test games where the curse of dimensionality is not present and analytically assess the difference

between the results produced by the two CFs, and next move on to numerical simulations for large-size

games.
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